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Background and motivation

Goals
I Tensor rank is a natural math. concept arising in various places.
I It is intimitely related to the computational complexity of evaluating

bilinear maps, in particular to the multiplication of matrices.
I To determine the (asymptotic) complexity for multiplying matrices is

a major open question in algebraic complexity theory.

I GCT was proposed for the permanent vs determinant problem by
Mulmuley and Sohoni in 2001.

I In joint work with Christian Ikenmeyer, we further developed the
ideas of GCT in the setting of tensors (STOC 11, STOC 13).

I We managed to prove lower bounds on the border rank of matrix
multiplication by exhibiting representation theoretic “occurrence
obstructions”.

I Our bounds are not as good as Landsberg and Ottaviani’s recent
bounds (’11), but they have the same order of magnitude as
Strassen and Lickteig’s bounds (’83).

I This talk: set the ground. More details on Wednesday (Christian).
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Background and motivation

Tensor rank
I Consider finite dimensional complex vector spaces Wi for i = 1, 2, 3

and put W := W1 ⌦W2 ⌦W3. Elements w 2 W are called tensors.

I The rank R(w) of w 2 W is defined as the minimum r 2 N s.t.
there are w1i , . . . ,wri 2 Wi , i = 1, 2, 3, with

w =
r
X

⇢=1

w⇢1 ⌦ w⇢2 ⌦ w⇢3.

I Special case W3 = C: R(w) equals the rank of the corr. linear map
W ⇤

1 ! W2. In this case we know everything about R(w).

I General case much harder: comp. of R(w) is NP-hard (Hastad).

I To w 2 W there corresponds a bilinear map ' : W ⇤
1 ⇥W ⇤

2 ! W3.
The nonscalar complexity L(') is defined as the minimum number of
nonscalar multiplications su�cient to evaluate the map ' by an
arithmetic circuit.

I Strassen: L(')  R(w)  2L(').
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Background and motivation

Complexity of matrix multiplication: the records

I Consider the tensor M(n) 2 Cn⇥n ⌦ Cn⇥n ⌦ Cn⇥n of the matrix
multiplication map

Cn⇥n ⇥ Cn⇥n ! Cn⇥n, (A,B) 7! AB .

I Best known lower bound (Landsberg ’12):

R(M(n)) � 3 n2 + o(n2).

(Before, R(M(n)) � 2.5 n2 + o(n2) due to Bläser’s (’99).)

I Asymptotic upper bounds: the exponent ! of matrix multiplication
is defined as

! := lim
n!1 logn R(M(n)),

I Coppersmith & Winograd 1990: !  2.376. Recent improvements
by Davie & Stothers, Williams, Le Gall (’14):

!  2.3728639.
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Background and motivation

Border rank ...

I The border rank R(w) of a tensor w 2 W is defined as the
minimum r 2 N such that there exists a sequence wk 2 W with
limk!1 wk = w and R(wk)  r for all k .

I R(w)  R(w)

I Fact: ! = limn!1 logn R(M(n)).

I Best known lower bound (Landsberg and Ottaviani ’11)

R(M(n)) � 2 n2 � n.

(Before, Lickteig ’84: R(M(n)) � 1.5 n2 + 0.5n � 1.)
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Background and motivation

... as orbit closure problem
I The group

G := GL(W1)⇥GL(W2)⇥GL(W3) (1)

acts on W = W1 ⌦W2 ⌦W3 via

(g1, g2, g3)(w1 ⌦ w2 ⌦ w3) := g1(w1)⌦ g2(w2)⌦ g3(w3).

I Tensor w 2 W defines orbit Gw and orbit closure Gw . The same for
euclidean topology and Zariski topology!

I Could interpret Gw , Gw as subsets of P(W ) as both are cones.
I Let r 2 N, r  mini dimWi . Define r -th unit tensor in W :

hri :=
r
X

⇢=1

e⇢1 ⌦ e⇢2 ⌦ e⇢3,

where e1i , . . . , eri are part of a basis of Wi .
I The G -orbit of hri is a basis independent notion.
I Strassen (1987):

R(w)  r () w 2 G hri () Gw ✓ G hri.
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Basic ideas for lower bounds

Orbit closure problem

I Reductive algebraic group G acts linearly on vector space W
(eg. G = GLm(C) or products thereof).

