ALGORITHMIC INVARIANT THEORY

Bernd Sturmfels UC Berkeley

Tutorial at the Simons Institute Workshop on Geometric Complexity Theory September 15, 2014 $\frac{1}{33}$

Brief Personal History

My Masters Thesis ("Diplom", Darmstadt 1984) used classical invariants ("brackets") as a tool for geometric computations with convex polytopes.

At that time, I was inspired by Felix Klein's Erlanger Programm (1872) which postulates that Geometry is Invariant Theory.

Brief Personal History

My Masters Thesis ("Diplom", Darmstadt 1984) used classical invariants ("brackets") as a tool for geometric computations with convex polytopes.

At that time, I was inspired by Felix Klein's Erlanger Programm (1872) which postulates that Geometry is Invariant Theory.

In Fall 1987, during my first postdoc at the IMA in Minneapolis, I was the notetaker for Gian-Carlo Rota's lectures Introduction to Invariant Theory in Superalgebras. This became our joint paper.

In Spring 1989, during my second postdoc at RISC-Linz, Austria, I taught a course on Algorithms in Invariant Theory. This was published as a book in the RISC series of Springer, Vienna.

During the year 1989-90, DIMACS at Rutgers ran a program on *Computational Geometry*. There I met Ketan Mulmuley....

Changing Coordinates

Fix a field K of characteristic zero. Consider a matrix group G inside the group $GL(n, K)$ of all invertible $n \times n$ -matrices.

Every matrix $g = (g_{ij})$ in G gives a linear change of coordinates on \mathcal{K}^n . This transforms polynomials in $\mathcal{K}[x_1, x_2, \ldots, x_n]$ via

 $x_i \mapsto g_{i1}x_1 + g_{i2}x_2 + \cdots + g_{in}x_n$ for $i = 1, 2, \ldots, n$.

An *invariant of G* is a polynomial that is left unchanged by these transformations for all $g \in G$. These form the *invariant ring*

 $K[x_1, x_2,...,x_n]^G \subset K[x_1, x_2,...,x_n].$

Changing Coordinates

Fix a field K of characteristic zero. Consider a matrix group G inside the group $GL(n, K)$ of all invertible $n \times n$ -matrices.

Every matrix $g = (g_{ii})$ in G gives a linear change of coordinates on \mathcal{K}^n . This transforms polynomials in $\mathcal{K}[x_1, x_2, \ldots, x_n]$ via

$$
x_i \mapsto g_{i1}x_1 + g_{i2}x_2 + \cdots + g_{in}x_n \quad \text{for} \quad i = 1, 2, \ldots, n.
$$

An *invariant of G* is a polynomial that is left unchanged by these transformations for all $g \in G$. These form the *invariant ring*

$$
K[x_1, x_2, \ldots, x_n]^G \quad \subset \quad K[x_1, x_2, \ldots, x_n].
$$

Example

For the group S_n of $n \times n$ permutation matrices, this is the *ring of symmetric polynomials*. For instance,

$$
K[x_1, x_2, x_3]^{S_3} = K[x_1 + x_2 + x_3, x_1x_2 + x_1x_3 + x_2x_3, x_1x_2x_3]
$$

= $K[x_1 + x_2 + x_3, x_1^2 + x_2^2 + x_3^2, x_1^3 + x_2^3 + x_3^3].$

Rotating by 90 Degrees

The cyclic group

$$
G = \mathbb{Z}/4\mathbb{Z} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}
$$

has the invariant ring

$$
K[x, y]^{G} = \{ f \in K[x, y] : f(-y, x) = f(x, y) \}
$$

= $K[x^{2} + y^{2}, x^{2}y^{2}, x^{3}y - xy^{3}]$

This is the coordinate ring of the quotient space $\mathcal{K}^{2}/\!/$ G. The three generators embed this surface into K^3 via

$$
K[x,y]^G \simeq K[a,b,c]/\langle c^2-a^2b+4b^2\rangle
$$

Q: How can we be sure that there are no other invariants?

