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The P vs. NP Question

It is generally conjectured that many combinatorial

problems in the class NP are not computable in P.

Conjecture: P 6= NP.

P =? NP is: Is there a universal and efficient method to

discover a proof when one exists?
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#P

Counting problems:

#SAT: How many satisfying assignments are there in a

Boolean formula?

#PerfMatch: How many perfect matchings are there in a

graph?

#P is at least as powerful as NP, and in fact subsumes the

entire polynomial time hierarchy ∪iΣ
p
i [Toda].

#P-completeness: #SAT, #PerfMatch, Permanent, etc.
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Perfect Matchings
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Matchgates Based Holographic Algorithms

Valiant introduced these new algorithms.

• Superposition of states, similar to quantum

computing.

• Computable on classical computers, without using

quantum computers.

Two main ingredients:

(1) Use perfect matchings to encode fragments of

computations.

(2) Use linear algebra to achieve exponential cancellations.

They (seem to) achieve exponential speed-ups for some

problems.
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Two Great Algorithms

Most #P-complete problems are counting versions of

NP-complete decision problems.

But the following problems are solvable in P:

• Whether there exists a Perfect Matching in a general

graph [Edmonds].

• Count the number of Perfect Matchings in a planar

graph [Kasteleyn].

Note that the problem of counting the number of (not

necessarily perfect) matchings in a planar graph is still

#P-complete [Jerrum].
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Sample Problems Solved by Holographic Algorithms

#PL-3-NAE-ICE

Input: A planar graph G = (V,E) of maximum degree 3.

Output: The number of orientations such that no node

has all edges directed towards it or all edges directed away

from it.

Ising problems are motivated by statistical physics.

Important contributions by Ising, Onsager, Fisher,

Temperley, Kasteleyn, C.N.Yang, T.D.Lee, Baxter, Lieb,

Wilson etc.
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A Satisfiability Problem

#PL-3-NAE-SAT

Input: A planar formula Φ consisting of a conjunction of

NOT-ALL-EQUAL clauses each of size 3.

Output: The number of satisfying assignments of Φ.

Constraint Satisfaction Problems.

e.g. PL-3-EXACTLY-ONE-SAT is NP-complete.

and

#PL-3-EXACTLY-ONE-SAT is #P-complete.
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Pl-Node-Bipartition

PL-NODE-BIPARTITION

Input: A planar graph G = (V,E) of maximum degree 3.

Output: The cardinality of a smallest subset V ′ ⊂ V such

that the deletion of V ′ and its incident edges results in a

bipartite graph.

NP-complete for maximum degree 6.

If instead of NODE deletion we consider EDGE deletion,

this is the well known MAX-CUT problem.

MAX-CUT is NP-hard (even NP-hard to approximate by

the PCP Theory.)
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A Particular Counting Problem

#7Pl-Rtw-Mon-3CNF

Input: A planar graph GΦ representing a Read-twice

Monotone 3CNF Boolean formula Φ.

Output: The number of satisfying assignments of Φ,

modulo 7.

Here the vertices of GΦ represent variables xi and clauses

cj. An edge exists between xi and cj iff xi appears in cj.

Nodes xi have degree 2 and nodes cj have degree 3.
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#P-Hardness

Fact: #Pl-Rtw-Mon-3CNF is #P-Complete.

Fact: #2Pl-Rtw-Mon-3CNF is NP-hard.
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Some Similar Counting Problems

#3Pl-Rtw-Mon-4CNF

Input: A planar graph GΦ representing a Read-twice

Monotone 4CNF Boolean formula Φ.

Output: The number of satisfying assignments of Φ,

modulo 3.

#5Pl-Rtw-Mon-4CNF

Input: A planar graph GΦ representing a Read-twice

Monotone 4CNF Boolean formula Φ.

Output: The number of satisfying assignments of Φ,

modulo 5.
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Unexpected Algorithms

There are polynomial time algorithms for

• #7Pl-Rtw-Mon-3CNF

• #3Pl-Rtw-Mon-4CNF

• #5Pl-Rtw-Mon-4CNF

• · · ·

Using Matchgates . . .

and Holographic Algorithms.
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A Matchgate
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Matchgate

A planar matchgate Γ = (G,X) is a weighted graph

G = (V,E,W ) with a planar embedding, having external

nodes, placed on the outer face.

Matchgates with only output nodes are called generators.

Matchgates with only input nodes are called recognizers.
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Standard Signatures

Define PerfMatch(G) =
∑

M

∏

(i,j)∈M wij, where the sum is

over all perfect matchings M .

