Geometric Complexity Theory and Matrix Multiplication (Tutorial)

Peter Bürgisser Technische Universität Berlin

Workshop on Geometric Complexity Theory Simons Institute for the Theory of Computing Berkeley, September 15, 2014

Background and motivation

Goals

- > Tensor rank is a natural math. concept arising in various places.
- It is intimitely related to the computational complexity of evaluating bilinear maps, in particular to the multiplication of matrices.
- To determine the (asymptotic) complexity for multiplying matrices is a major open question in algebraic complexity theory.
- GCT was proposed for the permanent vs determinant problem by Mulmuley and Sohoni in 2001.
- ▶ In joint work with Christian Ikenmeyer, we further developed the ideas of GCT in the setting of tensors (STOC 11, STOC 13).
- We managed to prove lower bounds on the border rank of matrix multiplication by exhibiting representation theoretic "occurrence obstructions".
- Our bounds are not as good as Landsberg and Ottaviani's recent bounds ('11), but they have the same order of magnitude as Strassen and Lickteig's bounds ('83).
- ► This talk: set the ground. More details on Wednesday (Christian).

Tensor rank

- Consider finite dimensional complex vector spaces W_i for i = 1, 2, 3 and put W := W₁ ⊗ W₂ ⊗ W₃. Elements w ∈ W are called tensors.
- ▶ The rank R(w) of $w \in W$ is defined as the minimum $r \in \mathbb{N}$ s.t. there are $w_{1i}, \ldots, w_{ri} \in W_i$, i = 1, 2, 3, with

$$w = \sum_{
ho=1}^r w_{
ho 1} \otimes w_{
ho 2} \otimes w_{
ho 3}.$$

- Special case W₃ = C: R(w) equals the rank of the corr. linear map W₁^{*} → W₂. In this case we know everything about R(w).
- General case much harder: comp. of R(w) is NP-hard (Hastad).
- To w ∈ W there corresponds a bilinear map φ: W₁^{*} × W₂^{*} → W₃. The nonscalar complexity L(φ) is defined as the minimum number of nonscalar multiplications sufficient to evaluate the map φ by an arithmetic circuit.

• Strassen:
$$L(\varphi) \leq R(w) \leq 2L(\varphi)$$
.

Complexity of matrix multiplication: the records

Consider the tensor M(n) ∈ C^{n×n} ⊗ C^{n×n} ⊗ C^{n×n} of the matrix multiplication map

$$\mathbb{C}^{n\times n}\times\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n},(A,B)\mapsto AB.$$

Best known lower bound (Landsberg '12):

$$R(M(n)) \geq 3 n^2 + o(n^2).$$

(Before, $R(M(n)) \ge 2.5 n^2 + o(n^2)$ due to Bläser's ('99).)

Asymptotic upper bounds: the exponent ω of matrix multiplication is defined as

$$\omega := \lim_{n \to \infty} \log_n R(M(n)),$$

Coppersmith & Winograd 1990: ω ≤ 2.376. Recent improvements by Davie & Stothers, Williams, Le Gall ('14):

 $\omega \leq$ 2.3728639.

Border rank ...

- ▶ The border rank $\underline{R}(w)$ of a tensor $w \in W$ is defined as the minimum $r \in \mathbb{N}$ such that there exists a sequence $w_k \in W$ with $\lim_{k\to\infty} w_k = w$ and $R(w_k) \leq r$ for all k.
- $\underline{R}(w) \leq R(w)$
- Fact: $\omega = \lim_{n \to \infty} \log_n \underline{R}(M(n)).$
- Best known lower bound (Landsberg and Ottaviani '11)

$$\underline{R}(M(n)) \geq \mathbf{2} n^2 - n.$$

(Before, Lickteig '84: $\underline{R}(M(n)) \ge 1.5 n^2 + 0.5n - 1.$)

... as orbit closure problem

The group

```
G := \operatorname{GL}(W_1) \times \operatorname{GL}(W_2) \times \operatorname{GL}(W_3) (1)
```

acts on $\mathit{W} = \mathit{W}_1 \otimes \mathit{W}_2 \otimes \mathit{W}_3$ via

