Approaches to bounding the exponent of matrix multiplication

#### Chris Umans Caltech

Based on joint work with Noga Alon, Henry Cohn, Bobby Kleinberg, Amir Shpilka, Balazs Szegedy

Simons Institute Sept. 17, 2014



- Standard method: O(n<sup>3</sup>) operations
- Strassen (1969): O(n<sup>2.81</sup>) operations



- Standard method: O(n<sup>3</sup>) operations
- Strassen (1969): O(n<sup>2.81</sup>) operations

The exponent of matrix multiplication: smallest number  $\omega$  such that for all  $\epsilon > 0$  $O(n^{\omega + \epsilon})$  operations suffice

## History

- Standard algorithm  $\omega \leq 3$
- Strassen (1969)
- Pan (1978)
- Bini; Bini et al. (1979)
- Schönhage (1981)
- Pan; Romani; Coppersmith
   + Winograd (1981-1982)
- Strassen (1987)
- Coppersmith + Winograd (1987)
- Stothers (2010)
- Williams (2011)
- Le Gall (2014)

ω < 2.81</li>
ω < 2.79</li>
ω < 2.78</li>
ω < 2.55</li>

- $\omega < 2.50$
- $\omega < 2.48$
- $\omega < 2.375$
- ω < 2.3737
- $\omega < 2.3729$
- ω < 2.37286

## Outline

- 1. main ideas from Strassen 1969 through Le Gall 2014
- 2. approach via embedding into semisimple algebra multiplication
  - groups
  - coherent configurations/association schemes

<n,n,n> is a n<sup>2</sup> x n<sup>2</sup> x n<sup>2</sup> tensor described by trilinear form  $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$ 





Sept. 17, 2014

1

<n,n,n> is a n<sup>2</sup> x n<sup>2</sup> x n<sup>2</sup> tensor described by trilinear form  $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$ 





<n,n,n> is a n<sup>2</sup> x n<sup>2</sup> x n<sup>2</sup> tensor described by trilinear form  $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$ 









<n,n,n> is a n<sup>2</sup> x n<sup>2</sup> x n<sup>2</sup> tensor described by trilinear form  $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$ 







<n,n,n> is a n<sup>2</sup> x n<sup>2</sup> x n<sup>2</sup> tensor described by trilinear form  $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$ 





<n,m,p> is a nm £ mp £ pn tensor
described by trilinear form  $\sum_{i,i,k} X_{i,i} Y_{i,k} Z_{k,i}$ 



# Strategies for upper bounding the rank of the

matrix multiplication tensor

- Observation: <n,n,n>-i = <ni, ni, ni>) R(<ni, ni, ni>) · R(<n,n,n>)i
- Strategy I: bound rank for small n by hand
   R(<2,2,2>) = 7 ! < 2.81</li>
   R(<3,3,3>) 2 [19..23] (worse bound)

– even computer search infeasible...

 Border rank = rank of sequence of tensors approaching target tensor entrywise



rank = 3 border rank = 2:



Strategy II: bound *border rank* for small n

• Lemma:  $\underline{R}(\langle n,n,n \rangle) \langle r \rangle | \langle \log_n r | -\underline{R}(\langle 2,2,3 \rangle) \cdot 10 | \langle 2.79 | \rangle$ 

- Direct sum of tensors <n,n,n> © <m,m,m>
   (multiple matrix multi (sample (Schönhage 1981))
- Strategy III: bound (border) rank of *direct* sums of small matrix multiplication tensors

**R**(1,n<sub>1</sub>,n<sub>1</sub>) 
$$\otimes$$
 ...  $\otimes$  k,n<sub>k</sub>,n<sub>k</sub>) < r )  $\sum_{i} n_{i}^{!} < r$ 

<n,n,n>

- Strategy IV: Strassen "laser method"
  - tensor with "coarse structure" of MM and "fine structure" components isomorphic to MM

(many independent MMs in high tensor powers)



- Strategy IV: Strassen "laser method"
  - tensor with "coarse structure" of MM and "fine structure" components isomorphic to MM

(many independent MMs in high tensor powers)



border rank = q + 1;

q = 5 yields ! < 2.48

 Coppersmith-Winograd and beyond: border rank of this tensor is q+2:

$$\sum_{i=1...q} X_0 Y_i Z_i + X_i Y_0 Z_i + X_i Y_i Z_0 + X_0 Y_0 Z_{q+1} + X_0 Y_{q+1} Z_0 + X_{q+1} Y_0 Z_0$$