I O(W ) ring of polynomial functions W ! C.
I degree grading: O(W ) = �d2NO(W )d
I Vanishing ideal of Gw for w 2 W

I (Gw) :=
�

f 2 O(W ) | 8v 2 Gw f (v) = 0
 

.

I Elementary fact:

v 62 Gw () 9f 2 I (Gw) f (v) 6= 0.

I Such f may serve as a witness for v 62 Gw .

I In which degree d to search for such f ? O(W )d has huge dimension
even for small d!

I Representation theory allows for guided search for f .
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Basic ideas for lower bounds

Representations in rings of regular functions

I The group G acts on the ring O(W ) of polynomial functions on W :

(gf )(w) := f (g�1w), f 2 O(W ), w 2 W .

I The vanishing ideal I (Gw) is G -invariant.

I Representation theory: I (Gw) splits into a direct sum of irreducible
modules (as G is reductive).

I The isomorphy types of irreducible G -modules in O(W )d are
determined by discrete data called highest weights �. Those are
triples � of partitions of d (Schur, Young, Weyl).

I Irreducible G -modules in O(W )d are generated their highest weight
functions (unique up to scaling). They have a “weight” �.

I Recall:
v 62 Gw () 9f 2 I (Gw) f (Gv) 6= 0.

I One may take for f a highest weight function! See Christian’s talk.
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Basic ideas for lower bounds

Strassen’s resultant for 3-slice tensors

I W = Cm ⌦ Cm ⌦ C3 ' �3Cm⇥m, m � 3.

I Interpret w 2 W as a triple (A,B ,C ) of m ⇥m matrices.

I Strassen (1983):

fm(A,B ,C ) := (detA)2 det(BA�1C � CA�1B)

is a semi-invariant: for (g1, g2, g3) 2 GLm ⇥GLm ⇥GL3, w 2 W ,

fm((g1 ⌦ g2 ⌦ g3)w) = (detg1 detg2)
3 (detg3)

m f (w).

I fm vanishes on the tensors of border rank< 3m/2.

I Semi-invariants are highest weight functions of rectangular
weights �.

I Bläser’s bound relied on Strassen’s resultant.
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Basic ideas for lower bounds

Splitting into irreducible representations

I The ring O(Gw) of regular functions on Gw consists of the
restrictions of polynomial functions to Gw .

I Have induced G -action and surjective G -equivariant restriction
O(W ) ! O(Gw).

I O(Gw) = �d2NO(Gw)d is graded, O(Gw)d is a (f.d.) G -module.

I G is reductive, so any (rational) G -module splits into irreducible
G -modules.

I Let V�(G ) denote the irreducible G -modules of highest weight �.

I The splitting into irreducibles can be written as

O(Gw)d =
M

�

mult�(w)V�(G )⇤.

I We are interested in the multiplicities mult�(w).
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Basic ideas for lower bounds

The idea of comparing multiplicities

I Observation:

Gv ✓ Gw =) 8� mult�(v)  mult�(w).

I Proof: Restriction of regular functions yields, for all degrees d , a
surjective G -module morphism O(Gw)d ! O(Gv)d . Use Schur’s
lemma. 2

I A representation theoretic obstruction consists of � violating the
above inequality of multiplicities.

I Christandl et al. ’12: If dimGv < dimGw and Gv ✓ Gw , then
k 7! multk�(w) grows at a faster rate than k 7! mult�(kv).

I Therefore, asymptotic considerations of cannot help. This supports
the following concept:
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Basic ideas for lower bounds

Occurrence obstructions

I An occurrence obstruction consists of � such that

mult�(w) = 0 and mult�(v) > 0.

I Reformulation: mult�(w) = 0 means that all highest weight
functions of weight � vanish on Gw . This is a very strong condition!