 $(g_1,g_2,g_3)(w_1\otimes w_2\otimes w_3):=g_1(w_1)\otimes g_2(w_2)\otimes g_3(w_3).$

- ► Tensor w ∈ W defines orbit Gw and orbit closure Gw. The same for euclidean topology and Zariski topology!
- Could interpret Gw, \overline{Gw} as subsets of $\mathbb{P}(W)$ as both are cones.
- ▶ Let $r \in \mathbb{N}$, $r \leq \min_i \dim W_i$. Define *r*-th unit tensor in *W*:

$$\langle r \rangle := \sum_{\rho=1}^r e_{
ho 1} \otimes e_{
ho 2} \otimes e_{
ho 3},$$

where e_{1i}, \ldots, e_{ri} are part of a basis of W_i .

- The G-orbit of $\langle r \rangle$ is a basis independent notion.
- ► Strassen (1987):

 $\underline{R}(w) \leq r \iff w \in \overline{G\langle r \rangle} \iff \overline{Gw} \subseteq \overline{G\langle r \rangle}.$

Geometric Complexity Theory and Matrix Multiplication (Tutorial)

Basic ideas for lower bounds

Orbit closure problem

- ▶ Reductive algebraic group G acts linearly on vector space W (eg. G = GL_m(ℂ) or products thereof).
- $\mathcal{O}(W)$ ring of polynomial functions $W \to \mathbb{C}$.
- degree grading: $\mathcal{O}(W) = \oplus_{d \in \mathbb{N}} \mathcal{O}(W)_d$
- Vanishing ideal of \overline{Gw} for $w \in W$

$$I(\overline{Gw}) := \{ f \in \mathcal{O}(W) \mid \forall v \in \overline{Gw} \mid f(v) = 0 \}.$$

Elementary fact:

$$v \notin \overline{Gw} \iff \exists f \in I(\overline{Gw}) \quad f(v) \neq 0.$$

- Such f may serve as a witness for $v \notin \overline{Gw}$.
- In which degree *d* to search for such *f*? *O*(*W*)_{*d*} has huge dimension even for small *d*!
- ▶ Representation theory allows for guided search for *f*.

Representations in rings of regular functions

• The group G acts on the ring $\mathcal{O}(W)$ of polynomial functions on W:

$$(gf)(w) := f(g^{-1}w), \quad f \in \mathcal{O}(W), w \in W.$$

- The vanishing ideal $I(\overline{Gw})$ is G-invariant.
- Representation theory: I(Gw) splits into a direct sum of irreducible modules (as G is reductive).
- ► The isomorphy types of irreducible *G*-modules in *O*(*W*)_d are determined by discrete data called highest weights <u>λ</u>. Those are triples <u>λ</u> of partitions of *d* (Schur, Young, Weyl).
- ► Irreducible G-modules in O(W)_d are generated their highest weight functions (unique up to scaling). They have a "weight" <u>λ</u>.
- ► Recall:

 $v \notin \overline{Gw} \iff \exists f \in I(\overline{Gw}) \quad f(Gv) \neq 0.$

▶ One may take for *f* a highest weight function! See Christian's talk.

Strassen's resultant for 3-slice tensors

•
$$W = \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^3 \simeq \oplus^3 \mathbb{C}^{m \times m}$$
, $m \ge 3$.

- ▶ Interpret $w \in W$ as a triple (A, B, C) of $m \times m$ matrices.
- Strassen (1983):

$$f_m(A,B,C) := (\det A)^2 \det(BA^{-1}C - CA^{-1}B)$$

is a semi-invariant: for $(g_1, g_2, g_3) \in \operatorname{GL}_m imes \operatorname{GL}_m imes \operatorname{GL}_3$, $w \in W$,

 $f_m((g_1\otimes g_2\otimes g_3)w)=(\det g_1\det g_2)^3(\det g_3)^m f(w).$

- f_m vanishes on the tensors of border rank< 3m/2.
- Semi-invariants are highest weight functions of rectangular weights <u>\u03c6</u>.
- Bläser's bound relied on Strassen's resultant.