- 6 "pieces": target proportions in high tensor power affect # and size of independent MMs
- q = 6 yields ! < 2.388</li>

 Coppersmith-Winograd and beyond: analyze tensor powers of this tensor

$$T_q = \sum_{i=1...q} X_0 Y_i Z_i + X_i Y_0 Z_i + X_i Y_i Z_0 +$$

$$X_0Y_0Z_{q+1} + X_0Y_{q+1}Z_0 + X_{q+1}Y_0Z_0$$

| Tensor power | # "pieces"   | bound     | reference |
|--------------|--------------|-----------|-----------|
| 2            | 36           | 2.375     | C-W       |
| 4            | 1296         | 2.3737    | Stothers  |
| 8            | 1679616      | 2.3729    | Williams  |
| 16           | 2.82 x 10^12 | 2.3728640 | Le Gall   |
| 32           | 7.95 x 10^24 | 2.3728639 | Le Gall   |

Coppersmith-Winograd and beyond

| Tensor power | # pieces     | bound     | reference |
|--------------|--------------|-----------|-----------|
| 2            | 36           | 2.375     | C-W       |
| 4            | 1296         | 2.3737    | Stothers  |
| 8            | 1679616      | 2.3729    | Williams  |
| 16           | 2.82 x 10^12 | 2.3728640 | Le Gall   |
| 32           | 7.95 x 10^24 | 2.3728639 | Le Gall   |

 Ambainis-Filmus 2014: N-th tensor power cannot beat bound of 2.3078

#### A different approach

- So far...
  - bound border rank of small tensor (by hand)
  - asymptotic bound from high tensor powers
- Disadvantages
  - limited universe of "starting" tensors
  - high tensor powers hard to analyze

# matrix multiplication via groups and coherent configurations / association schemes

### The general approach

- Cohn-Umans 2003, 2012:
  - *embed* n x n matrix multiplication into semisimple algebra multiplication
  - semi-simple: isomorphic to block-diagonal MM



key hope: "nice basis" w/ combinatorial structure
reduce n x n MM to smaller MMs; recurse

### The Group Algebra

- given finite group G, group algebra C[G] has elements  $\Sigma_g a_g g$  with multiplication

$$(\Sigma_g a_g g)(\Sigma_h b_h h) = \Sigma_f (\Sigma_{gh=f} a_g b_h) f$$

- structure: C[G] ' ( $C^{d_1 \times d_1}$ ) × ... × ( $C^{d_k \times d_k}$ )
- group elements are "nice basis"

#### "Nice basis" embedding:

Subgroups X, Y, Z of G satisfy the **triple product property** if for all  $x \in X$ ,  $y \in Y$ ,  $z \in Z$ : xyz = 1 iff x = y = z = 1.

#### The embedding: $Q(S) = {s^{-1}t: s, t \in S}$ Subsets X, Y, Z of G satisfy the triple product property if for all $x \in Q(X)$ , $y \in Q(Y)$ , $z \in Q(Z)$ : xyz = 1 iff x = y = z = 1. $\underline{\mathbf{A}} = \Sigma \mathbf{a}_{x,y} (x y^{-1}) \qquad \underline{\mathbf{B}} = \Sigma \mathbf{b}_{y,z} (y z^{-1})$ <u>Claim:</u> $(AB)_{x,z} = \text{coeff. on } (x z^{-1}) \text{ in } \underline{A}^*\underline{B}.$

#### The embedding:

$$Q(S) = {s^{-1}t: s, t \in S}$$

Subsets X, Y, Z of G satisfy the triple product property if for all  $x \in Q(X)$ ,  $y \in Q(Y)$ ,  $z \in Q(Z)$ : xyz = 1 iff x = y = z = 1.  $\underline{\mathbf{A}} = \Sigma a_{x_1,y_1}(x_1y_1^{-1})$   $\underline{\mathbf{B}} = \Sigma b_{y_2,z_2}(y_2z_2^{-1})$ <u>Claim:</u>  $(AB)_{x_3,z_3} = \text{coeff. on } (x_3z_3^{-1}) \text{ in } \underline{A}^*\underline{B}.$  $(x_1y_1^{-1})(y_2z_2^{-1}) = x_3z_3^{-1}$   $) x_3^{-1}x_1y_1^{-1}y_2z_2^{-1}z_3 = 1$ 

### How many multiplications?

- Embedding + structure of C[G] yields bound on rank (´ # multiplications):
- we use  $m \le \Sigma d_i^3$  mults



- really  $m = \Sigma d_i^{!}$  mults
- at least  $m \ge \Sigma d_i^2 = |G|$  mults