Scaling the Coordinates

The multiplicative group $G = K^*$ is known as the *algebraic torus*. Consider its action on $S = K[x, y, z]$ via

$$
x \mapsto t^2 x, \ \ y \mapsto t^3 y, \ \ z \mapsto t^{-7} z.
$$

The invariant ring equals

$$
S^{G} = K\{x^{i}y^{j}z^{k} : 2i + 3j = 7k\}
$$

= $K[x^{7}z^{2}, x^{2}yz, xy^{4}z^{2}, y^{7}z^{3}]$

Big Question: Is S^G always finitely generated as a K-algebra?

True if G is an algebraic torus.

Reason: Every semigroup of the form $\mathbb{N}^n \cap L$, where $L \subset \mathbb{Q}^n$ is a linear subspace, has a finite Hilbert basis.

Also true if G is a finite group.

Averaging Polynomials

For a finite matrix group G , the *Reynolds operator* is the map

$$
S \rightarrow S^G, \ p \mapsto p^* = \frac{1}{|G|} \sum_{g \in G} g(p)
$$

Key Properties

- (a) The Reynolds operator $*$ is a K-linear map.
- (b) The Reynolds operator $*$ restricts to the identity on S^G .
- (c) The Reynolds operator $*$ is an S^G -module homomorphism, i.e.

$$
(p \cdot q)^* = p \cdot q^*
$$
 for all invariants $p \in S^G$.

Averaging Polynomials

For a finite matrix group G, the Reynolds operator is the map

$$
S \rightarrow S^G, \ p \mapsto p^* = \frac{1}{|G|} \sum_{g \in G} g(p)
$$

Key Properties

- (a) The Reynolds operator $*$ is a K-linear map.
- (b) The Reynolds operator $*$ restricts to the identity on S^G .
- (c) The Reynolds operator $*$ is an S^G -module homomorphism, i.e.

$$
(p \cdot q)^* = p \cdot q^*
$$
 for all invariants $p \in S^G$.

Definition

More generally, a matrix group G is called reductive if it admits an operator $*:\mathcal{S}\rightarrow\mathcal{S}^G$ with these three properties.

Remark

Finite matrix groups in characteristic zero are reductive.

Theorem (David Hilbert, 1890)

The invariant ring S^G of a reductive group G is finitely generated.

Proof.

By (a), the invariant ring S^G is the K-vector space spanned by all symmetrized monomials $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$. Let I_G be the **ideal** in S generated by these invariants, for $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$.

Theorem (David Hilbert, 1890)

The invariant ring S^G of a reductive group G is finitely generated.

Proof.

By (a), the invariant ring S^G is the K-vector space spanned by all symmetrized monomials $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$. Let I_G be the **ideal** in S generated by these invariants, for $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$.

By Hilbert's Basis Theorem, the ideal I_G is generated by a finite subset of these invariants, say, $I_G = \langle p_1, p_2, \ldots, p_m \rangle$. We claim that $\mathcal{S}^{\mathcal{G}} = \mathcal{K}[p_1, p_2, \ldots, p_m].$

Theorem (David Hilbert, 1890)

The invariant ring S^G of a reductive group G is finitely generated.

Proof.

By (a), the invariant ring S^G is the K-vector space spanned by all symmetrized monomials $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$. Let I_G be the **ideal** in S generated by these invariants, for $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$.

By Hilbert's Basis Theorem, the ideal I_G is generated by a finite subset of these invariants, say, $I_G = \langle p_1, p_2, \ldots, p_m \rangle$. We claim that $\mathcal{S}^{\mathcal{G}} = \mathcal{K}[p_1, p_2, \ldots, p_m].$

Suppose not, and pick $q \in S^G\backslash K[p_1,\ldots,p_m]$ of minimum degree.

Theorem (David Hilbert, 1890)

The invariant ring S^G of a reductive group G is finitely generated.

Proof.

By (a), the invariant ring S^G is the K-vector space spanned by all symmetrized monomials $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$. Let I_G be the **ideal** in S generated by these invariants, for $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$.

