Approaches to bounding the exponent of matrix multiplication

Chris Umans

Caltech

Based on joint work with Noga Alon, Henry Cohn, Bobby Kleinberg, Amir Shpilka, Balazs Szegedy

Simons Institute Sept. 17, 2014

- Standard method: $O(n^3)$ operations
- Strassen (1969): $O(n^{2.81})$ operations

- Standard method: $O(n^3)$ operations
- Strassen (1969): $O(n^{2.81})$ operations

The exponent of matrix multiplication: smallest number ω such that for all $\varepsilon > 0$ $O(n^{\omega + \epsilon})$ operations suffice

History

- Standard algorithm $\omega \leq 3$
- Strassen (1969) $\omega < 2.81$
- Pan (1978) $\omega < 2.79$
- Bini; Bini et al. (1979) $\omega < 2.78$
- Schönhage (1981) $\omega < 2.55$
- Pan; Romani; Coppersmith + Winograd (1981-1982) ω < 2.50
- Strassen (1987) $\omega < 2.48$
- Coppersmith + Winograd (1987) ω < 2.375
- Stothers (2010) ω < 2.3737
- Williams (2011) $\omega < 2.3729$
- Le Gall (2014) ω < 2.37286

-
-
-
-
-
-

Outline

- 1. main ideas from Strassen 1969 through Le Gall 2014
- 2. approach via embedding into semisimple algebra multiplication
	- groups
	- coherent configurations/association schemes

 $\langle n,n,n \rangle$ is a $n^2 \times n^2 \times n^2$ tensor described by trilinear form $\sum_{i,j,k}X_{i,j}Y_{j,k}Z_{k,i}$

1 1

$\langle n,n,n \rangle$ is a $n^2 \times n^2 \times n^2$ tensor described by trilinear form $\sum_{i,j,k}X_{i,j}Y_{j,k}Z_{k,i}$

$\langle n,n,n \rangle$ is a $n^2 \times n^2 \times n^2$ tensor described by trilinear form $\sum_{i,j,k}X_{i,j}Y_{j,k}Z_{k,i}$

 $\langle n,n,n \rangle$ is a $n^2 \times n^2 \times n^2$ tensor described by trilinear form $\sum_{i,j,k}X_{i,j}Y_{j,k}Z_{k,i}$

 $\langle n,n,n \rangle$ is a $n^2 \times n^2 \times n^2$ tensor described by trilinear form $\sum_{i,j,k}X_{i,j}Y_{j,k}Z_{k,i}$

<n,m,p> is a nm £ mp £ pn tensor described by trilinear form $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$

Strategies for upper bounding the rank of the

matrix multiplication tensor

- Observation: $\langle n,n,n\rangle$ ⁻ⁱ = $\langle n^i,n^j,n^j\rangle$) R(<nⁱ, nⁱ, nⁱ>) · R(<n,n,n>)ⁱ
- Strategy I: bound rank for small n by hand $-R($2,2,2>$) = 7 $1 < 2.81$$ $- R($(3,3,3)$) 2 [19.23] (worse bound)$

– even computer search infeasible…

• Border rank = rank of sequence of tensors approaching target tensor entrywise

rank $= 3$ border rank $= 2$:

$$
\begin{array}{|c|c|}\n\hline\n2-1 & 1 \\
\hline\n1 & 2\n\end{array}\n\begin{array}{|c|c|}\n\hline\n1 \\
\hline\n\end{array}
$$

• Strategy II: bound *border rank* for small n

• Lemma: $R(\langle n,n,n \rangle) < r$)! $\langle \log_n r$ $-R(<2,2,3>) \cdot 10$! < 2.79

- Direct sum of tensors $\langle n,n,n\rangle \otimes \langle m,m,m\rangle$ $\leq m, m, m$ (multiple matrix multi example (Schönhage 1 "Asymptotic Sum Inequality" and example (Schönhage 1981)
- Strategy *II*I: bound (border) rank of *direct* sums of small matrix multiplication tensors

$$
\underline{R}(n_1, n_1, n_1 > 0 \dots 0 < n_k, n_k, n_k >) < r) \sum_i n_i! < r
$$

$$
-R(<4,1,3> \text{ } \textcircled{\textbf{0}} <1,6,1>): 13 \qquad \qquad \text{!} <2.55
$$

