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Introduction 

•  Standard method: O(n3) operations 
•  Strassen (1969): O(n2.81) operations  

X =A B C
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Introduction 

•  Standard method: O(n3) operations 
•  Strassen (1969): O(n2.81) operations  

X =A B C

The exponent of matrix multiplication: 
smallest number ω such that for all ε>0  

O(nω + ε) operations suffice 
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History 
•  Standard algorithm    ω ≤ 3 
•  Strassen (1969)     ω < 2.81 
•  Pan (1978)     ω < 2.79 
•  Bini; Bini et al. (1979)     ω < 2.78 
•  Schönhage (1981)    ω < 2.55 
•  Pan; Romani; Coppersmith 

  + Winograd (1981-1982)    ω < 2.50 
•  Strassen (1987)     ω < 2.48 
•  Coppersmith + Winograd (1987)  ω < 2.375 
•  Stothers (2010)     ω < 2.3737 
•  Williams (2011)     ω < 2.3729 
•  Le Gall (2014)     ω < 2.37286 
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Outline 

1.  main ideas from Strassen 1969 through 
Le Gall 2014 

2.  approach via embedding into semi-
simple algebra multiplication 

–  groups 
–  coherent configurations/association 

schemes 

Sept. 17, 2014 5 



The matrix multiplication tensor 
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<n,n,n> is a n2 x n2 x n2 tensor described 
by trilinear form ∑i,j,kXi,jYj,kZk,i 
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The matrix multiplication tensor 
<n,m,p> is a nm £ mp £ pn tensor 

described by trilinear form ∑i,j,kXi,jYj,kZk,i 

X =A B Cn

m

p
m n

p
1

1

Each of  
np slices of 
<n,m,p>: 
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Strategies  
for upper bounding the rank  

of the 
matrix multiplication tensor 



Upper bounds on rank 

•  Observation: <n,n,n>-i  = <ni, ni, ni> 
 ) R(<ni, ni, ni>) · R(<n,n,n>)i 
 

•  Strategy I: bound rank for small n by hand 
– R(<2,2,2>) = 7    ! < 2.81 

– R(<3,3,3>) 2 [19..23]   (worse bound) 

                       
– even computer search infeasible…   
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Upper bounds on rank 
•  Border rank = rank of sequence of tensors 

approaching target tensor entrywise 

 
•  Strategy II: bound border rank for small n 

•  Lemma: R(<n,n,n>) < r ) ! < logn r 
– R(<2,2,3>) · 10    ! < 2.79 

1 1 
1 

²-1 1 
1 ²  

1 
  

rank = 3 
border rank = 2: ²  
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Upper bounds on rank 

 

•  Strategy III: bound (border) rank of direct 
sums of small matrix multiplication tensors 

– R(<4,1,3> © <1,6,1>) · 13   ! < 2.55 

•  Direct sum of tensors  
<n,n,n> © <m,m,m> 

<n,n,n> 
<m,m,m> 

 (multiple matrix multiplications in parallel) 

R(<n1,n1,n1> © … © <nk,nk,nk>) < r ) ∑ini
! < r 

“Asymptotic Sum Inequality” and 
example (Schönhage 1981) 
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•  Strategy IV: Strassen “laser method” 

–  tensor with “coarse structure” of MM and “fine 
structure” components isomorphic to MM 
 (many independent MMs in high tensor powers)
   1 !
!

       !

1 

Upper bounds on rank 

1 !
!

       !

1 

!
!

1 
1 

       !

… 

scalar x row vector 
col vector x scalar 

q

<1,2,1>  
coarse structure  fine = 
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•  Strategy IV: Strassen “laser method” 

–  tensor with “coarse structure” of MM and “fine 
structure” components isomorphic to MM 
 (many independent MMs in high tensor powers) 

 
 
 
 
 
border rank = q + 1;   q = 5 yields ! < 2.48 

   

1 !
!

       !

1 

Upper bounds on rank 

1 !
!

       !

1 

!
!

1 
1 

       !