Splitting into irreducible representations

- ► The ring $\mathcal{O}(\overline{Gw})$ of regular functions on \overline{Gw} consists of the restrictions of polynomial functions to \overline{Gw} .
- ▶ Have induced *G*-action and surjective *G*-equivariant restriction $\mathcal{O}(W) \rightarrow \mathcal{O}(\overline{Gw})$.
- ▶ $\mathcal{O}(\overline{Gw}) = \bigoplus_{d \in \mathbb{N}} \mathcal{O}(\overline{Gw})_d$ is graded, $\mathcal{O}(\overline{Gw})_d$ is a (f.d.) *G*-module.
- ► G is reductive, so any (rational) G-module splits into irreducible G-modules.
- Let $V_{\underline{\lambda}}(G)$ denote the irreducible *G*-modules of highest weight $\underline{\lambda}$.
- The splitting into irreducibles can be written as

$$\mathcal{O}(\overline{\mathit{Gw}})_d = \bigoplus_{\underline{\lambda}} \operatorname{mult}_{\underline{\lambda}}(w) V_{\underline{\lambda}}(\mathit{G})^*.$$

• We are interested in the multiplicities $\operatorname{mult}_{\lambda}(w)$.

The idea of comparing multiplicities

Observation:

$$\overline{Gv} \subseteq \overline{Gw} \Longrightarrow \forall \underline{\lambda} \quad \operatorname{mult}_{\underline{\lambda}}(v) \leq \operatorname{mult}_{\underline{\lambda}}(w).$$

- Proof: Restriction of regular functions yields, for all degrees d, a surjective G-module morphism O(Gw)_d → O(Gv)_d. Use Schur's lemma. □
- ► A representation theoretic obstruction consists of <u>λ</u> violating the above inequality of multiplicities.
- ▶ Christandl et al. '12: If dim $\overline{Gv} < \dim \overline{Gw}$ and $\overline{Gv} \subseteq \overline{Gw}$, then $k \mapsto \operatorname{mult}_{k\underline{\lambda}}(w)$ grows at a faster rate than $k \mapsto \operatorname{mult}_{\underline{\lambda}}(kv)$.
- Therefore, asymptotic considerations of cannot help. This supports the following concept:

Occurrence obstructions

• An occurrence obstruction consists of $\underline{\lambda}$ such that

$$\operatorname{mult}_{\underline{\lambda}}(w) = 0 \text{ and } \operatorname{mult}_{\underline{\lambda}}(v) > 0.$$

- ▶ Reformulation: mult_{<u>λ</u>}(w) = 0 means that all highest weight functions of weight <u>λ</u> vanish on <u>Gw</u>. This is a very strong condition!
- Strassen's example is not an occurence obstruction: for C⁴ ⊗ C⁴ ⊗ C³ there is another semi-invariant of the same weight, but which doesn't vanish on tensors of rank≤ 5.
- ▶ Warning: while it is true that, in principle, orbit closure problems $\overline{Gv} \not\subseteq \overline{Gw}$ can always be disproved using highest weight functions, it is nor clear that one can always do so with occurrence obstructions!
- But we will see at least one family of occurrence obstructions.

Geometric Complexity Theory and Matrix Multiplication (Tutorial)

- Towards determining multiplicities

Towards determining $\operatorname{mult}_{\lambda}(w)$

Decomposition of $\mathcal{O}(W)$ and Kronecker coefficients

▶ The space $W = W_1 \otimes W_1 \otimes W_3$ decomposes as

$$\mathcal{O}(W_1 \otimes W_2 \otimes W_3)_d = \bigoplus_{\underline{\lambda}} k(\underline{\lambda}) V_{\underline{\lambda}}(G)^*;$$

the sum being over the triples $\underline{\lambda} = (\lambda_1, \lambda_2, \lambda_3)$ of partitions of the same size d.

- ► Schur-Weyl duality: the multiplicities k(<u>λ</u>) are the Kronecker coefficients.
- Characterization in terms of representations of the symmetric group S_d:

$$k(\underline{\lambda}) := \dim \left([\lambda_1] \otimes [\lambda_2] \otimes [\lambda_3] \right)^{S_d}$$
(2)

Here $[\lambda_i]$ denotes the irreducible S_d -module labeled by λ_i .