A matchgate Γ is assigned a Standard Signature

G = (GS) and R = (RS),

for generators and recognizers respectively.

GS = PerfMatch(G− S).

RS = PerfMatch(G′ − S).

Each entry is indexed by a subset S of external nodes.
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A Mathematics Talk Must Have One Proof and One Joke

17



A Mathematics Talk Must Have One Proof and One Joke

But they should not be the same.
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Collapsing #P to P

Let’s try to solve the #P-hard problem in P:

#Pl-Rtw-Mon-3CNF

Input: A planar graph GΦ representing a Read-twice

Monotone 3CNF Boolean formula Φ.

Output: The number of satisfying assignments of Φ.
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An Instance For #Pl-Rtw-Mon-3CNF
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Recognizer Signature

Given Φ as a planar graph GΦ.

Variables and clauses are nodes.

Edge (x,C): x appears in C.

For each clause C in Φ with 3 variables, we define

RC =
(

0 1 1 1 1 1 1 1
)

,

where the 8 entries are indexed by b1b2b3 ∈ {0, 1}3.

Here b1b2b3 corresponds to a truth assignment to the 3

variables.

RC corresponds to an Or3 gate.
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Generator Signature

For each variable x we want a generator G with signature

G00
x = 1, G01

x = 0, G10
x = 0, G11

x = 1, or

Gx =















1

0

0

1















.

. . . to indicate that the fan-out value from x to C and C ′

must be consistent.
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Exponential Sum

Now we can form the tensor product R =
⊗

C RC and

G =
⊗

x Gx.

The sum

〈R,G〉 =
∑

i1,i2,...,ie∈{0,1}
Ri1i2...ieG

i1i2...ie

counts exactly the number of satisfying assignments to Φ.

The indices of R = (Ri1i2...ie) and G = (Gi1i2...ie) match up

one-to-one according to which x appears in which C.
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A Schematic Instance
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x

C1(x, y, z)

y

C2(x, y, z)

z
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(1 0 0 1)x ⊗ (1 0 0 1)y ⊗ (1 0 0 1)z

x

C1(x, y, z)

y

C2(x, y, z)

z
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Tensor Contraction

The Dot product counts exactly the number of satisfying

assignments to Φ.

[(1 0 0 1)x ⊗ (1 0 0 1)y ⊗ (1 0 0 1)z] ·
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Realizability

If these signatures are indeed realizable as signatures of

planar matchgates, then by Kasteleyn’s Algorithm on

planar perfect matchings, we would have shown

#P = NP = P !!!

The above G is indeed realizable.

But R is not (realizable as standard signature).
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Basis Transformations

The 1st ingredient of the theory:

Matchgates

The 2nd ingredient of the theory:

A choice of linear basis

by which the computation is manipulated/interpreted.
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Transformation Matrix

So let b denote the standard basis,

b = [e0, e1] =









1

0



 ,





0

1







 .

Consider another basis

β = [t0, t1] =









t00

t10



 ,





t01

t11







 .

Let β = bT . Denote T = (tij) and T−1 = (t̃ij).

(Upper index is for row and lower index is for column.)
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Contravariant and Covariant Tensors

We assign to each generator Γ a contravariant tensor

G = (Gα).

Under a basis transformation,

(G′)i
′
1
i′
2
...i′n =

∑

Gi1i2...in t̃
i′
1

i1
t̃
i′
2

i2
· · · t̃

i′n
in

Correspondingly, each recognizer Γ gets a covariant tensor

R = (Rα).

(R′)i′
1
i′
2
...i′n

=
∑

Ri1i2...int
i1
i′
1

ti2i′
2

· · · tini′n

After this transformation, the signature

Or3 = (0, 1, 1, 1, 1, 1, 1, 1)

IS realizable.
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Tensor Contraction

Recall that the Dot product counts exactly the number of

satisfying assignments to Φ.