I Strassen’s example is not an occurence obstruction: for
C4 ⌦ C4 ⌦ C3 there is another semi-invariant of the same weight,
but which doesn’t vanish on tensors of rank 5.

I Warning: while it is true that, in principle, orbit closure problems
Gv 6✓ Gw can always be disproved using highest weight functions, it
is nor clear that one can always do so with occurrence obstructions!

I But we will see at least one family of occurrence obstructions.
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Towards determining multiplicities

Decomposition of O(W ) and Kronecker coe�cients
I The space W = W1 ⌦W1 ⌦W3 decomposes as

O(W1 ⌦W2 ⌦W3)d =
M

�

k(�)V�(G )⇤;

the sum being over the triples � = (�1,�2,�3) of partitions of the
same size d .

I Schur-Weyl duality: the multiplicities k(�) are the Kronecker
coe�cients.

I Characterization in terms of representations of the symmetric
group Sd :

k(�) := dim
⇣

[�1]⌦ [�2]⌦ [�3]
⌘Sd

(2)

Here [�i ] denotes the irreducible Sd -module labeled by �i .
I Ex. W = C2 ⌦ C2 ⌦ C2, � = ((2, 2), (2, 2), (2, 2)). Then k(�) = 1.

Hence there is semi-invariant f (Cayley’s hyperdeterminant) s.t.

f ((g1 ⌦ g2 ⌦ g3)w) = (detg1 detg2 detg3)
2 f (w).
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Towards determining multiplicities

Monoids of representations

I The Kronecker monoids are defined as

K (m1,m2,m3) := {� | N, d 2 �i `mi d , k(�) > 0}.

I For w 2 W we consider the monoid of representations of w

S(w) := {� | mult�(w) > 0}.

I General principles (finiteness of ring of U-invariants) imply that
these monoids are finitely generated.

I The surjective morphism O(W ) ! O(Gw) implies
S(w) ✓ K (m1,m2,m3).

I S(w) = K (m1,m2,m3) for almost all w 2 W .

I The real cone generated by K (m1,m2,m3) is polyhedral. It is
complicated, but understood to a certain extent, see Ressayre’s talk.

I Occurrence obstructions � are contained in K (m1,m2,m3) \ S(w).
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Towards determining multiplicities

Inheritance
I What happens to mult�(w) when we enlarge the ambient space W

and the group G of symmetries?

Wi ✓ W 0
i , W

0 := W 0
1⌦W 0

2⌦W 0
3, G

0 := GL(W 0
1)⇥GL(W 0

2)⇥GL(W 0
3).

I NOTHING!
I Can interpret a highest G -weight � with nonnegative entries as a

highest G 0-weight � (appending zeros to partitions �i ).

I Inheritance Theorem (GCT2, Weyman)
Let w 2 W and � be a highest G 0-weight.

1 If V�(G
0)⇤ occurs in O(G 0w), then � is a highest G -weight, i.e.,

�i has at most dimWi parts.
2 If � is a highest G -weight, then

mult(V�(G)⇤,O(Gw)) = mult(V�(G
0)⇤,O(G 0w)).

I Proof based on method of U-invariants.
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Towards determining multiplicities

Coordinate rings of orbits

I Orbits are considerably easier to understand than orbit closures.

I O(Gw) denotes the ring of functions that can be locally written as
the quotient of two polynomial functions. (This way, Gw becomes
an algebraic variety.)

I O(Gw) is a subring of O(Gw).

I Since the inclusion O(Gw) ,! O(Gw) is G -equivariant, we get

mult�(w) := mult�(O(Gw))  mult�(O(Gw)).

I We have (quite complicated) formulas for the multiplicities on the
right hand side.

I But currently, we have no systematic way to compute mult�(w).

I In our example of an occurence obstruction we even have
mult�(O(Gw)) = 0, hence mult�(w) = 0.
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Towards determining multiplicities

Peter-Weyl Theorem

I The stabilizer group stab(w) := {g 2 G | gw = w} describes the
symmetries of w 2 W .

