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Brief Personal History

My Masters Thesis (“Diplom”, Darmstadt 1984)
used classical invariants (“brackets”) as a tool
for geometric computations with convex polytopes.

At that time, | was inspired by Felix Klein's Erlanger Programm
(1872) which postulates that Geometry is Invariant Theory.
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Brief Personal History

My Masters Thesis (“Diplom”, Darmstadt 1984)
used classical invariants (“brackets”) as a tool
for geometric computations with convex polytopes.

At that time, | was inspired by Felix Klein's Erlanger Programm
(1872) which postulates that Geometry is Invariant Theory.

In Fall 1987, during my first postdoc at the IMA in Minneapolis,
| was the notetaker for Gian-Carlo Rota's lectures Introduction to
Invariant Theory in Superalgebras. This became our joint paper.

In Spring 1989, during my second postdoc at RISC-Linz, Austria,
| taught a course on Algorithms in Invariant Theory. This was
published as a book in the RISC series of Springer, Vienna.

During the year 1989-90, DIMACS at Rutgers ran a program
on Computational Geometry. There | met Ketan Mulmuley....



Changing Coordinates

Fix a field K of characteristic zero. Consider a matrix group G
inside the group GL(n, K) of all invertible n x n-matrices.

Every matrix g = (gj;) in G gives a linear change of coordinates
on K". This transforms polynomials in K[x1,x2,...,x,] via

Xj > giiX1 + gi2X2 + - + ZinXn for i=1,2,...,n.

An invariant of G is a polynomial that is left unchanged by these
transformations for all g € G. These form the invariant ring

K[Xl,xz,...,x,,]G C  Klxi,x2,...,Xn]
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Changing Coordinates

Fix a field K of characteristic zero. Consider a matrix group G
inside the group GL(n, K) of all invertible n x n-matrices.

Every matrix g = (gj;) in G gives a linear change of coordinates
on K". This transforms polynomials in K[x1,x2,...,x,] via

Xj > giiX1 + gi2X2 + - + ZinXn for i=1,2,...,n.
An invariant of G is a polynomial that is left unchanged by these
transformations for all g € G. These form the invariant ring
K[Xl,xz,...,x,,]G C  Klxi,x2,...,Xn]
Example

For the group S, of n x n permutation matrices, this
is the ring of symmetric polynomials. For instance,

S _
K[Xl,XQ,Xg] 3 = K[Xl + Xo + X3, X1 X2 + X1X3 + X2X3, X1X2X3]

= Kxi+xo+x3, X +x3+x3, x5 +x5 +x3].



Rotating by 90 Degrees
The cyclic group

e -z = {(30).(5 02 9.0

has the invariant ring

Klx,y]¢ = {feKlx,y] : f(—y.x) = f(x,y)}
= K[X*+y? x*y? X3y — xy?]

This is the coordinate ring of the quotient space K2//G.

The three generators embed this surface into K3 via

K[x,y]® ~ Kla,b,c]/(c® —a’b+ 4b?)

Q: How can we be sure that there are no other invariants?

6
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Scaling the Coordinates

The multiplicative group G = K* is known as the algebraic torus.
Consider its action on S = K|[x, y, z] via

X»—>t2x, yr—>t3y, z—t 'z

The invariant ring equals

S6 = K{Xiyjzk : 2i—|—3j:7k}
2

= K[X7z ,X2yz,xy4z2,y7z3]
Big Question: /s S¢ always finitely generated as a K-algebra?

True if G is an algebraic torus.

Reason: Every semigroup of the form N" N L, where
L C Q" is a linear subspace, has a finite Hilbert basis.

Also true if G is a finite group.



Averaging Polynomials
For a finite matrix group G, the Reynolds operator is the map

. 1
S =S¢ p—p = ng(P)
geG
Key Properties

(a) The Reynolds operator * is a K-linear map.
(b) The Reynolds operator * restricts to the identity on S€.
(c) The Reynolds operator * is an S¢-module homomorphism, i.e.

(p-q)* = p-q* forallinvariants p e SC.

33



Averaging Polynomials
For a finite matrix group G, the Reynolds operator is the map

S—S% prpt = |G|Zg
gei

Key Properties

(a) The Reynolds operator * is a K-linear map.
(b) The Reynolds operator * restricts to the identity on S€.

(c) The Reynolds operator * is an S¢-module homomorphism, i.e.

(p-q)* = p-q* forallinvariants p e SC.