[(1 0 0 1)x ⊗ (1 0 0 1)y ⊗ (1 0 0 1)z] ·
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[(1 0 0 1)x ⊗ (1 0 0 1)y ⊗ (1 0 0 1)z ]T
⊗6·(T−1)⊗6
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⊗2 ⊗ (1 0 0 1)yT
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Realization for the Or3 gate

So we want the following

(0, 1, 1, 1, 1, 1, 1, 1)

as a non-standard signature under some basis.

i.e., for some matchgate standard signature

R = (R000, R001, R010, R011, R100, R101, R110, R111), such that

(0, 1, 1, 1, 1, 1, 1, 1) = Rβ⊗3

or

(0, 1, 1, 1, 1, 1, 1, 1)(β−1)⊗3 = R

Let

β =









1 + ω

1− ω



 ,





1

1







 ,

where ω = e2πi/3 is a primitive third root of unity.
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The Transformation Matrix from R′ to R










1 + ω 1

1− ω 1





−1






⊗3

is 1
8 times





































1 −1 −1 1 −1 1 1 −1

−1 + ω 1 + ω 1− ω −1− ω 1− ω −1− ω −1 + ω 1 + ω

−1 + ω 1− ω 1 + ω −1− ω 1− ω −1 + ω −1− ω 1 + ω

−3ω −2− ω −2− ω ω 3ω 2 + ω 2 + ω −ω

−1 + ω 1− ω 1− ω −1 + ω 1 + ω −1− ω −1− ω 1 + ω

−3ω −2− ω 3ω 2 + ω −2− ω ω 2 + ω −ω

−3ω 3ω −2− ω 2 + ω −2− ω 2 + ω ω −ω

3 + 6ω 3 3 −1− 2ω 3 −1− 2ω −1− 2ω −1
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The Transformation Matrix from R′ to R










1 + ω 1

1− ω 1





−1






⊗3

is 1
8 times
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The Transformation Matrix from R′ to R










1 + ω 1

1− ω 1





−1
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is 1
8 times
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Back to Standard Signature

By covariant transformation, (adding the last 7 rows),

(Ri1i2i3) =
1

4
(0, 1, 1, 0, 1, 0, 0, 1).

There indeed exists a matchgate with three external nodes

with the standard signature = 1
4 (0, 1, 1, 0, 1, 0, 0, 1).

Thus,

R′
C = (0, 1, 1, 1, 1, 1, 1, 1) =

1

4
(0, 1, 1, 0, 1, 0, 0, 1)









1 + ω 1

1− ω 1









⊗3

.
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Over Finite Fields

Over the field Z7 (but not Q) both the generators and

recognizers are simultaneously realizable. They are

realizable as non-standard signatures.

This gives #7Pl-Rtw-Mon-3CNF ∈ P.
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Mersenne numbers 2k − 1

For each k, there is a holographic transformation and

suitable matchgates such that #2k−1Pl-Rtw-Mon-kCNF is

computable in polynomial time.

This includes

• #7Pl-Rtw-Mon-3CNF

• #3Pl-Rtw-Mon-4CNF

• #5Pl-Rtw-Mon-4CNF

• · · ·
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Exactness of Some Proofs

A = x4y4t+ t+ 4x3y2 + 4x+ 4x2y +
2cx2

t

B = 2y2t+ 12y +
2c

t

C = 2xy2t+ 4x2y2 + 4 + 4xy +
2cx

t

D = x2y3t+ yt+ 3x2y2 + 3 + 6xy +
2cx

t
.

For any c 6= 1, there are x, y and t 6= 0, such that

A = B = C 6= 0, and D = 0.

And for c = 1, it corresponds to a matchgate signature.
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Complexity Dichotomy Theorems
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Three Frameworks for Counting Problems

1. Graph Homomorphisms

2. Constraint Satisfaction Problems (CSP)

3. Holant Problems

In each framework, there has been remarkable progress in

the classification program of the complexity of counting

problems.

44



Graph Homomorphism

L. Lovász:

Operations with structures, Acta Math. Hung. 18 (1967),

321-328.

http://www.cs.elte.hu/~lovasz/hom-paper.html

Let A = (Ai,j) ∈ Cκ×κ be a symmetric complex matrix.

The Graph Homomorphism problem is:

Input: An undirected graph G = (V,E).

Output:

ZA(G) =
∑

ξ:V→[κ]

∏

(u,v)∈E

Aξ(u),ξ(v).
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Examples of Graph Homomorphism

Let

A =





0 1

1 1





then ZA(G) counts the number of Vertex Covers in G.

Let

A =

















0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

















then ZA(G) counts the number of vertex κ-Colorings in G.
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Dichotomy Theorem for Graph Homomorphism

Theorem[C., Xi Chen and Pinyan Lu] There is a

complexity dichotomy for ZA(·):

For any symmetric complex valued matrix A ∈ Cκ×κ, the

problem of computing ZA(G), for any input G, is either in

P or #P-hard.

Given A, whether ZA(·) is in P or #P-hard can be decided

in polynomial time in the size of A.