I Space of stab(w)-invariants in V�(G ):

V�(G )stab(w) :=
�

v 2 V�(G ) | 8g 2 stab(w) gv = v
 

I Theorem. For any �

mult�(O(Gw)) = dimV�(G )stab(w).

(Consequence of alg. Peter-Weyl Thm. on decomposition of O(G ).)
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Towards determining multiplicities

Example: generic tensor

I Thm. (?) Let m � 3. The stabilizer of almost all w 2 (Cm)⌦3 is
trivial: it equals {(a id, b id, c id) | a, b, c 2 C⇥, abc = 1}.

I This implies via Peter-Weyl that

�

� | mult�(O(Gw)) > 0
 

is very large: it consists of all triples of partitions of the same size.

I By contrast, for generic w ,

S(w) = K (m1,m2,m3)

is much smaller.

I The example of generic tensors impressively shows that monoids of
representations for orbit and orbit closure can di↵er considerably!
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Towards determining multiplicities

Example: stabilizer of unit tensor

I group G := GLm ⇥GLm ⇥GLm, unit tensor

hmi :=
Pm

⇢=1 e⇢ ⌦ e⇢ ⌦ e⇢ 2 (Cm)⌦3

I Recall G hmi = {w 2 (Cm)⌦3 | R(w)  m}.
I What is H := stab(hmi)?
I The torus

T := {(diag(a), diag(b), diag(c)) 2 Gm | 8⇢ a⇢b⇢c⇢ = 1}

is contained in H.

I Symmetric group Sm is embedded in G via ⇡ 7! (P⇡,P⇡,P⇡)
(simultaneous permutation of standard bases). Clearly, Sm  H.

I Proposition. stab(hmi) is the semidirect product of T and Sm.

I hmi is uniquely determined by its stabilizer H (up to a scalar).
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Orbit versus orbit closure

Stability

I Consider the subgroup Gs := SL(W1)⇥ SL(W2)⇥ SL(W3).

I We call w 2 W polystable if Gsw is closed (and w 6= 0).

I Polystability can be shown with the Hilbert-Mumford criterion. The
unit tensors hmi are polystable.

I Essential: It turns out that if w is polystable, then there is a close
connection between O(Gw) and O(Gw).
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Orbit versus orbit closure

The period of tensors

I We obtain a group homomorphism det : G ! C⇥ by composing the
representation D : G ! GL(W ) with the determinant:

det(g) := det(D(g)).

I Specifically,

det(g1, g2, g3) = (detg1)
m2m3 · (detg2)m1m3 · (detg3)m1m2 .

I Let w 2 W be polystable and assume that det(stab(w)) = µa is the
group of a-th roots of unity. We call a the period of w .

I hmi has period 1 if m is even and period 2 otherwise.

Proof. det(P⇡,P⇡,P⇡) = (sgn⇡)3m
2

= sgn⇡. 2
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Orbit versus orbit closure

The determinant of tensors

I If w 2 W is polystable and has period a, then the map

detaw : Gw ! C⇥, gw 7! det(g)a

is a well-defined morphism of algebraic varieties. (Recall
det(stab(w)) = µa.) Warning: detw is undefined if a > 1.

I Lemma. The extension of detaw to the boundary of Gw by zero
yields a function Gw ! C that is continuous in the C-topology.

I However, this extension may not need to be regular. In this case,
Gw is not normal.

I Consider the exponent monoid Ew

E (w) := {e 2 N | (detaw )e | has a regular extension to Gw}.

I Thm. The group generated by E (w) equals Z. Moreover,
9e0 2 N 8e � e0 e 2 E (w).
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Orbit versus orbit closure

Fundamental invariant of tensors

I We call e(w) := minE (w) \ {0} the regularity of w .

I So the regularity e(w) is the smallest e > 0 such that (detaw )
e is

regular.

I We call

�w := (detaw )
e(w) the fundamental invariant of w .

I The zero set of �w in Gw is the boundary of Gw .