► Ex. $W = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, $\underline{\lambda} = ((2, 2), (2, 2), (2, 2))$. Then $k(\underline{\lambda}) = 1$. Hence there is semi-invariant f (Cayley's hyperdeterminant) s.t.

$$f((g_1 \otimes g_2 \otimes g_3)w) = (\det g_1 \det g_2 \det g_3)^2 f(w).$$

Monoids of representations

The Kronecker monoids are defined as

 $K(m_1, m_2, m_3) := \{\underline{\lambda} \mid \mathbb{N}, d \in \lambda_i \vdash_{m_i} d, k(\underline{\lambda}) > 0\}.$

• For $w \in W$ we consider the monoid of representations of w

 $S(w) := {\underline{\lambda} \mid \operatorname{mult}_{\underline{\lambda}}(w) > 0}.$

- General principles (finiteness of ring of U-invariants) imply that these monoids are finitely generated.
- ▶ The surjective morphism $\mathcal{O}(W) \to \mathcal{O}(\overline{Gw})$ implies $S(w) \subseteq K(m_1, m_2, m_3)$.
- $S(w) = K(m_1, m_2, m_3)$ for almost all $w \in W$.
- The real cone generated by K(m₁, m₂, m₃) is polyhedral. It is complicated, but understood to a certain extent, see Ressayre's talk.
- Occurrence obstructions $\underline{\lambda}$ are contained in $K(m_1, m_2, m_3) \setminus S(w)$.

Inheritance

What happens to mult_∆(w) when we enlarge the ambient space W and the group G of symmetries?

 $\textbf{\textit{W}}_i \subseteq \textbf{\textit{W}}_i', \ \textbf{\textit{W}}' := \textbf{\textit{W}}_1' \otimes \textbf{\textit{W}}_2' \otimes \textbf{\textit{W}}_3', \ \textbf{\textit{G}}' := \mathrm{GL}(\textbf{\textit{W}}_1') \times \mathrm{GL}(\textbf{\textit{W}}_2') \times \mathrm{GL}(\textbf{\textit{W}}_3').$

- ► NOTHING!
- Can interpret a highest G-weight <u>λ</u> with nonnegative entries as a highest G'-weight <u>λ</u> (appending zeros to partitions λ_i).
- ► Inheritance Theorem (GCT2, Weyman)
 - Let $w \in W$ and $\underline{\lambda}$ be a highest G'-weight.
 - If V_λ(G')* occurs in O(G'w), then <u>λ</u> is a highest G-weight, i.e., λ_i has at most dim W_i parts.
 - 2 If $\underline{\lambda}$ is a highest *G*-weight, then

 $\mathrm{mult}(V_{\underline{\lambda}}(G)^*,\mathcal{O}(\overline{Gw}))=\mathrm{mult}(V_{\underline{\lambda}}(G')^*,\mathcal{O}(\overline{G'w})).$

Proof based on method of U-invariants.

Coordinate rings of orbits

- Orbits are considerably easier to understand than orbit closures.
- ▶ O(Gw) denotes the ring of functions that can be locally written as the quotient of two polynomial functions. (This way, Gw becomes an algebraic variety.)
- $\mathcal{O}(\overline{Gw})$ is a subring of $\mathcal{O}(Gw)$.
- ▶ Since the inclusion $\mathcal{O}(\overline{Gw}) \hookrightarrow \mathcal{O}(Gw)$ is *G*-equivariant, we get

$$\operatorname{mult}_{\underline{\lambda}}(w) := \operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(\overline{Gw})) \leq \operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(Gw)).$$

- We have (quite complicated) formulas for the multiplicities on the right hand side.
- But currently, we have no systematic way to compute $\operatorname{mult}_{\lambda}(w)$.
- In our example of an occurence obstruction we even have mult_∆(O(Gw)) = 0, hence mult_∆(w) = 0.