# **First Challenge**: embed **k** × **k** matrix multiplication in group of size 1/4 k<sup>2</sup>

#### The embedding

**First Challenge**: embed  $\mathbf{k} \times \mathbf{k}$  matrix multiplication in group of size  $\frac{1}{4}$  k<sup>2</sup>

- simple pigeonhole argument:
  - embedding in an abelian group requires group to have size  $k^3$

#### The triangle construction

**Theorem**: can embed  $k \times k$  matrix multiplication in symmetric group of size  $k^{2 + o(1)}$ 



- subgroup X
- subgroup Y
- subgroup Z

#### need X, Y, Z in S<sub>n</sub> all with size $\approx |S_n|^{1/2}$

#### The triangle construction

- X moves points within rows
- Y moves points within columns
- Z moves points within diagonals
- -want:  $xyz = 1 \implies x = y = z = 1$



#### The triangle construction

**Theorem**: can embed  $k \times k$  matrix multiplication in symmetric group of size  $k^{2 + o(1)}$ 



- subgroup X
- subgroup Y
- subgroup Z

#### unfortunately, $d_{max} > |X| (= |Y| = |Z|)$

#### What should we be aiming for?

**Theorem**: in group G supporting k x k matrix multiplication with character degrees d<sub>1</sub>, d<sub>2</sub>, d<sub>3</sub>,..., we obtain:

 $\mathbf{k}^{\omega} \cdot \sum_{i} \mathbf{d}_{i}^{\omega}$ 

• If X, Y, Z  $\mu$  G satisfy T.P.P. and  $-(|X| \phi |Y| \phi |Z|)^{1/3} = k \int |G|^{1/2 - o(1)}$   $-d_{max} \cdot |G|^{1/2 - 2}$   $\sum_{i} d_{i}^{!} \cdot d_{max}^{!} - d_{max$ 

#### Constructions in linear groups

Good candidate family:

SL(n, q) for fixed dimension n

 In SL(n, R) these three subgroups satisfy the triple product property:

- upper-triangular with ones on the diagonal

- lower-triangular with ones on the diagonal
- the special orthogonal group SO(n, R)

and dim. of each is 1/2 dim. of G as n ! 1

### Group algebra approach

- [CKSU 2005] wreath product groups yield :
   -! < 2.48, ! < 2.41</li>
  - key part of construction is combinatorial

– two conjectures implying ! = 2

Main disadvantage:

 non-trivial results *require* non-abelian groups
 most ideas foiled by too-large char. degrees

#### General semi-simple algebras

- (finite dimensional, complex) algebra specified by
  - "nice basis"  $e_1, e_2, ..., e_r$
  - structure constants <sub>si,j,k</sub> satisfying



- Technical problem:
  - MM tensor <n,n,n> given by  $\sum_{i,j,k} X_{i,j} Y_{j,k} Z_{k,i}$
  - embedding into algebra bounds rank of tensor given by

$$\sum_{i,j,k,j,k} X_{i,j} Y_{j,k} Z_{k,l}$$
(with  $_{j,j,k} \neq 0$ )

- group algebra: <sub>si,j,k</sub> always 0 or 1

s-rank of tensor T: minimum rank of tensor with same <u>support</u> as T

Does upper bound on s-rank of MM tensor imply upper bound on ordinary rank?



s-rank of tensor T: minimum rank of tensor with same <u>support</u> as T

Does upper bound on s-rank of MM tensor imply upper bound on ordinary rank?

Example:



$$\begin{array}{c|c} a_{11}b_{11} + & a_{11}b_{12} + \\ a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} + & a_{21}b_{12} + \\ a_{22}b_{21} & \mathbf{2} \mathbf{a}_{22}b_{22} \end{array}$$

does it help if can compute this in 6 multiplications?

• s-rank can be much smaller than rank:



maybe it's easy to show s-rank of  $n \ge n$  matrix multiplication is  $n^2$  (!!)