… 

q
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Upper bounds on rank 

•  Coppersmith-Winograd and beyond: 
border rank of this tensor is q+2: 

 
 

– 6 “pieces”: target proportions in high tensor 
power affect # and size of independent MMs 

– q = 6 yields ! < 2.388 
 
 

∑i=1…q  X0YiZi + XiY0Zi + XiYiZ0 + 

 X0Y0Zq+1 + X0Yq+1Z0 + Xq+1Y0Z0 
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Upper bounds on rank 

•  Coppersmith-Winograd and beyond: 
analyze tensor powers of this tensor 

 
 

 Tq= ∑i=1…q  X0YiZi + XiY0Zi + XiYiZ0 + 

 X0Y0Zq+1 + X0Yq+1Z0 + Xq+1Y0Z0 

Tensor power # “pieces” bound reference 
2 36 2.375 C-W 
4 1296 2.3737 Stothers 
8 1679616 2.3729 Williams 
16 2.82 x 10^12 2.3728640 Le Gall 
32 7.95 x 10^24 2.3728639 Le Gall 
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Upper bounds on rank 

•  Coppersmith-Winograd and beyond 
 

•  Ambainis-Filmus 2014: N-th tensor power 
cannot beat bound of 2.3078 

 
 

Tensor power # pieces bound reference 
2 36 2.375 C-W 
4 1296 2.3737 Stothers 
8 1679616 2.3729 Williams 
16 2.82 x 10^12 2.3728640 Le Gall 
32 7.95 x 10^24 2.3728639 Le Gall 
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A different approach 

•  So far... 
– bound border rank of small tensor (by hand) 
– asymptotic bound from high tensor powers 

•  Disadvantages 
–  limited universe of “starting” tensors 
– high tensor powers hard to analyze 
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matrix multiplication  
via groups and 

coherent configurations / 
association schemes 



The general approach 

•  Cohn-Umans 2003, 2012: 
– embed n x n matrix multiplication into semi-

simple algebra multiplication 
– semi-simple: isomorphic to block-diagonal MM 
 
 

– key hope: “nice basis” w/ combinatorial structure 
–  reduce n x n MM to smaller MMs; recurse 
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= × 
commutative  
, diagonal 
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The Group Algebra 

•  given finite group G, group algebra C[G] 
has elements  Σg agg 

with multiplication 

(Σgagg)(Σhbhh) = Σf (Σgh = f agbh)f 
 

•  structure: C[G] ' (Cd1×d1) × … × (Cdk×dk) 
•  group elements are “nice basis” 
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“Nice basis” embedding: 

Subgroups X, Y, Z of G satisfy the 
triple product property  

if for all x∈  X , y∈   Y , z∈   Z : 
xyz = 1    iff   x = y = z = 1. 
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The embedding: 

Subsets X, Y, Z of G satisfy the 
triple product property  

if for all x∈Q(X), y∈ Q(Y), z∈ Q(Z): 
xyz = 1    iff   x = y = z = 1. 

A = Σax1,y1
(x1y1

-1)    B = Σby2,z2
(y2z2

-1) 

Claim: (AB)x3,z3
 = coeff. on (x3z3

-1) in A*B. 

 

Q(S) = {s-1t: s, t ∈ S} 
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The embedding: 

Subsets X, Y, Z of G satisfy the 
triple product property  

if for all x∈Q(X), y∈ Q(Y), z∈ Q(Z): 
xyz = 1    iff   x = y = z = 1. 

A = Σax1,y1
(x1y1

-1)    B = Σby2,z2
(y2z2

-1) 

Claim: (AB)x3,z3
 = coeff. on (x3z3

-1) in A*B. 

(x1y1
-1)(y2z2

-1) = x3z3
-1  ) x3

-1x1y1
-1y2z2

-1z3=1  

Q(S) = {s-1t: s, t ∈ S} 
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How many multiplications? 

Embedding + structure of C[G] yields bound 
on rank (´ # multiplications): 

 
•  we use m ≤ Σdi

3 mults 
•  really m = Σdi

! mults 
•  at least m ≥ Σdi

2 = |G| mults   

First Challenge: embed k × k matrix 
multiplication in group of size ¼ k2 

=×
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The embedding 

•  simple pigeonhole argument: 
– embedding in an abelian group requires group 

to have size k3 

First Challenge: embed k × k matrix 
multiplication in group of size ¼ k2 
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The triangle construction 

need X, Y, Z in Sn all with size ≈ |Sn|1/2 

Theorem: can embed k × k matrix 
multiplication in symmetric group of 

size k2 + o(1) 

n objects •  subgroup X 

•  subgroup Y 

•  subgroup Z 
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The triangle construction 

– X moves points within rows 
– Y moves points within columns 
– Z moves points within diagonals 
– want: xyz = 1    ⇒    x = y = z = 1 
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The triangle construction 

unfortunately, dmax > |X| (= |Y| = |Z|) 

Theorem: can embed k × k matrix 
multiplication in symmetric group of 

size k2 + o(1) 

n objects •  subgroup X 

•  subgroup Y 

•  subgroup Z 



What should we be aiming for? 