Peter-Weyl Theorem

► The stabilizer group stab(w) := {g ∈ G | gw = w} describes the symmetries of w ∈ W.

• Space of stab(w)-invariants in $V_{\underline{\lambda}}(G)$:

$$V_{\underline{\lambda}}(G)^{\mathrm{stab}(w)} := ig\{ v \in V_{\underline{\lambda}}(G) \mid orall g \in \mathrm{stab}(w) \; gv = v ig\}$$

• Theorem. For any $\underline{\lambda}$

$$\operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(Gw)) = \dim V_{\underline{\lambda}}(G)^{\operatorname{stab}(w)}.$$

(Consequence of alg. Peter-Weyl Thm. on decomposition of $\mathcal{O}(G)$.)

Example: generic tensor

- ► Thm. (?) Let m ≥ 3. The stabilizer of almost all w ∈ (C^m)^{⊗3} is trivial: it equals {(a id, b id, c id) | a, b, c ∈ C[×], abc = 1}.
- This implies via Peter-Weyl that

$$\left\{\underline{\lambda} \mid \operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(Gw)) > 0\right\}$$

is very large: it consists of all triples of partitions of the same size.

▶ By contrast, for generic w,

$$S(w) = K(m_1, m_2, m_3)$$

is much smaller.

The example of generic tensors impressively shows that monoids of representations for orbit and orbit closure can differ considerably!

Example: stabilizer of unit tensor

• group $G := \operatorname{GL}_m \times \operatorname{GL}_m \times \operatorname{GL}_m$, unit tensor

$$\langle m
angle := \sum_{
ho=1}^m e_
ho \otimes e_
ho \otimes e_
ho \in (\mathbb{C}^m)^{\otimes 3}$$

- Recall $\overline{G\langle m\rangle} = \{w \in (\mathbb{C}^m)^{\otimes 3} \mid \underline{R}(w) \leq m\}.$
- What is H := stab((m))?

The torus

$$T := \{ (\operatorname{diag}(a), \operatorname{diag}(b), \operatorname{diag}(c)) \in G_m \mid \forall \rho \ a_\rho b_\rho c_\rho = 1 \}$$

is contained in H.

- Symmetric group S_m is embedded in G via π → (P_π, P_π, P_π) (simultaneous permutation of standard bases). Clearly, S_m ≤ H.
- ▶ Proposition. stab($\langle m \rangle$) is the semidirect product of T and S_m .
- $\langle m \rangle$ is uniquely determined by its stabilizer *H* (up to a scalar).

Orbit versus orbit closure

Stability

- Consider the subgroup $G_s := SL(W_1) \times SL(W_2) \times SL(W_3)$.
- We call $w \in W$ polystable if $G_s w$ is closed (and $w \neq 0$).
- ▶ Polystability can be shown with the Hilbert-Mumford criterion. The unit tensors (m) are polystable.
- ▶ Essential: It turns out that if *w* is polystable, then there is a close connection between $O(\overline{Gw})$ and O(Gw).

The period of tensors

We obtain a group homomorphism det: G → C[×] by composing the representation D: G → GL(W) with the determinant:

$$\det(g) := \det(D(g)).$$

Specifically,

 $\det(g_1,g_2,g_3) = (\det g_1)^{m_2m_3} \cdot (\det g_2)^{m_1m_3} \cdot (\det g_3)^{m_1m_2}.$

- Let w ∈ W be polystable and assume that det(stab(w)) = µ_a is the group of a-th roots of unity. We call a the period of w.
- ▶ $\langle m \rangle$ has period 1 if *m* is even and period 2 otherwise. Proof. det $(P_{\pi}, P_{\pi}, P_{\pi}) = (\text{sgn}\pi)^{3m^2} = \text{sgn}\pi$. □

The determinant of tensors

• If $w \in W$ is polystable and has period a, then the map

 $\det_w^a \colon Gw \to \mathbb{C}^{\times}, gw \mapsto \det(g)^a$

is a well-defined morphism of algebraic varieties. (Recall $det(stab(w)) = \mu_a$.) Warning: det_w is undefined if a > 1.