By Hilbert's Basis Theorem, the ideal I_G is generated by a finite subset of these invariants, say, $I_G = \langle p_1, p_2, \ldots, p_m \rangle$. We claim that $\mathcal{S}^{\mathcal{G}} = \mathcal{K}[p_1, p_2, \ldots, p_m].$

Suppose not, and pick $q \in S^G\backslash K[p_1,\ldots,p_m]$ of minimum degree. Since $q \in I_G$, we can write $q = f_1p_1 + f_2p_2 + \cdots + f_mp_m$, where $f_i \in S$ are homogeneous of strictly smaller degree. By (b) and (c),

$$
q = q^* = f_1^* \cdot p_1 + f_2^* \cdot p_2 + \cdots + f_m^* \cdot p_m.
$$

By minimality, each f_i^* lies in $K[p_1, \ldots, p_m]$. Hence so does q.

Finite Groups

Let G be finite and $char(K) = 0$.

Theorem (Emmy Noether, 1916)

The invariant ring S^G is generated by invariants of degree $\leq |G|$.

Finite Groups

Let G be finite and $char(K) = 0$.

Theorem (Emmy Noether, 1916)

The invariant ring S^G is generated by invariants of degree $\leq |G|$.

Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring S^G is the average of the inverted characteristic polynomials of all group elements, i.e.

$$
\sum_{d=0}^{\infty} \dim_{\mathcal{K}}(S_d^G) \cdot z^d = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(\mathrm{Id} - z \cdot g)}.
$$

Finite Groups

Let G be finite and $char(K) = 0$.

Theorem (Emmy Noether, 1916)

The invariant ring S^G is generated by invariants of degree $\leq |G|$.

Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring S^G is the average of the inverted characteristic polynomials of all group elements, i.e.

$$
\sum_{d=0}^{\infty} \dim_{\mathsf{K}}(S_d^G) \cdot z^d = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(\mathrm{Id} - z \cdot g)}.
$$

Example (Rotations by 90 Degrees)

$$
\begin{vmatrix} 1-z & 0 \ 0 & 1-z \end{vmatrix}^{-1} + \begin{vmatrix} 1+z & 0 \ 0 & 1+z \end{vmatrix}^{-1} + \begin{vmatrix} 1 & z \ -z & 1 \end{vmatrix}^{-1} + \begin{vmatrix} 1 & -z \ z & 1 \end{vmatrix}^{-1}
$$

$$
= \frac{1-z^8}{(1-z^2)^2 \cdot (1-z^4)} = 1 + z^2 + 3z^4 + 3z^6 + \cdots
$$

Two Algorithms

Crude Algorithm

- 1. Compute the Molien series.
- 2. Produce invariants of low degree using the Reynolds operator.
- 3. Compute the Hilbert series of the current subalgebra of S.
- 4. If that Hilbert series equals the Molien series, we are done.
- 5. If not, increase the degree and go back to 2.

Two Algorithms

Crude Algorithm

- 1. Compute the Molien series.
- 2. Produce invariants of low degree using the Reynolds operator.
- 3. Compute the Hilbert series of the current subalgebra of S.
- 4. If that Hilbert series equals the Molien series, we are done.
- 5. If not, increase the degree and go back to 2.

Derksen's Algorithm (1999)

- 1. Introduce three sets of variables: $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y}=(y_1,\ldots,y_n)$ for \mathcal{K}^n , and $\mathbf{g}=(g_1,\ldots,g_r)$ for $G\subset \mathrm{GL}(n,\mathcal{K})$.
- 2. Consider the ideal $J = \langle y g \cdot x \rangle + \langle g \in G \rangle$ in $K[x, y, g]$.
- 3. Compute generators p_1, \ldots, p_m for $I_G = (J \cap K[\mathbf{x}, \mathbf{y}])\big|_{\mathbf{y} = 0}$.
- 4. Output: The invariants p_1^*,\ldots,p_m^* generate $K[{\bf x}]^G.$

Torus Action Example:

$$
\langle u - t^2 x, v - t^3 y, w - s^7 z, st - 1 \rangle \cap K[x, y, z, u, v, w] \big|_{u = v = w = 0} \quad \text{as} \quad \
$$

Classical Invariant Theory

We fix a polynomial representation of the special linear group:

$$
\mathrm{SL}(d,K) \stackrel{\rho}{\longrightarrow} G \subset \mathrm{GL}(V) \qquad \text{where} \quad V \simeq K^n.
$$

Fact: The matrix group G is reductive. What is the Reynolds operator?