<n,n,n>

- Strategy IV: Strassen "laser method"
	- tensor with "coarse structure" of MM and "fine structure" components isomorphic to MM

(many independent MMs in high tensor powers)

- Strategy IV: Strassen "laser method"
	- tensor with "coarse structure" of MM and "fine structure" components isomorphic to MM

(many independent MMs in high tensor powers)

border rank = $q + 1$; $q = 5$ yields ! < 2.48

• Coppersmith-Winograd and beyond: border rank of this tensor is q+2:

$$
\sum_{i=1...q} X_{0}Y_{i}Z_{i} + X_{i}Y_{0}Z_{i} + X_{i}Y_{i}Z_{0} + X_{0}Y_{0}Z_{q+1} + X_{0}Y_{q+1}Z_{0} + X_{q+1}Y_{0}Z_{0}
$$

– 6 "pieces": target proportions in high tensor power affect # and size of independent MMs $-$ q = 6 yields ! < 2.388

• Coppersmith-Winograd and beyond: analyze tensor powers of this tensor

$$
T_q = \sum_{i=1...q} X_0 Y_i Z_i + X_i Y_0 Z_i + X_i Y_i Z_0 +
$$

$$
X_0 Y_0 Z_{q+1} + X_0 Y_{q+1} Z_0 + X_{q+1} Y_0 Z_0
$$

• Coppersmith-Winograd and beyond

• Ambainis-Filmus 2014: N-th tensor power cannot beat bound of 2.3078

A different approach

- So far...
	- bound border rank of small tensor (by hand)
	- asymptotic bound from high tensor powers
- Disadvantages
	- limited universe of "starting" tensors
	- high tensor powers hard to analyze

matrix multiplication via groups and coherent configurations / association schemes

The general approach

- Cohn-Umans 2003, 2012:
	- *embed* n x n matrix multiplication into semisimple algebra multiplication
	- semi-simple: isomorphic to block-diagonal MM

– key hope: "nice basis" w/ combinatorial structure – reduce n x n MM to smaller MMs; recurse

The Group Algebra

• given finite group G, group algebra C[G] has elements Σ_g a_gg with multiplication

$$
(\Sigma_g a_g g)(\Sigma_h b_h h) = \Sigma_f (\Sigma_{gh=f} a_g b_h) f
$$

- structure: $C[G]$ ' $(C^{d_1 \times d_1}) \times ... \times (C^{d_k \times d_k})$
- group elements are "nice basis"

"Nice basis" embedding:

Subgroups X, Y, Z of G satisfy the **triple product property** if for all $x \in X$, $y \in Y$, $z \in Z$: $xyz = 1$ iff $x = y = z = 1$.

The embedding:
$$
Q(S) = \{s^{-1}t: s, t \in S\}
$$

\nSubsets X, Y, Z of G satisfy the
\ntriple product property
\nif for all x $\in Q(X)$, y $\in Q(Y)$, z $\in Q(Z)$:
\nxyz = 1 iff x = y = z = 1.
\n $\underline{A} = \Sigma a_{x,y}(x y^{-1})$ $\underline{B} = \Sigma b_{y,z}(y z^{-1})$
\nClaim: (AB)_{x,z} = coeff. on (x z⁻¹) in $\underline{A}^* \underline{B}$.

The embedding: Subsets X, Y, Z of G satisfy the **triple product property** if for all $x \in Q(X)$, $y \in Q(Y)$, $z \in Q(Z)$: $xyz = 1$ iff $x = y = z = 1$. **A** = $\sum a_{x_1, y_1}(x_1y_1^{-1})$ **B** = $\sum b_{y_2, z_2}(y_2z_2^{-1})$ **Claim:** $(AB)_{x_3, z_3} = \text{coeff. on } (x_3z_3^{-1}) \text{ in } \mathbf{A}^* \mathbf{B}.$ $(x_1y_1^{-1})(y_2z_2^{-1}) = x_3z_3^{-1}$ \rightarrow $x_3^{-1}x_1y_1^{-1}y_2z_2^{-1}z_3 = 1$ $Q(S) = \{s^{-1}t: s, t \in S\}$

How many multiplications?