- Lemma. The extension of det^a_w to the boundary of Gw by zero yields a function Gw → C that is continuous in the C-topology.
- However, this extension may not need to be regular. In this case, \overline{Gw} is not normal.
- Consider the exponent monoid E_w

 $E(w) := \{ e \in \mathbb{N} \mid (\det_w^a)^e \mid \text{ has a regular extension to } \overline{Gw} \}.$

▶ Thm. The group generated by E(w) equals \mathbb{Z} . Moreover, $\exists e_0 \in \mathbb{N} \forall e \geq e_0 \ e \in E(w)$.

Fundamental invariant of tensors

- We call $e(w) := \min E(w) \setminus \{0\}$ the regularity of w.
- ▶ So the regularity e(w) is the smallest e > 0 such that $(det_w^a)^e$ is regular.
- We call

 $\Phi_w := (\det_w^a)^{e(w)}$ the fundamental invariant of w.

- The zero set of Φ_w in \overline{Gw} is the boundary of Gw.
- ► Theorem. Under the above assumptions, O(Gw) is the localization of O(Gw) with respect to Φ_w:

$$\mathcal{O}(\mathsf{Gw}) = \Big\{ \frac{f}{\Phi^s_w} \mid f \in \mathcal{O}(\overline{\mathsf{Gw}}), s \in \mathbb{N} \Big\}.$$

Hence any h ∈ O(Gw), when multiplied with a sufficiently high power of Φ_w, has a regular extension to W.

Nonnormality of orbit closures

- ▶ Proposition. (compare Kumar for determinant orbit) If $w \in (\mathbb{C}^m)^{\otimes 3}$ has period $a < \sqrt{m}$, then e(w) > 1 and hence \overline{Gw} is not normal.
- Proof. det^a_w is a semi-invariant of weight (m × a, m × a, m × a). Rules for Kronecker coeff. yield
 k(m × a, m × a, m × a) = k(m × a, a × m, a × m) = 0 if m > a². □
- Since the unit tensor ⟨m⟩ has period a ≤ 2, we obtain e(⟨m⟩) > 1, provided m > 2². So the orbit closure of ⟨m⟩ is not normal in this case.
- Proposition. $e(\langle m \rangle) = 1$ for $m \leq 4$.
- Problem. Determine the regularity of unit tensors!
- ▶ Problem. Write $\Phi_{\langle m \rangle}$ explicitly as a quotient of two highest weight functions in $\mathcal{O}(W)$. (Such representations must exist.)

Geometric Complexity Theory and Matrix Multiplication (Tutorial)

Representations for orbit of unit tensors

Representations for orbit of unit tensor

- Recall: $\operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(Gw)) = \dim V_{\underline{\lambda}}(G)^{\operatorname{stab}(w)}$.
- Recall: stabilizer of unit tensor ⟨m⟩ ∈ C^m ⊗ C^m ⊗ C^m consists of simultaneous permutations of standard bases and (diag(a), diag(b), diag(c)) such that a_ib_ic_i = 1.
- Let V_{λi} = ⊕_{α∈ℤⁿ} V^α_{λi} be the decomposition into weight spaces of the irreducible GL_m-module V_{λi} for λ_i ⊢_m d.
- The group S_m operates on Z^m by permutation. Let stab(α) ⊆ S_m denote the stabilizer of α ∈ Z^m.
- ► Theorem (Branching Formula). If $\underline{\lambda} = (\lambda_1, \lambda_2, \lambda_3)$ with partitions λ_i of the same size d,

$$\operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(\operatorname{GL}_m^3\langle m\rangle)) = \sum_{\alpha} \operatorname{dim} \left(V_{\lambda_1}^{\alpha} \otimes V_{\lambda_2}^{\alpha} \otimes V_{\lambda_3}^{\alpha} \right)^{\operatorname{stab}(\alpha)},$$

where the sum is over all partitions $\alpha \vdash_m d$ such that $\alpha \preccurlyeq \lambda_i$ for i = 1, 2, 3 in the dominance order.