•  If X, Y, Z µ G satisfy T.P.P. and 
–  (|X|¢|Y|¢|Z|)1/3 = k ¸ |G|1/2 – o(1) 

– dmax · |G|1/2 – ² 

   then ! = 2 

Theorem: in group G supporting k x k 
matrix multiplication with character 
degrees d1, d2, d3,…, we obtain: 

kω · ∑i di
ω	



∑i di
! · 

dmax
! – 2|G| 
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Constructions in linear groups 

•  Good candidate family: 
 SL(n, q) for fixed dimension n 

•  In SL(n, R) these three subgroups satisfy 
the triple product property: 
– upper-triangular with ones on the diagonal 
–  lower-triangular with ones on the diagonal 
–  the special orthogonal group SO(n, R)  

   and dim. of each is ½ dim. of G as n ! 1 
Sept. 17, 2014 34 



Group algebra approach 

•  [CKSU 2005] wreath product groups yield : 
–   ! < 2.48, ! < 2.41 
– key part of construction is combinatorial 
–  two conjectures implying ! = 2 

•  Main disadvantage: 
– non-trivial results require non-abelian groups 
– most ideas foiled by too-large char. degrees 
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General semi-simple algebras 

•  (finite dimensional, complex) algebra specified by 
–  “nice basis” e1, e2, …, er 

– structure constants ¸i,j,k satisfying 
ei ej = ∑k ¸i,j,k ek 
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¸i,j,k 
i 

j 
k 

structural tensor 
of algebra mult. 

“realizes” MM 
if contains*: 

MM tensor 
<n,n,n> 



Weighted vs. unweighted MM 

•  Technical problem: 
– MM tensor <n,n,n> given by ∑i,j,kXi,jYj,kZk,i 

– embedding into algebra bounds rank of tensor 
given by	



∑i,j,k¸i,j,kXi,jYj,kZk,I 
(with ¸i,j,k ≠ 0) 

  
– group algebra: ¸i,j,k always 0 or 1 
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Weighted vs. unweighted MM 

Does upper bound on s-rank of MM tensor 
imply upper bound on ordinary rank? 

38 

s-rank of tensor T: minimum rank of tensor 
with same support as T 

a11 a12 

a21 a22  

b11 b12 

b21 b22  
x = 

a11b11 + 
a12b21 

a11b12 + 
a12b22 

a21b11 + 
a22b21 

a21b12 + 
a22b22 

Example: 
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Weighted vs. unweighted MM 

Does upper bound on s-rank of MM tensor 
imply upper bound on ordinary rank? 

39 

s-rank of tensor T: minimum rank of tensor 
with same support as T 

a11 a12 

a21 a22  

b11 b12 

b21 b22  
x 

a11b11 + 
a12b21 

a11b12 + 
a12b22 

a21b11 + 
a22b21 

a21b12 + 
2¢a22b22 

! 

does it help if can compute this in 
6 multiplications? 

Example: 



Weighted vs. unweighted MM 

•  s-rank can be much smaller than rank: 
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maybe it’s easy to show s-rank of 
n £ n matrix multiplication is n2 (!!) 

0 1 1 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

rank n 

®
0 

®
1 

®
2 

®
3 

®
3 

®
0 

®
1 

®
2 

®
2 

®
3 

®
0 

®
1 

®
1 

®
2 

®
3 

®
0 

1 1 1 1 
1 1 1 1 
1 1 1 1 
1 1 1 1 

same 
support: 

- 

rank 1 rank 1 

® = n-th root of unity 



Weighted vs. unweighted MM 

! = inf {¿ : rank(<n,n,n>) · O(n¿)} 
!s = inf{¿ : s-rank(<n,n,n>) · O(n¿)} 

•  Proof idea:  
–  find ¼ n2 copies of <n,n,n> in 3rd tensor power 
– when broken up this way, can rescale  
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Theorem: ! · (3!s – 2)/2  
    in particular, !s · 2 + ²  )  ! · 2 + (3/2)² 