SIAM J. Comput. 42(3): 924-1029 (2013) (106 pages)

Many partial results: Dyer, Greenhill, Bulatov, Grohe,

Goldberg, Jerrum, Thurley, . . .
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Dichotomy Theorem for #CSP

Theorem[C., Xi Chen] Every finite set F of complex

valued constraint functions on any finite domain set [κ]

defines a counting CSP problem #CSP(F) that is either

computable in P or #P-hard.

The decision version of this is open.

The decidability of this #CSP Dichotomy is open.

Creignou, Hermann, . . ., Bulatov, Dalmau, Dyer, Richerby,

. . .

Creignou, Khanna, Sudan: Complexity Classifications of

Boolean Constraint Satisfaction Problems, SIAM.

48



Perfect Matchings
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Matching as Holant

Think of edges as variables, and assign vertices with a

local constraint function.

HolantΩ =
∑

σ:E→{0,1}

∏

v∈V

fv
(

σ |E(v)

)

.

The problem of counting Perfect Matchings on G

corresponds to attaching the Exact-One function at every

vertex of G.

The problem of counting all Matchings on G is to attach

the At-Most-One function at every vertex of G.
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#κ-EdgeColoring as a Holant Problem

Consider a 3-regular graph G.

Let AD3 denote the following local constraint function

AD3(x, y, z) =







1 if x, y, z ∈ [κ] are all distinct

0 otherwise

Now place AD3 at each vertex v, with incident edges x, y, z.

Then we evaluate the sum of product

Holant(G; AD3) =
∑

σ:E(G)→[κ]

∏

v∈V (G)

AD3

(

σ |E(v)

)

.

Theorem[C., Guo, Williams] #κ-EdgeColoring on

r-regular (planar) graphs is #P-hard for all κ ≥ r ≥ 3.
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Dichotomy for Boolean #CSP

A denotes functions of an Affine type:

f(x1, x2, . . . , xn) = λ·χS ·i
Q(x1,x2,...,xn).

A denotes functions of a Product type.

Theorem (C., Pinyan Lu, Mingji Xia)

Suppose F is a set of functions mapping Boolean inputs to

complex numbers. If F ⊆ A or F ⊆ P, then #CSP(F) is

computable in P. Otherwise, #CSP(F) is #P-hard.

Many partial results: Bulatov, Dyer, Goldberg, Jalsenius,

Jerrum, Richerby, . . .
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Dichotomy Theorem for Holant

Theorem[C., Heng Guo, Tyson Williams] Let F be any set

of symmetric, complex-valued signatures in Boolean

variables. Then Holant(F) is #P-hard unless F satisfies one

of the following conditions, in which case the problem is in

P:

1. All non-degenerate signatures in F have arity ≤ 2;

2. F is A-transformable;

3. F is P-transformable;

4. F ⊆ Vσ ∪ {f ∈ Rσ
2 | arity(f) = 2} for σ ∈ {+,−};

5. All non-degenerate signatures in F are in Rσ
2 for

σ ∈ {+,−}.

53



A Complexity Trichotomy Theorem

Theorem[C., Pinyan Lu, Mingji Xia] Let F be any finite

set of symmetric constraint functions mapping Boolean

variables to R. Then there are precisely three classes of

#CSP(F) problems, depending on F .

(1) #CSP(F) is in P.

(2) #CSP(F) is #P-hard, but solvable in P for planar

inputs.

(3) #CSP(F) is #P-hard even for planar inputs.

Furthermore F is in class (2) iff there is a holographic

algorithm based on matchgates and the planar problems

are solved by the FKT algorithm.
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A Complexity Trichotomy Theorem

Theorem[Heng Guo, Tyson Williams] Let F be any finite

set of symmetric constraint functions mapping Boolean

variables to C. Then there are precisely three classes of

#CSP(F) problems, depending on F .

(1) #CSP(F) is in P.

(2) #CSP(F) is #P-hard, but solvable in P for planar

inputs.

(3) #CSP(F) is #P-hard even for planar inputs.

Furthermore F is in class (2) iff there is a holographic

algorithm based on matchgates and the planar problems

are solved by the FKT algorithm.
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A mathematics talk without a proof is like a
movie without a love scene.

Hendrik Lenstra
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Eulerian Orientation

An orientation of G is Eulerian if for each vertex v of G,

the number of incoming edges of v equals the number of

outgoing edges of v.

#EO is the problem of counting the number of Eulerian

orientations.