An small example

Branching Formula:

 $\operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(\operatorname{GL}_m^3\langle m\rangle)) = \sum_{\alpha \preccurlyeq \lambda_i} \dim \left(V_{\lambda_1}^{\alpha} \otimes V_{\lambda_2}^{\alpha} \otimes V_{\lambda_3}^{\alpha} \right)^{\operatorname{stab}(\alpha)}$

- \blacktriangleright We are interested in those $\underline{\lambda}$ where this zero: all the summands have to vanish, which is rarely the case.
- Regular partitions α are those where stab(α) = {id}, i.e., its components are pairwise distinct. Those α always contribute.
- The above sum can only vanish if there is no regular α ⊢_m d such that α ≼ λ_i for i = 1, 2, 3.

 $\mathrm{mult}_{\underline{\lambda}}(\mathcal{O}(\mathrm{GL}_4^3\langle 4\rangle))=0.$

Moreover, $k(\underline{\lambda}) = 1$. Consequence: $\underline{\lambda} \in K(4, 4, 4) \setminus S(\langle 4 \rangle)$. A generic $w \in \mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ satisfies $\underline{R}(w) > 4$ (which is optimal).

A family of occurrence obstructions

Consider the sequence of triples <u>λ</u> consisting of three times the hook partition with a foot of length κ + 1 and a leg of length 2κ + 1.
 E.g., for κ = 2,

- A nontrivial application of the branching formula implies mult_λ(O(GL³_{3κ}⟨3κ⟩)) = 0.
- This relies on a criterion due to Rosas, telling us when the Kronecker coefficients of three hooks is positive (in which case it equals 1).
- One can show that $k(\underline{\lambda}) = 1$. As a consequence, a generic $w \in \mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m$, $m = 2\kappa + 1$, satisfies

$$\underline{R}(w) > 3\kappa = \frac{3}{2}(2\kappa + 1) - \frac{3}{2} = \frac{3}{2}m - \frac{3}{2}.$$

Application to matrix multiplication

We have another, more insightful proof showing why

$$\operatorname{mult}_{\underline{\lambda}}(\mathcal{O}(\overline{\operatorname{GL}^3_{3\kappa}\langle 3\kappa\rangle}))=0.$$

- This statement ist weaker, since it refers to orbit closure.
- The other argument relies on the explicit construction of highest weight functions via "obstruction designs"; see Christian's talk.
- ► These occurence obstructions also give lower bounds for matrix multiplication tensors, since we can show that the three hook $\underline{\lambda}$ from above occurs in $\mathcal{O}(\overline{\operatorname{GL}_{n^2}^3 M(n)})$, where $n^2 = 2\kappa + 1$ and $\underline{\lambda}$ as above.
- This gives for odd n,

$$\underline{R}(M(n)) > \frac{3}{2}n^2 - \frac{3}{2}$$

Fundamental open problem

- For finding occurrence obstructions for border rank, we need a way to determine when <u>λ</u> does not occur in the **orbit closure** of ⟨m⟩!
- ► The branching formula gives this information for the **orbit** of ⟨m⟩. Requiring that <u>λ</u> does not occur in orbits is an unnecessarily strong requirement.
- ▶ Previous insights imply: highest weight functions of weight <u>\u03c5</u> on the orbit of \u03c5m m \u03c5 are of the form

$$\frac{f}{\Phi^s_{\langle m \rangle}},$$

where f is a globally defined highest weight function on $(\mathbb{C}^m)^{\otimes 3}$ having weight

$$(m \times as, m \times as, m \times as) + \underline{\lambda}.$$

 $\Phi_{\langle m \rangle}$ is the fundamental invariant of $\langle m \rangle$, $a \in \{1,2\}$ is its period, and $s \in \mathbb{N}$.