I Theorem. Under the above assumptions, O(Gw) is the localization
of O(Gw) with respect to �w :

O(Gw) =
n f

�s
w

| f 2 O(Gw), s 2 N
o

.

I Hence any h 2 O(Gw), when multiplied with a su�ciently high
power of �w , has a regular extension to W .
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Orbit versus orbit closure

Nonnormality of orbit closures

I Proposition. (compare Kumar for determinant orbit )
If w 2 (Cm)⌦3 has period a <

p
m, then e(w) > 1 and hence Gw is

not normal.

I Proof. detaw is a semi-invariant of weight (m ⇥ a,m ⇥ a,m ⇥ a).
Rules for Kronecker coe↵. yield
k(m⇥ a,m⇥ a,m⇥ a) = k(m⇥ a, a⇥m, a⇥m) = 0 if m > a2. 2

I Since the unit tensor hmi has period a  2, we obtain e(hmi) > 1,
provided m > 22. So the orbit closure of hmi is not normal in this
case.

I Proposition. e(hmi) = 1 for m  4.

I Problem. Determine the regularity of unit tensors!

I Problem. Write �hmi explicitly as a quotient of two highest weight
functions in O(W ). (Such representations must exist.)
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Representations for orbit of unit tensors

Representations for orbit of unit tensor
I Recall: mult�(O(Gw)) = dimV�(G )stab(w).

I Recall: stabilizer of unit tensor hmi 2 Cm ⌦ Cm ⌦ Cm consists of
simultaneous permutations of standard bases and
(diag(a), diag(b), diag(c)) such that aibici = 1.

I Let V�i =
L

↵2Zn V ↵
�i

be the decomposition into weight spaces of
the irreducible GLm-module V�i for �i `m d .

I The group Sm operates on Zm by permutation. Let stab(↵) ✓ Sm
denote the stabilizer of ↵ 2 Zm.

I Theorem (Branching Formula). If � = (�1,�2,�3) with partitions �i
of the same size d ,

mult�(O(GL3
mhmi)) =

X

↵

dim
�

V ↵
�1

⌦ V ↵
�2

⌦ V ↵
�3

�stab(↵)
,

where the sum is over all partitions ↵ `m d such that ↵ 4 �i for
i = 1, 2, 3 in the dominance order.
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Representations for orbit of unit tensors

An small example
I Branching Formula:

mult�(O(GL3
mhmi)) =

P

↵4�i
dim

�

V ↵
�1

⌦ V ↵
�2

⌦ V ↵
�3

�stab(↵)

I We are interested in those � where this zero: all the summands have
to vanish, which is rarely the case.

I Regular partitions ↵ are those where stab(↵) = {id}, i.e., its
components are pairwise distinct. Those ↵ always contribute.

I The above sum can only vanish if there is no regular ↵ `m d such
that ↵ 4 �i for i = 1, 2, 3.

I Example: For � = ( , , ), one calculates

mult�(O(GL3
4h4i)) = 0.

Moreover, k(�) = 1. Consequence: � 2 K (4, 4, 4) \ S(h4i).
A generic w 2 C4 ⌦ C4 ⌦ C4 satisfies R(w) > 4 (which is optimal).
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Representations for orbit of unit tensors

A family of occurrence obstructions

I Consider the sequence of triples � consisting of three times the hook
partition with a foot of length + 1 and a leg of length 2+ 1.
E.g., for  = 2,

� =
⇣

, ,
⌘

.

I A nontrivial application of the branching formula implies
mult�(O(GL3

3h3i)) = 0.

I This relies on a criterion due to Rosas, telling us when the Kronecker
coe�cients of three hooks is positive (in which case it equals 1).

I One can show that k(�) = 1. As a consequence, a generic
w 2 Cm ⌦ Cm ⌦ Cm, m = 2+ 1, satisfies

R(w) > 3 =
3

2
(2+ 1)� 3

2
=

3

2
m � 3

2
.
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Representations for orbit of unit tensors

Application to matrix multiplication

I We have another, more insightful proof showing why

mult�(O(GL3
3h3i)) = 0.

I This statement ist weaker, since it refers to orbit closure.