Classical Invariant Theory

We fix a polynomial representation of the special linear group:

$$
\mathrm{SL}(d,K) \stackrel{\rho}{\longrightarrow} G \subset \mathrm{GL}(V) \qquad \text{where} \quad V \simeq K^n.
$$

Fact: The matrix group G is reductive. What is the Reynolds operator?

Example

Let $d = 2$, $n = 4$ and consider the *adjoint representation* where $g\in \mathrm{SL}(2,K)$ acts on matrix space $V=K^{2\times 2}$ via $g\mapsto g\cdot\mathbf{x}\cdot g^{-1}.$

Explicitly, this is the quadratic representation given by

$$
\rho(g) = \begin{pmatrix} g_{11}g_{22} & -g_{11}g_{21} & g_{12}g_{22} & -g_{12}g_{21} \\ -g_{11}g_{12} & g_{11}^2 & -g_{12}^2 & g_{11}g_{12} \\ g_{21}g_{22} & -g_{21}^2 & g_{22}^2 & -g_{21}g_{22} \\ -g_{12}g_{21} & g_{11}g_{21} & -g_{12}g_{22} & g_{11}g_{22} \end{pmatrix}
$$

The vectorization of the 2 \times 2-matrix $g \cdot \mathbf{x} \cdot g^{-1}$ equals the 4 × 4-matrix $\rho(g)$ times the vectorization of $\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$.

Orbits

The invariant ring for the adjoint action on 2×2 -matrices **x** is $\mathbb{C}[\mathbf{x}]^{\mathrm{SL}(2,\mathbb{C})} = \mathbb{C}[\mathrm{trace}(\mathbf{x}), \mathrm{det}(\mathbf{x})].$

The invariants are constant along orbits and their closures.

Example The orbit of $\begin{pmatrix} 2 & 3 \ 5 & 7 \end{pmatrix}$ is closed. It is the variety defined by the ideal

 $\langle \text{trace}(\mathbf{x}) - 9, \text{det}(\mathbf{x}) + 1 \rangle = \langle \text{trace}(\mathbf{x}) - 9, \text{trace}(\mathbf{x}^2) - 83 \rangle.$

Question: Are all orbits closed? Do the invariants separate orbits?

Orbits

The invariant ring for the adjoint action on 2×2 -matrices **x** is $\mathbb{C}[\mathbf{x}]^{\mathrm{SL}(2,\mathbb{C})} = \mathbb{C}[\mathrm{trace}(\mathbf{x}), \mathrm{det}(\mathbf{x})].$

The invariants are constant along orbits and their closures.

Example The orbit of $\begin{pmatrix} 2 & 3 \ 5 & 7 \end{pmatrix}$ is closed. It is the variety defined by the ideal

 $\langle \text{trace}(\mathbf{x}) - 9, \text{det}(\mathbf{x}) + 1 \rangle = \langle \text{trace}(\mathbf{x}) - 9, \text{trace}(\mathbf{x}^2) - 83 \rangle.$

Question: Are all orbits closed? Do the invariants separate orbits?

Answer: Not quite. The nullcone $V(\langle\text{trace}(\mathbf{x}), \text{det}(\mathbf{x})\rangle)$ contains many orbits (of nilpotent matrices) that cannot be separated.

Recall the Jordan canonical form, and consider the orbits of

$$
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \dots
$$

Brackets ... back to Felix Klein

Let $n = dm$ and $V = K^{d \times m} =$ the space of $d \times m$ -matrices. Our group $G = SL(d, K)$ acts on V by left multiplication.

First Fundamental Theorem

 $K[V]^G$ is generated by the $\binom{m}{d}$ maximal minors of $\mathbf{x} = (x_{ij})$.

Second Fundamental Theorem

The relations among these generators, which are denoted by $[i_1i_2 \cdots i_d]$, are generated by the quadratic Plücker relations.