Geometric Complexity Theory and Matrix Multiplication (Tutorial)

Representations for orbit of matrix multiplication

Invariant description

- Fix vector spaces U_i of dimension n_i for i = 1, 2, 3.
- The contraction

$$\begin{array}{rcl} U_1^* \otimes U_2 \otimes U_2^* \otimes U_3 \otimes U_3^* \otimes U_1 & \to & \mathbb{C}, \\ \ell_1 \otimes u_2 \otimes \ell_2 \otimes u_3 \otimes \ell_3 \otimes u_1 & \mapsto & \ell_1(u_1) \, \ell_2(u_2) \, \ell_3(u_3). \end{array}$$

defines a tensor

$$\mathbf{M}_{\underline{U}} \in (U_1 \otimes U_2^*) \otimes (U_2 \otimes U_3^*) \otimes (U_3 \otimes U_1^*).$$

 \triangleright M_U is exactly the structural tensor of matrix multiplication:

 $\operatorname{Hom}(U_1, U_2) \times \operatorname{Hom}(U_2, U_3) \to \operatorname{Hom}(U_1, U_3), \ (\varphi, \psi) \mapsto \psi \circ \varphi.$

Stabilizer of matrix multiplication

• The stabilizer \mathcal{H} of M_U is a subgroup of

 $\mathcal{G} := \mathrm{GL}(U_1 \otimes U_2^*) \times \mathrm{GL}(U_2 \otimes U_3^*) \times \mathrm{GL}(U_3 \otimes U_1^*).$

• Put $S := \operatorname{GL}(U_1) \times \operatorname{GL}(U_2) \times \operatorname{GL}(U_3)$ and consider the morphism

 $\Phi \colon \mathcal{S} \to \mathcal{G}, \ (\alpha_1, \alpha_2, \alpha_3) \mapsto \left(\alpha_1 \otimes (\alpha_2^{-1})^*, \alpha_2 \otimes (\alpha_3^{-1})^*, \alpha_3 \otimes (\alpha_1^{-1})^*\right)$

with kernel $\mathbb{C}^{\times}(\mathrm{id}, \mathrm{id}, \mathrm{id}) \simeq \mathbb{C}^{\times}$.

- im $\Phi \subseteq \mathcal{H}$: use $(\alpha_1^{-1})^*(\ell_1)(\alpha_1(u_1)) = \ell_1(\alpha_1^{-1}(\alpha_1(u_1))) = \ell_1(u_1).$
- Theorem (de Groote 1978, case n₁ = n₂ = n₃). The stabilizer H ⊆ G of M_U equals the image of Φ. In particular, H ≃ S/C[×].
- Moreover: the stabilizer characterizes M_U .

Representations: Kronecker coefficients again

Let λ₁₂, λ₂₃, and λ₃₁ be highest weights for GL(U₁ ⊗ U₂^{*}), GL(U₂ ⊗ U₃^{*}), and GL(U₃ ⊗ U₁^{*}), respectively. Recall n_i = dim U_i. Consider the irreducible G-module

$$V_{\underline{\lambda}} := V_{\lambda_{12}} \otimes V_{\lambda_{23}} \otimes V_{\lambda_{31}}.$$

▶ Theorem. If $\lambda_{12}, \lambda_{23}, \lambda_{31}$ are partitions of the same size *d*, then

 $\dim(V_{\underline{\lambda}})^{\mathcal{H}} = \sum_{\mu_1 \vdash_{n_1} d, \mu_2 \vdash_{n_2} d, \mu_3 \vdash_{n_3} d} k(\lambda_{12}, \mu_1, \mu_2) \cdot k(\lambda_{23}, \mu_2, \mu_3) \cdot k(\lambda_{31}, \mu_3, \mu_1).$

- ▶ Using this, one can show that the triple hook weights <u>\u03c5</u> from before occur for orbits of matrix multiplication.
- However, for the lower bound on matrix multiplication, one would need to show that they even occur for the closure. This cannot be deduced from the theorem; yet it provides useful indications where to search.

References

The details can be found in the following papers by Bürgisser and Ikenmeyer.

- Geometric complexity theory and tensor rank (STOC 2011).
 See arXiv:1011.1350 for full proofs.
- Explicit lower bounds via geometric complexity theory (STOC 2013). arXiv:1210.8368
- Geometric complexity theory: symmetries and representations.
 Journal version with more results and full proofs in preparation.

Currently the best place to read more about this is Christian Ikenmeyer's PhD thesis:

Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients

PhD thesis, Paderborn University, Germany, 2012.

Thank you!