- Embedding + structure of C[G] yields bound on rank (´ # multiplications):
- we use $m \leq \sum_{i=1}^{n} m$ ults

- really $m = \Sigma d_i^{\dagger}$ mults
- *at least* $m \ge \sum d_i^2 = |G|$ mults

First Challenge: embed k × k matrix multiplication in group of size $\frac{1}{4}k^2$

The embedding

First Challenge: embed k × k matrix multiplication in group of size $\frac{1}{4}k^2$

- simple pigeonhole argument:
	- embedding in an abelian group requires group to have size k^3

The triangle construction

Theorem: can embed k × k matrix multiplication in symmetric group of size $k^{2 + o(1)}$

-
- subgroup Y
- subgroup Z

need X, Y, Z in S_n all with size $\approx |S_n|^{1/2}$

The triangle construction

- X moves points within rows
- Y moves points within columns
- Z moves points within diagonals
- want: $xyz = 1$ \Rightarrow $x = y = z = 1$

The triangle construction

Theorem: can embed k × k matrix multiplication in symmetric group of size $k^{2 + o(1)}$

-
- subgroup Y
- subgroup Z

unfortunately, $d_{max} > |X| (= |Y| = |Z|)$

What should we be aiming for?

Theorem: in group G supporting k x k matrix multiplication with character degrees d_1 , d_2 , d_3 ,..., we obtain:

 k^{ω} · $\sum_i d_i^{\omega}$

• If X, Y, Z μ G satisfy T.P.P. and $-(|X|\phi|Y|\phi|Z|)^{1/3} = k \cdot |G|^{1/2 - o(1)}$ $- d_{\text{max}} \cdot |G|^{1/2 - 2}$ then $!= 2$ $\sum_i d_i^{\;!}$ · d_{max}

Sept. 17, 2014 33

 $! - 2|G|$

Constructions in linear groups

• Good candidate family:

SL(n, q) for fixed dimension n

• In SL(n, R) these three subgroups satisfy the triple product property:

– upper-triangular with ones on the diagonal

- lower-triangular with ones on the diagonal
- the special orthogonal group SO(n, R)

and dim. of each is ½ dim. of G as n ! 1

Group algebra approach

- [CKSU 2005] wreath product groups yield : $-$! < 2.48, ! < 2.41
	- key part of construction is combinatorial

 $-$ two conjectures implying $!= 2$

- Main disadvantage:
	- non-trivial results *require* non-abelian groups – most ideas foiled by too-large char. degrees

General semi-simple algebras

- (finite dimensional, complex) algebra specified by
	- "nice basis" $e_1, e_2, ..., e_r$
	- structure constants $\mathbf{s}_{i,j,k}$ satisfying

- Technical problem:
	- MM tensor <n,n,n> given by $\sum_{i,j,k}X_{i,j}Y_{i,k}Z_{k,i}$
	- embedding into algebra bounds rank of tensor given by

$$
\sum_{i,j,k\text{ s}}\sum_{j,j,k}X_{i,j}Y_{j,k}Z_{k,l}
$$
\n(with $x_{i,j,k} \neq 0$)

– group algebra: ¸i,j,k always 0 or 1

s-rank of tensor T: minimum rank of tensor with same *support* as T

Does upper bound on s-rank of MM tensor imply upper bound on ordinary rank?

s-rank of tensor T: minimum rank of tensor with same *support* as T

Does upper bound on s-rank of MM tensor imply upper bound on ordinary rank?

!
!

Example:

$$
\begin{array}{|c|c|}\n\hline\na_{11}b_{11} + a_{11}b_{12} + a_{12}b_{21} & a_{12}b_{22} \\
\hline\na_{21}b_{11} + a_{21}b_{12} + a_{22}b_{21} & 2 & a_{22}b_{22}\n\end{array}
$$

does it help if can compute this in 6 multiplications?

• s-rank can be much smaller than rank:

maybe it's easy to show s-rank of $n \n\pounds$ n matrix multiplication is n^2 (!!)