 
A promising family of  
semisimple algebras 



Coherent configurations 

•  points X, partition R1, R2, …, Rr of X2 
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“group theory without groups” 

– diagonal {(x,x) : x 2 X} is the 
union of some classes 

–  for each i, there is i* such that 
Ri* = {(y,x) : (x,y) 2 Ri} 

– exist integers pi,j
k such that for all 

(x,y) 2 Rk: 
#{z: (x,z) 2 Ri and (z,y) 2 Rj} = pi,j

k  
x y 

z 

k 

i j 

if one class: 
“association scheme” 

pi,j
k = pj,i

k : commutative 
 



Coherent configs: examples  

•  Hamming scheme: 
–  points 0/1 vectors 
–  classes determined by hamming distance 

•  distance-regular graph: 
–  points = vertices 
–  classes determined by distance in graph 

metric 
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Coherent configs: examples  

•  scheme based on finite group G 
– set X = finite group G 
– classes Rg = {(x,xg) : x 2 X} 

  

•  “Schurian”: 
– group G acts on set X 
– classes = orbits of (diagonal) G-action on X2  
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x y 

z 

h 

f g 

pf,g
h = 1 if fg=h, 0 otherwise 



Coherent configs: examples  

•  “Schurian”: 
– group G acts on set X 
– classes = orbits of (diagonal) G-action on X2 
 

•  one Schurian scheme: “group scheme” 
– group G x G acts on G via  (g,h)¢x = gxh-1 

– orbits all of the form {(x,y): xy-1 2 Ci} for 
conjugacy class Ci   

– always commutative! 
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Adjacency algebra 

•  for each class Ri, matrix Ai with  
Ai[x,y] = 1 iff (x,y) 2 Ri  

 
•  3 CC axioms )      

        {Ai} generate a semisimple algebra  
– e.g., 3rd axiom implies AiAj = ∑k pij

k Ak 
–  if the CC based on group G, algebra is C[G] 
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CC: points X, partition R1, R2, …, Rr of X2 



Nice basis conditions 

•  group algebra C[G]: “nice basis” yields 
triple product property 

•  adjacency algebras of CCs: “nice basis” 
yields triangle condition: 
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°(k,i’) 

®(i,j’) ¯(j,k’) can look like 

iff i = i’, j = j’, k = k’ class 
names 



Nice basis conditions 

•  Schurian CCs: “nice basis” yields 
– group G acts on set X 
– subsets A,B,C of X realize <|A|, |B|, |C|> if: 
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A B C 

a 

a’ 
b 

b’ 
c 

c’ 

f g h 

fgh = 1 implies a = a’, b = b’, c = c’ 



Coherent configs vs. groups 

Generalization for generalization’s sake? 
•  recall group framework: 

– non-commutative necessary 
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Theorem: in group G realizing n£n 
matrix multiplication, with character 

degrees d1, d2, d3,…, we obtain: 

R(<n,n,n>) · ∑i di
ω · dmax

ω-2¢|G|	



goals: |G| ¼ n2 and small dmax  



Coherent configs vs. groups 

Generalization for generalization’s sake? 
•  coherent configuration framework: 

– commutative suffices! 

Sept. 17, 2014 

– combinatorial constructions 
from old setting yield  
    !s < 2.48, !s < 2.41 

– conjectures from old setting 
(if true) would imply !s = 2 

in commutative 
Schurian CC’s 
even group 
schemes 
even symmetric 



Proof idea 

we prove a general transformation: 
if can realize several independent matrix 
multiplications in CC… 

•  can do this in abelian groups 
•  conjectures: can “pack optimally” 

… then high symmetric power of CC realizes 
single matrix multiplication 
–  reproves Schönhage’s   

 Asymptotic Sum Inequality  
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preserves 
commutativity 



Commutative CCs suffice 
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Main point 

embedding n x n matrix multiplication 
into a commutative coherent config-

uration of rank ¼ n2 is a viable route to ! 
= 2 

(no representation theory needed)	





Open problems 

•  find a construction in new framework that 
– proves non-trivial bound on !s 

–  is not based on constructions from old setting 

•  is the (border) s-rank of <2,2,2> = 6? 

•  embed n £ n MM into commutative 
coherent configuration of rank ¼ n2 
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