I The other argument relies on the explicit construction of highest
weight functions via “obstruction designs”; see Christian’s talk.

I These occurence obstructions also give lower bounds for matrix
multiplication tensors, since we can show that the three hook � from

above occurs in O(GL3
n2M(n)), where n2 = 2+ 1 and � as above.

I This gives for odd n,

R(M(n)) >
3

2
n2 � 3

2
.



Geometric Complexity Theory and Matrix Multiplication (Tutorial)

Representations for orbit of unit tensors

Fundamental open problem

I For finding occurence obstructions for border rank, we need a way to
determine when � does not occur in the orbit closure of hmi!

I The branching formula gives this information for the orbit of hmi.
Requiring that � does not occur in orbits is an unnecessarily strong
requirement.

I Previous insights imply: highest weight functions of weight � on the
orbit of hmi are of the form

f

�s
hmi

,

where f is a globally defined highest weight function on (Cm)⌦3

having weight
(m ⇥ as,m ⇥ as,m ⇥ as) + �.

�hmi is the fundamental invariant of hmi, a 2 {1, 2} is its period,
and s 2 N.
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Representations for orbit of matrix multiplication

Representations for orbit

of matrix multiplication
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Matrix multiplication tensors

Invariant description

I Fix vector spaces Ui of dimension ni for i = 1, 2, 3.

I The contraction

U⇤
1 ⌦ U2 ⌦ U⇤

2 ⌦ U3 ⌦ U⇤
3 ⌦ U1 ! C,

`1 ⌦ u2 ⌦ `2 ⌦ u3 ⌦ `3 ⌦ u1 7! `1(u1) `2(u2) `3(u3).

defines a tensor

MU 2 (U1 ⌦ U⇤
2 )⌦ (U2 ⌦ U⇤

3 )⌦ (U3 ⌦ U⇤
1 ).

I MU is exactly the structural tensor of matrix multiplication:

Hom(U1,U2)⇥Hom(U2,U3) ! Hom(U1,U3), (', ) 7!  � '.
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Matrix multiplication tensors

Stabilizer of matrix multiplication

I The stabilizer H of MU is a subgroup of

G := GL(U1 ⌦ U⇤
2 )⇥GL(U2 ⌦ U⇤

3 )⇥GL(U3 ⌦ U⇤
1 ).

I Put S := GL(U1)⇥GL(U2)⇥GL(U3) and consider the morphism

� : S ! G, (↵1,↵2,↵3) 7!
�

↵1 ⌦ (↵�1
2 )⇤,↵2 ⌦ (↵�1

3 )⇤,↵3 ⌦ (↵�1
1 )⇤

�

with kernel C⇥(id, id, id) ' C⇥.
I im� ✓ H: use (↵�1

1 )⇤(`1)(↵1(u1)) = `1(↵
�1
1 (↵1(u1))) = `1(u1).

I Theorem (de Groote 1978, case n1 = n2 = n3). The stabilizer H ✓ G
of MU equals the image of �. In particular, H ' S/C⇥.

I Moreover: the stabilizer characterizes MU .
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Matrix multiplication tensors

Representations: Kronecker coe�cients again
I Let �12, �23, and �31 be highest weights for GL(U1 ⌦ U⇤

2 ),
GL(U2 ⌦ U⇤

3 ), and GL(U3 ⌦ U⇤
1 ), respectively. Recall ni = dimUi .

Consider the irreducible G-module

V� := V�12 ⌦ V�23 ⌦ V�31 .

I Theorem. If �12,�23,�31 are partitions of the same size d , then

dim(V�)
H =

X

µ1`n1d,µ2`n2d,µ3`n3d

k(�12, µ1, µ2) · k(�23, µ2, µ3) · k(�31, µ3, µ1).

I Using this, one can show that the triple hook weights � from before
occur for orbits of matrix multiplication.

I However, for the lower bound on matrix multiplication, one would
need to show that they even occur for the closure. This cannot be
deduced from the theorem; yet it provides useful indications where
to search.
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Thank you!
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