! = inf { χ : rank(<n,n,n>) \cdot O(n^{ω})} $!s = inf\{i : s-rank(\langle n,n,n \rangle) \cdot O(n^i)\}\$

Theorem: $! \cdot (3!_{s} - 2)/2$ in particular, $!_s \cdot 2 + ^2)$! $\cdot 2 + (3/2)^2$

- Proof idea:
	- find $\frac{1}{4}$ n² copies of $\leq n, n, n$ in 3rd tensor power

– when broken up this way, can rescale

A promising family of semisimple algebras

Coherent configurations • points X, partition R_1, R_2, \ldots, R_r of X^2 "group theory without groups" — diagonal $\{(x,x): x \nleq x\}$ is the *one* class: union of some classes - for each i, there $i\mathbf{s}'i^{\dagger}$ $p_{i,j}^k = p_{j,i}^k$: commutative $R_{i^*} = \{(y,x) / (x,y) \; 2 \; R_i\}$ – exist integers $p'_{i,j}$ ^k such that for all (x,y) 2 R_k: #{z: (x,z) 2 R_i and (z,y) 2 R_j} = p_{i,j} ^k x y z k $\mathsf{i} \diagup \diagdown \mathsf{j}$ "association scheme"

Coherent configs: examples

- Hamming scheme:
	- points 0/1 vectors
	- classes determined by hamming distance

- distance-regular graph:
	- points = vertices
	- classes determined by distance in graph metric

Coherent configs: examples

- scheme based on finite group G
	- $-$ set $X =$ finite group G
	- classes $R_q = \{(x, xg) : x \geq X\}$
		- $p_{f,g}$ ^h = 1 if fg=h, 0 otherwise

- "Schurian":
	- group G acts on set X
	- $-$ classes = orbits of (diagonal) G-action on X^2

Coherent configs: examples

- "Schurian":
	- group G acts on set X
	- $-$ classes = orbits of (diagonal) G-action on X^2
- one Schurian scheme: "group scheme"
	- group G x G acts on G via $(g,h)\notin x = gxh^{-1}$
	- orbits all of the form $\{(x,y): xy^{-1} \n\ge C_i\}$ for conjugacy class C_i
	- always commutative!

Adjacency algebra CC: points X, partition $R_1, R_2, ..., R_r$ of X^2

- for each class R_i , matrix A_i with $A_i[x,y] = 1$ iff (x,y) 2 R_i
- 3 CC axioms) {Ai } generate a semisimple algebra – e.g., 3rd axiom implies $A_iA_j = \sum_k p_{ij}^k A_k$ – if the CC based on group G, algebra is C[G]

Nice basis conditions

• group algebra C[G]: "nice basis" yields triple product property

• adjacency algebras of CCs: "nice basis" yields triangle condition:

Nice basis conditions

- Schurian CCs: "nice basis" yields
	- group G acts on set X
	- $-$ subsets A,B,C of X realize \leq |A|, |B|, |C|> if:

$$
fgh = 1 implies a = a', b = b', c = c'
$$

Coherent configs vs. groups

Generalization for generalization's sake?

• recall group framework:

– non-commutative necessary

Theorem: in group G realizing n£n matrix multiplication, with character degrees d_1 , d_2 , d_3 ,..., we obtain: $R(\leq n, n, n \geq)$ · $\sum_i d_i^{\omega} \cdot d_{max}^{\omega-2}\phi |G|$

Sept. 17, 2014 **50** goals: $|G| \frac{1}{4} n^2$ and small d_{max}

Coherent configs vs. groups

Generalization for generalization's sake?

• coherent configuration framework:

– commutative suffices!

- combinatorial constructions from old setting yield $!_{\rm s}$ < 2.48, $!_{\rm s}$ < 2.41 – conjectures from old setting
	- (if true) would imply $!_{s}$ = 2

in commutative Schurian CC's

even group schemes

even symmetric

Proof idea

we prove a general transformation:

if can realize several independent matrix multiplications in CC…

- can do this in abelian groups
- conjectures: can "pack optimally"

… then high symmetric power of CC realizes *single* matrix multiplication

– reproves Schönhage's Asymptotic Sum Inequality preserves commutativity

Commutative CCs suffice

Main point

embedding n x n matrix multiplication into a commutative coherent configuration of rank $\frac{1}{4}$ n² is a viable route to ! $= 2$

(no representation theory needed)

Open problems

• find a construction in new framework that

– proves non-trivial bound on $\frac{1}{s}$

– is not based on constructions from old setting

• is the (border) s-rank of $< 2,2,2 > 6$?

• embed n £ n MM into commutative coherent configuration of rank $\frac{1}{4}$ n²