 $! = \inf \{ : rank(<n,n,n>) \cdot O(n^{2}) \}$  $!_{s} = \inf \{ : s-rank(<n,n,n>) \cdot O(n^{2}) \}$ 

Theorem: 
$$! \cdot (3!_s - 2)/2$$
  
in particular,  $!_s \cdot 2 + 2 \cdot 1 \cdot 2 + (3/2)^2$ 

- Proof idea:
  - find  $\frac{1}{4}$  n<sup>2</sup> copies of <n,n,n> in 3<sup>rd</sup> tensor power
  - when broken up this way, can rescale

A promising family of semisimple algebras

#### **Coherent configurations** "group theory without groups" • points X, partition $R_1$ , $R_2$ , ..., $R_r$ of $X^2$ - diagonal $\{(x,x) : x \in X\}$ is if one class: "association scheme" union of some classes - for each i, there is $i^* = p_{i,j}^k = p_{j,i}^k$ : commutative $R_{i^{*}} = \{(y,x) \mid (x,y) \ge R_{i}\}$ - exist integers $p_{i,j}^{k}$ such that for all $(x,y) 2 R_{k}$ : $\#\{z: (x,z) \ 2 \ R_i \text{ and } (z,y) \ 2 \ R_j\} = p_{i,i}^{k}$

### Coherent configs: examples

- Hamming scheme:
  - points 0/1 vectors
  - classes determined by hamming distance

- distance-regular graph:
  - points = vertices
  - classes determined by distance in graph metric

#### Coherent configs: examples

scheme based on finite group G

– set X = finite group G

- classes  $R_g = \{(x,xg) : x 2 X\}$ 

 $p_{f,g}^{h} = 1$  if fg=h, 0 otherwise



- "Schurian":
  - group G acts on set X

- classes = orbits of (diagonal) G-action on X<sup>2</sup>

#### Coherent configs: examples

- "Schurian":
  - group G acts on set X
  - classes = orbits of (diagonal) G-action on  $X^2$
- one Schurian scheme: "group scheme"
  - group G x G acts on G via (g,h)¢x = gxh<sup>-1</sup>
  - orbits all of the form {(x,y): xy<sup>-1</sup> 2 C<sub>i</sub>} for conjugacy class C<sub>i</sub>
  - always commutative!

## Adjacency algebra CC: points X, partition R<sub>1</sub>, R<sub>2</sub>, ..., R<sub>r</sub> of X<sup>2</sup>

- for each class R<sub>i</sub>, matrix A<sub>i</sub> with
   A<sub>i</sub>[x,y] = 1 iff (x,y) 2 R<sub>i</sub>
- 3 CC axioms )
   {A<sub>i</sub>} generate a semisimple algebra
   - e.g., 3<sup>rd</sup> axiom implies A<sub>i</sub>A<sub>j</sub> = ∑<sub>k</sub> p<sub>ij</sub><sup>k</sup> A<sub>k</sub>
   - if the CC based on group G, algebra is C[G]

#### Nice basis conditions

 group algebra C[G]: "nice basis" yields triple product property

 adjacency algebras of CCs: "nice basis" yields triangle condition:





#### Nice basis conditions

- Schurian CCs: "nice basis" yields
  - group G acts on set X
  - subsets A,B,C of X realize <|A|, |B|, |C|> if:



fgh = 1 implies 
$$a = a'$$
,  $b = b'$ ,  $c = c'$ 

### Coherent configs vs. groups

Generalization for generalization's sake?

• recall group framework:

– non-commutative necessary

**Theorem**: in group G realizing n£n matrix multiplication, with character degrees d<sub>1</sub>, d<sub>2</sub>, d<sub>3</sub>,..., we obtain:

 $R(\langle n,n,n \rangle) \cdot \sum_{i} d_{i}^{\omega} \cdot d_{max}^{\omega-2} \phi[G]$ 

goals: |G| 1/4 n<sup>2</sup> and small d<sub>max</sub>

### Coherent configs vs. groups

Generalization for generalization's sake?

• coherent configuration framework:

– commutative suffices!

- combinatorial constructions from old setting yield  $!_{s} < 2.48, !_{s} < 2.41$ - conjectures from old setting (if true) would imply  $!_{s} = 2$ in commutative Schurian CC's even group schemes

even symmetric

#### Proof idea

we prove a general transformation:

if can realize several independent matrix multiplications in CC...

- can do this in abelian groups
- conjectures: can "pack optimally"

... then high symmetric power of CC realizes single matrix multiplication

reproves Schönhage's
 Asymptotic Sum Inequality

preserves commutativity

#### Commutative CCs suffice

#### Main point

embedding n x n matrix multiplication into a commutative coherent configuration of rank  $\frac{1}{4}$  n<sup>2</sup> is a viable route to ! = 2

(no representation theory needed)

## Open problems

- find a construction in new framework that
  - proves non-trivial bound on !s
  - is not based on constructions from old setting

• is the (border) s-rank of <2,2,2> = 6?

 embed n £ n MM into commutative coherent configuration of rank ¼ n<sup>2</sup>