Example

For $d=2, m=4$, the generators are $[\, i\, j\,]=x_{1i}\!\cdot\! x_{2j}-x_{1j}\!\cdot\! x_{2i}$ and the ideal of relations is $\langle [12]\mathord{\cdot}[34]-[13]\mathord{\cdot}[24]+[14]\mathord{\cdot}[23]\rangle$.

Example

For $d = 3, m = 6$, our matrix **x** represents six points in \mathbb{P}^2 . These lie on a conic if and only if $[123][145][246][356] = [124][135][236][456]$.

Algebraic Geometry

Let $n = \binom{d+m-1}{m-1}$ $\binom{m-1}{m-1}$ and consider the action of $G = SL(d, K)$ on $V = S^d K^m = \{homog. polynomials of degree d in m variables\}.$

The invariant ring $K[V]^G$ is finitely generated. Its generators express geometric properties of hypersurfaces of degree d in $\mathbb{P}^{m-1}.$

This is the point of departure for Geometric Invariant Theory.

Example

Let $d = m = 2$, $n = 3$, so V is the 3-dim'l space of binary quadrics

$$
f(t_0, t_1) = x_1 \cdot t_0^2 + x_2 \cdot t_0 t_1 + x_3 \cdot t_1^2
$$

Pop Quiz: Can you write down the 3×3 -matrix $\rho(g)$? Do now.

Check: The invariant ring is generated by the discriminant

$$
K[x_1, x_2, x_3]^G = K[x_2^2 - 4x_1x_3].
$$

Plane Cubics

The case $d=m=3$ corresponds to cubic curves in the plane $\mathbb{P}^2.$ A ternary cubic has $n = 10$ coefficients:

 $x_1t_0^3 + x_2t_1^3 + x_3t_2^3 + x_4t_0^2t_1 + x_5t_0^2t_2 + x_6t_0t_1^2 + x_7t_0t_2^2 + x_8t_1^2t_2 + x_9t_1t_2^2 + x_{10}t_0t_1t_2$

The invariant ring $K[V]^G$ is a subring of $K[V] = K[x_1, x_2, \ldots, x_{10}]$. It is generated by two classical invariants:

• a quartic S with 26 terms; \leftarrow the Aronhold invariant

 \blacktriangleright a sextic T with 103 terms.

Plane Cubics

The case $d=m=3$ corresponds to cubic curves in the plane $\mathbb{P}^2.$ A ternary cubic has $n = 10$ coefficients:

 $x_1t_0^3 + x_2t_1^3 + x_3t_2^3 + x_4t_0^2t_1 + x_5t_0^2t_2 + x_6t_0t_1^2 + x_7t_0t_2^2 + x_8t_1^2t_2 + x_9t_1t_2^2 + x_{10}t_0t_1t_2$

The invariant ring $K[V]^G$ is a subring of $K[V] = K[x_1, x_2, \ldots, x_{10}]$. It is generated by two classical invariants:

- **a quartic S with 26 terms;** \leftarrow the Aronhold invariant
- \blacktriangleright a sextic T with 103 terms.

Another important invariant is the discriminant $\Delta = T^2 - 64 S^3$ which has 2040 terms of degree 12. It vanishes if and only if the cubic curve is singular. If $\Delta \neq 0$ then the cubic is an elliptic curve.

Number theorists love the j-invariant:

$$
j=\frac{S^3}{\Delta}
$$

This serves as the coordinate on the *moduli space*

$$
V/\!/G = \mathrm{Proj}(K[V]^G) = \mathrm{Proj}(K[S,T])
$$

Old and New

Theorem (Cayley-Bacharach)

Let P_1, \ldots, P_8 be eight distinct points in the plane, no three on a line, and no six on a conic. There exists a unique ninth point $P₉$ such that every cubic curve through P_1, \ldots, P_8 also contains P_9 .

My paper with Qingchun Ren and Jürgen Richter-Gebert (May 2014) gives an explicit formula (in brackets) for P_9 in terms of P_1, P_2, \ldots, P_8 .

27 / 33

Hilbert's 14th Problem

Given any matrix group G, is the invariant ring $K[V]^G$ always finitely generated?