Definition
More generally, a matrix group G is called reductive if it
admits an operator * : S — S with these three properties.

Remark
Finite matrix groups in characteristic zero are reductive.
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Finite Generation

Theorem (David Hilbert, 1890)

The invariant ring S© of a reductive group G is finitely generated.
Proof.

By (a), the invariant ring S¢ is the K-vector space spanned by all

symmetrized monomials (x;*x32 - - - x5")*. Let Ig be the ideal in S
generated by these invariants, for (e1,...,e,) # (0,...,0).

10/33



Finite Generation

Theorem (David Hilbert, 1890)

The invariant ring S© of a reductive group G is finitely generated.
Proof.

By (a), the invariant ring S¢ is the K-vector space spanned by all

symmetrized monomials (x;*x32 - - - x5")*. Let Ig be the ideal in S
generated by these invariants, for (e1,...,e,) # (0,...,0).

By Hilbert's Basis Theorem, the ideal /g is generated by a
finite subset of these invariants, say, I¢ = (p1,P2,---,Pm)-
We claim that S¢ = K[p1, p2, ..., Pm].
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Finite Generation

Theorem (David Hilbert, 1890)

The invariant ring S© of a reductive group G is finitely generated.
Proof.

By (a), the invariant ring S¢ is the K-vector space spanned by all

symmetrized monomials (x;*x32 - - - x5")*. Let Ig be the ideal in S
generated by these invariants, for (e1,...,e,) # (0,...,0).

By Hilbert's Basis Theorem, the ideal /g is generated by a
finite subset of these invariants, say, I¢ = (p1,P2,---,Pm)-
We claim that S¢ = K[p1, p2, ..., Pm].

Suppose not, and pick g € SC\K]|p1, ..., pm] of minimum degree.
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Finite Generation

Theorem (David Hilbert, 1890)

The invariant ring S© of a reductive group G is finitely generated.
Proof.

By (a), the invariant ring S¢ is the K-vector space spanned by all

symmetrized monomials (x;*x32 - - - x5")*. Let Ig be the ideal in S
generated by these invariants, for (e1,...,e,) # (0,...,0).

By Hilbert's Basis Theorem, the ideal /g is generated by a

finite subset of these invariants, say, I¢ = (p1,P2,---,Pm)-

We claim that S¢ = K[p1, p2, ..., Pm].

Suppose not, and pick g € SC\K]|p1, ..., pm] of minimum degree.

Since g € I¢, we can write g = fip1 + hpo + -+ + fmpm, Where
fi € S are homogeneous of strictly smaller degree. By (b) and (c),

By minimality, each f* lies in K[p1,..., pm]. Hence so does q. [
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Finite Groups
Let G be finite and char(K) = 0.

Theorem (Emmy Noether, 1916)

The invariant ring S© is generated by invariants of degree < |G]|.
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Finite Groups
Let G be finite and char(K) = 0.

Theorem (Emmy Noether, 1916)

The invariant ring S© is generated by invariants of degree < |G]|.

Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring S© is the average of the
inverted characteristic polynomials of all group elements, i.e.

> 1 1
S dimg(s§) 24 = =S L
gt |G| jer det(Id — z - g)
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Finite Groups
Let G be finite and char(K) = 0.
Theorem (Emmy Noether, 1916)

The invariant ring S© is generated by invariants of degree < |G]|.

Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring S© is the average of the
inverted characteristic polynomials of all group elements, i.e.

- 1 1
Sdimg(s§) 4 = Ly oL
g |G| jer det(Id — z - g)
Example (Rotations by 90 Degrees)
1 1 1 1
1-z 0 14z 0 1z 1 —z
‘o 1-z| Tlo 14z Tl-z1] T|z 1
1-28

_ -1 2 4 6, ..
(1_22)2'(1_24) +z°432"+32° +
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Two Algorithms
Crude Algorithm

1.

AN BN

Compute the Molien series.

Produce invariants of low degree using the Reynolds operator.

Compute the Hilbert series of the current subalgebra of S.
If that Hilbert series equals the Molien series, we are done.
If not, increase the degree and go back to 2.
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Two Algorithms
Crude Algorithm
1. Compute the Molien series.
Produce invariants of low degree using the Reynolds operator.
Compute the Hilbert series of the current subalgebra of S.
If that Hilbert series equals the Molien series, we are done.

AN BN

If not, increase the degree and go back to 2.