Theorem #EO is #P-hard over planar 4-regular graphs.
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Tutte Polynomial

For an undirected graph G = (V,E), its Tutte polynomial is

T (G;x, y) =
∑

A⊆E

(x− 1)κ(A)−κ(E)(y − 1)κ(A)+|A|−|V |,

where κ(A) is the number of connected components of the

graph (V,A).

Theorem[Vertigan and Jaeger,Vertigan, Welsh] Evaluating

T (G; 3, 3) for the Tutte polynomial T (G;x, y) is #P-hard,

over planar graphs.
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Medial Graph

(a) (b) (c)

Figure 1: A plane graph (a), its medial graph (c), and the two graphs superimposed (b).

The medial graph is 4-regular.
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Signature Matrix

The signature matrix of an arity 4 signature g is

Mg =















g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111















.
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Medial Graph and Tutte Polynomial

Theorem[Las Vergnas]

2 · T (G; 3, 3) =
∑

O∈O(Gm)

2β(O),

Ths sum is the bipartite planar Holant problem

Pl-Holant ( 6=2 | f), where

Mf =















0 0 0 1

0 1 2 0

0 2 1 0

1 0 0 0















.
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Z-transformation

We perform a holographic transformation by Z = 1√
2

[

1 1
i −i

]

to get

Pl-Holant ( 6=2 | f) ≡T Pl-Holant
(

[0, 1, 0](Z−1)⊗2 | Z⊗4f
)

≡T Pl-Holant
(

[1, 0, 1] | f̂
)

≡T Pl-Holant(f̂),

where the signature matrix of f̂ is

Mf̂ =















2 0 0 1

0 1 0 0

0 0 1 0

1 0 0 2















,
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#EO Under Z-transformation

Pl-Holant ( 6=2 | [0, 0, 1, 0, 0])

≡T Pl-Holant
(

[0, 1, 0](Z−1)⊗2 | Z⊗4[0, 0, 1, 0, 0]
)

≡T Pl-Holant ([1, 0, 1] | 1

2
[3, 0, 1, 0, 3])

≡T Pl-Holant([3, 0, 1, 0, 3]).
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Tetrahedron Gadget
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Using the planar tetrahedron gadget, we assign [3, 0, 1, 0, 3]

to every vertex and obtain a signature 32ĝ, where the

signature matrix of ĝ is

Mĝ =
1

2















19 0 0 7

0 7 5 0

0 5 7 0

7 0 0 19















.
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Recursive Construction Using Tetrahedron Gadget

Ns
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A Reduction

To reduce Pl-Holant(f̂) to Pl-Holant(ĝ):

Let Ω be an instance of Pl-Holant(f̂).

Suppose that f̂ appears n times in Ω.

We construct from Ω a sequence of instances Ωs of

Holant(ĝ) indexed by s ≥ 1.

We obtain Ωs from Ω by replacing each occurrence of f̂

with the gadget Ns with ĝ assigned to all vertices.

To obtain HolantΩs
from HolantΩ, we replace Mf̂ with

MNs
= (Mĝ)

s.
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Let

T =















1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1















.

Then

Mf̂ = TΛf̂T
−1 = T















3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















T
−1

Mĝ = TΛĝT
−1 = T















13 0 0 0

0 6 0 0

0 0 1 0

0 0 0 6















T
−1

.
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We can view our construction of Ωs as first replacing each

Mf̂ by TΛf̂T
−1 to obtain a signature grid Ω′, which does

not change the Holant value, and then replacing each Λf̂

with Λs
ĝ. We stratify the assignments in Ω′ based on the

assignment to Λf̂ . We only need to consider the

assignments to Λf̂ that assign

• (00, 00) j many times,

• (01, 10) or (11, 11) k many times, and

• (10, 01) ℓ many times.

Let cjkℓ be the sum over all such assignments of the

products of evaluations from T and T−1 but excluding Λf̂

on Ω′.
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Then

Pl-HolantΩ =
∑

j+k+ℓ=n

3jcjkℓ

and the value of the Holant on Ωs, for s ≥ 1, is

Pl-HolantΩs
=

∑

j+k+ℓ=n

(13j6k)scjkℓ.

This coefficient matrix in the linear system is

Vandermonde and has full rank since for any j, k, j′, k′ ≥ 0,

if (j, k) 6= (j′, k′) then 13j6k 6= 13j
′

6k
′

. Therefore, we can

solve the linear system for the unknown cjkℓ’s and obtain

the value of Pl-HolantΩ.
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Some References

Some papers can be found on my web site

http://www.cs.wisc.edu/~jyc

THANK YOU!
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