Does Hilbert's 1890 Theorem extend to non-reductive groups?

Note: Subalgebras of a polynomial ring need not be finitely generated, e.g.

$$
K[x, xy, xy^2, xy^3, \ldots] \subset K[x, y].
$$

Hilbert's 14th Problem

Given any matrix group G, is the invariant ring $K[V]^G$ always finitely generated?

Does Hilbert's 1890 Theorem extend to non-reductive groups?

Note: Subalgebras of a polynomial ring need not be finitely generated, e.g.

$$
K[x, xy, xy^2, xy^3, \ldots] \subset K[x, y].
$$

A negative answer was given by Masayoshi Nagata in 1959.

We shall describe Nagata's counterexample, following the exposition in [SAGBI bases of Cox-Nagata Rings (with Z. Xu, JEMS 2010)]

Additive Groups

Fix $n = 2m$. The group $(K^m, +)$ is not reductive. It acts on $K[\mathbf{x}, \mathbf{y}] = K[x_1, \ldots, x_m, y_1, \ldots, y_m]$ via

$$
x_i \mapsto x_i \quad \text{and} \quad y_i \mapsto y_i + u_i x_i \quad \text{for } u \in K^m.
$$

Let $d \leq m$ and fix a generic $d \times m$ -matrix U. Let $G = \text{rowspace}(U) \subset K^m$. The additive group $(\mathcal{G},+) \simeq (\mathcal{K}^d,+)$ acts on $\mathcal{K}[\mathbf{x},\mathbf{y}]$ by the rule above.

Additive Groups

Fix $n = 2m$. The group $(K^m, +)$ is not reductive. It acts on $K[\mathbf{x}, \mathbf{y}] = K[x_1, \ldots, x_m, y_1, \ldots, y_m]$ via

$$
x_i \mapsto x_i \quad \text{and} \quad y_i \mapsto y_i + u_i x_i \quad \text{for } u \in K^m.
$$

Let $d \leq m$ and fix a generic $d \times m$ -matrix U.

Let $G = \text{rowspace}(U) \subset K^m$. The additive group $(\mathcal{G},+) \simeq (\mathcal{K}^d,+)$ acts on $\mathcal{K}[\mathbf{x},\mathbf{y}]$ by the rule above.

Among the invariants are x_1, \ldots, x_m and the maximal minors of

$$
\begin{pmatrix} U & \cdots & X_m/y_m \end{pmatrix} \cdot \text{diag}(x_1, \ldots, x_m)
$$

Theorem

The ring $K[x, y]$ ^G is not finitely generated when $m = d + 3 \ge 9$.

Additive Groups

Fix $n = 2m$. The group $(K^m, +)$ is not reductive. It acts on $K[\mathbf{x}, \mathbf{y}] = K[x_1, \ldots, x_m, y_1, \ldots, y_m]$ via

$$
x_i \mapsto x_i \quad \text{and} \quad y_i \mapsto y_i + u_i x_i \quad \text{for } u \in K^m.
$$

Let $d \leq m$ and fix a generic $d \times m$ -matrix U.

Let $G = \text{rowspace}(U) \subset K^m$. The additive group $(\mathcal{G},+) \simeq (\mathcal{K}^d,+)$ acts on $\mathcal{K}[\mathbf{x},\mathbf{y}]$ by the rule above.

Among the invariants are x_1, \ldots, x_m and the maximal minors of

$$
\begin{pmatrix} U & \cdots & X_m/y_m \end{pmatrix} \cdot \text{diag}(x_1, \ldots, x_m)
$$

Theorem

The ring $K[x, y]$ ^G is not finitely generated when $m = d + 3 \ge 9$.

Proof.

Blow up $m = 5, 6, 7, 8, 9, \ldots$ general points in the plane \mathbb{P}^2 and you will discover the Weyl groups $D_5, E_6, E_7, E_8, E_9, \ldots$.

Conclusion

Invariant theory is timeless, relevant and fun.

Reinhard Laubenbacher and I had lots of fun when translating and editing the notes from Hilbert's course (Summer Semester 1897 at Göttingen) $\frac{33/33}{33}$