Derksen’s Algorithm (1999)

1. Introduce three sets of variables: x = (xy, ..., x,) and
y=(1,...,yn) for K" and g = (g1, ...,8r) for G C GL(n, K).

2. Consider the ideal J=(y —g-x) + (g € G) in K[x,y,g].

3. Compute generators py,...,pm for I = (JN K[x,y])’yzo.

4. Output: The invariants pi, ..., p% generate K[x]°.

Torus Action Example:

(u—t?x,v—t3y,w—s'z st — 1) N K[x,y,z,u,v, W”u:v:W:O s



Classical Invariant Theory
We fix a polynomial representation of the special linear group:

SL(d,K) % G c GL(V) where V ~ K".

Fact: The matrix group G is reductive. What is the Reynolds operator?
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Classical Invariant Theory
We fix a polynomial representation of the special linear group:

SL(d,K) % G c GL(V) where V ~ K".
Fact: The matrix group G is reductive. What is the Reynolds operator?
Example

Let d = 2,n = 4 and consider the adjoint representation where

g € SL(2, K) acts on matrix space V = K**2 via g+ g-x-g L.

Explicitly, this is the quadratic representation given by

811822 —811821 812822 —812821

olg) = —811812 g —&1> 811812
821822 —g221 g222 —821822
—812821 811821  —8&12822 811822
The vectorization of the 2 x 2-matrix g - x- g1 equals the
4 x 4-matrix p(g) times the vectorization of x = L X12).
X21 X2 o as



Orbits

The invariant ring for the adjoint action on 2 x 2-matrices x is
C[x]%“2C) = C[trace(x), det(x)].
The invariants are constant along orbits and their closures.

Example

The orbit of (2 3) is closed. It is the variety defined by the ideal

5 7
(trace(x) — 9, det(x) + 1) = (trace(x) — 9, trace(x?) — 83).

Question: Are all orbits closed? Do the invariants separate orbits?
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Orbits

The invariant ring for the adjoint action on 2 x 2-matrices x is
C[x]%“2C) = C[trace(x), det(x)].
The invariants are constant along orbits and their closures.

Example

The orbit of (2 3) is closed. It is the variety defined by the ideal

5 7

(trace(x) — 9, det(x) + 1) = (trace(x) — 9, trace(x?) — 83).

Question: Are all orbits closed? Do the invariants separate orbits?

Answer: Not quite. The nullcone V/((trace(x), det(x))) contains
many orbits (of nilpotent matrices) that cannot be separated.

Recall the Jordan canonical form, and consider the orbits of

(66668



Brackets .. back to Felix Klein

Let n = dm and V = K9%™ = the space of d x m-matrices.
Our group G = SL(d, K) acts on V by left multiplication.

First Fundamental Theorem
K[V]€ is generated by the (") maximal minors of x = (x;).

Second Fundamental Theorem
The relations among these generators, which are denoted by
[i1iz - - - ig], are generated by the quadratic Pliicker relations.

Example

For d = 2, m = 4, the generators are [ij]| = x1j-Xoj — X1j-Xo;
and the ideal of relations is ([12]-[34] — [13]-[24] + [14]-[23]).

Example

For d = 3, m = 6, our matrix x represents six points in P2. These lie
on a conic if and only if [123][145][246][356] = [124][135][236][456].
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Algebraic Geometry

Let n = (d+m 1) and consider the action of G = SL(d, K) on
V = SYK™ = {homog. polynomials of degree d in m variables}.

The invariant ring K[V]¢ is finitely generated. Its generators
express geometric properties of hypersurfaces of degree d in P 1.

This is the point of departure for Geometric Invariant Theory.

Example
Let d =m=2,n=3,s0 V is the 3-dim’'l space of binary quadrics

f(to,t1) = x1-t§ + xo-toty + x3- t7
Pop Quiz: Can you write down the 3 x 3-matrix p(g)? Do now.
Check: The invariant ring is generated by the discriminant

K[Xl,Xz,Xg,]G = K[X22 — 4X1X3].
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Plane Cubics

The case d = m = 3 corresponds to cubic curves in the plane P?2.
A ternary cubic has n = 10 coefficients:

X1 tg +Xx2 tf +Xx3 tg +Xq tg t1+Xx5 tg th+Xpto t12 +Xx7tp t22 “+Xg t12 tr+Xgt1 t22 “+Xiototi1to

The invariant ring K[V]C is a subring of K[V] = K[x1, x2, .. ., x10].
It is generated by two classical invariants:
» a quartic S with 26 terms; < the Aronhold invariant
> a sextic T with 103 terms.

25 /33



Plane Cubics

The case d = m = 3 corresponds to cubic curves in the plane P?2.
A ternary cubic has n = 10 coefficients:

X1 tg +Xx2 tf +Xx3 t23 +Xq tg t1+Xx5 tg th+Xpto t12 +Xx7tp t22 “+Xg t12 tr+Xgt1 t22 “+Xiototi1to

The invariant ring K[V]C is a subring of K[V] = K[x1, x2, .. ., x10].
It is generated by two classical invariants:
» a quartic S with 26 terms; < the Aronhold invariant
> a sextic T with 103 terms.

Another important invariant is the discriminant A = T2 — 6453
which has 2040 terms of degree 12. It vanishes if and only if the
cubic curve is singular. If A # 0 then the cubic is an elliptic curve.

Number theorists love the j-invariant:
53
N

This serves as the coordinate on the moduli space

V//G = Proj(K[V]®) = Proj(K[S, T])

J
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Old and New
Theorem (Cayley-Bacharach)

Let Py,..., Pg be eight distinct points in the plane, no three on a
line, and no six on a conic. There exists a unique ninth point Py
such that every cubic curve through P1, ..., Pg also contains Py.

My paper with Qingchun Ren and Jiirgen Richter-Gebert (May 2014)
gives an explicit formula (in brackets) for Py in terms of Py, Ps, ..., Ps.



Hilbert's 14th Problem

Given any matrix group G,
is the invariant ring K[V]€ always finitely generated?

Does Hilbert's 1890 Theorem extend to non-reductive groups?
Note: Subalgebras of a polynomial ring
need not be finitely generated, e.g.

Kix, xy,xy*, xy>,...] C K[x,yl.
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Hilbert's 14th Problem

Given any matrix group G,
is the invariant ring K[V]€ always finitely generated?

Does Hilbert's 1890 Theorem extend to non-reductive groups?

Note: Subalgebras of a polynomial ring
need not be finitely generated, e.g.

Kix, xy,xy*, xy>,...] C K[x,yl.

A negative answer was given by Masayoshi Nagata in 1959.

We shall describe Nagata's counterexample, following the exposition in
[SAGBI bases of Cox-Nagata Rings (with Z. Xu, JEMS 2010)]
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Additive Groups

Fix n =2m. The group (K™, +) is not reductive.
It acts on K[x,y] = K[x1,. .-, Xm, Y1, .-, Ym] Via

X; X; and
yi = yi+ux; forue K™
Let d < m and fix a generic d X m-matrix U.

Let G = rowspace(U) C K™. The additive group

(G,+) ~ (K9 +) acts on K|[x,y] by the rule above.
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Additive Groups
Fix n =2m. The group (K™, +) is not reductive.
It acts on K[x,y] = K[x1,. .-, Xm, Y1, .-, Ym] Via

X; X; and
yi = yi+ux; forue K™
Let d < m and fix a generic d X m-matrix U.

Let G = rowspace(U) C K™. The additive group
(G,+) ~ (K9 +) acts on K|[x,y] by the rule above.

Among the invariants are xi, ..., X, and the maximal minors of

U .
<y1/X1 Xm/ym> -diag(x1, ..., Xm)

Theorem
The ring K[x,y]® is not finitely generated when m = d + 3 > 9.
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Additive Groups
Fix n =2m. The group (K™, +) is not reductive.
It acts on K[x,y] = K[x1,. .-, Xm, Y1, .-, Ym] Via
X; X; and
vi — yitux; forue K™
Let d < m and fix a generic d X m-matrix U.
Let G = rowspace(U) C K™. The additive group
(G,+) ~ (K9 +) acts on K|[x,y] by the rule above.
Among the invariants are xi, ..., X, and the maximal minors of

U .
<y1/X1 Xm/ym> -diag(x1, ..., Xm)

Theorem
The ring K[x,y]® is not finitely generated when m = d + 3 > 9.

Proof.
Blow up m =5,6,7,8,9,... general points in the plane P2
and you will discover the Weyl groups Ds, Eg, E7, Eg, Eg, . . ..



Conclusion

Invariant theory is timeless, relevant and fun.

THEORY OF
ALGEBRAIC
INVARIANTS

oo

David Hilbert
Cambridge Mathematical Library

Reinhard Laubenbacher and | had lots of fun when translating and editing
the notes from Hilbert's course  (Summer Semester 1897 at Gottingen) . ..



