# ALGORITHMIC INVARIANT THEORY

Bernd Sturmfels UC Berkeley



Tutorial at the Simons Institute Workshop on Geometric Complexity Theory September 15, 2014

## **Brief Personal History**

My Masters Thesis ("Diplom", Darmstadt 1984) used classical invariants ("brackets") as a tool for geometric computations with convex polytopes.

At that time, I was inspired by *Felix Klein's Erlanger Programm* (1872) which postulates that *Geometry is Invariant Theory*.

### **Brief Personal History**

My Masters Thesis ("Diplom", Darmstadt 1984) used classical invariants ("brackets") as a tool for geometric computations with convex polytopes.

At that time, I was inspired by *Felix Klein's Erlanger Programm* (1872) which postulates that *Geometry is Invariant Theory*.

In Fall 1987, during my first postdoc at the IMA in Minneapolis, I was the notetaker for Gian-Carlo Rota's lectures *Introduction to Invariant Theory in Superalgebras*. This became our joint paper.

In Spring 1989, during my second postdoc at RISC-Linz, Austria, I taught a course on *Algorithms in Invariant Theory*. This was published as a book in the RISC series of Springer, Vienna.

During the year 1989-90, DIMACS at Rutgers ran a program on *Computational Geometry*. There I met Ketan Mulmuley....

# Changing Coordinates

Fix a field K of characteristic zero. Consider a matrix group G inside the group GL(n, K) of all invertible  $n \times n$ -matrices.

Every matrix  $g = (g_{ij})$  in G gives a linear change of coordinates on  $K^n$ . This transforms polynomials in  $K[x_1, x_2, ..., x_n]$  via

$$x_i \mapsto g_{i1}x_1 + g_{i2}x_2 + \cdots + g_{in}x_n$$
 for  $i = 1, 2, \dots, n$ .

An *invariant of G* is a polynomial that is left unchanged by these transformations for all  $g \in G$ . These form the *invariant ring* 

$$K[x_1, x_2, \ldots, x_n]^G \subset K[x_1, x_2, \ldots, x_n].$$

# Changing Coordinates

Fix a field K of characteristic zero. Consider a matrix group G inside the group GL(n, K) of all invertible  $n \times n$ -matrices.

Every matrix  $g = (g_{ij})$  in G gives a linear change of coordinates on  $K^n$ . This transforms polynomials in  $K[x_1, x_2, ..., x_n]$  via

$$x_i \mapsto g_{i1}x_1 + g_{i2}x_2 + \cdots + g_{in}x_n$$
 for  $i = 1, 2, \dots, n$ .

An *invariant of G* is a polynomial that is left unchanged by these transformations for all  $g \in G$ . These form the *invariant ring* 

$$K[x_1, x_2, \ldots, x_n]^G \subset K[x_1, x_2, \ldots, x_n].$$

#### Example

For the group  $S_n$  of  $n \times n$  permutation matrices, this is the *ring of symmetric polynomials*. For instance,

$$\begin{split} \mathcal{K}[x_1, x_2, x_3]^{\mathcal{S}_3} &= \mathcal{K}[x_1 + x_2 + x_3, \, x_1 x_2 + x_1 x_3 + x_2 x_3, \, x_1 x_2 x_3] \\ &= \mathcal{K}[x_1 + x_2 + x_3, \, x_1^2 + x_2^2 + x_3^2, \, x_1^3 + x_2^3 + x_3^3] \end{split}$$

Rotating by 90 Degrees

The cyclic group

$$G = \mathbb{Z}/4\mathbb{Z} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

has the invariant ring

$$\begin{split} \mathcal{K}[x,y]^{\mathcal{G}} &= \{ f \in \mathcal{K}[x,y] : f(-y,x) = f(x,y) \} \\ &= \mathcal{K}\big[ x^2 + y^2, \, x^2 y^2, \, x^3 y - x y^3 \big] \end{split}$$

This is the coordinate ring of the quotient space  $K^2//G$ . The three generators embed this surface into  $K^3$  via

$$K[x,y]^{G} \simeq K[a,b,c]/\langle c^2-a^2b+4b^2\rangle$$

**Q**: How can we be sure that there are no other invariants?

### Scaling the Coordinates

The multiplicative group  $G = K^*$  is known as the *algebraic torus*. Consider its action on S = K[x, y, z] via

$$x\mapsto t^2x\,,\ y\mapsto t^3y\,,\ z\mapsto t^{-7}z.$$

The invariant ring equals

$$S^{G} = K \{ x^{i} y^{j} z^{k} : 2i + 3j = 7k \}$$
  
=  $K [x^{7} z^{2}, x^{2} yz, xy^{4} z^{2}, y^{7} z^{3}]$ 

**Big Question**: Is S<sup>G</sup> always finitely generated as a K-algebra?

True if G is an algebraic torus.

Reason: Every semigroup of the form  $\mathbb{N}^n \cap L$ , where  $L \subset \mathbb{Q}^n$  is a linear subspace, has a finite *Hilbert basis*.

Also true if G is a finite group.

### Averaging Polynomials

For a finite matrix group G, the *Reynolds operator* is the map

$$S \rightarrow S^{G}, \ p \mapsto p^{*} = \frac{1}{|G|} \sum_{g \in G} g(p)$$

### **Key Properties**

- (a) The Reynolds operator \* is a K-linear map.
- (b) The Reynolds operator \* restricts to the identity on  $S^{G}$ .
- (c) The Reynolds operator \* is an  $S^{G}$ -module homomorphism, i.e.

$$(p \cdot q)^* = p \cdot q^*$$
 for all invariants  $p \in S^G$ .

### Averaging Polynomials

For a finite matrix group G, the *Reynolds operator* is the map

$$S \rightarrow S^{G}, \ p \mapsto p^{*} = \frac{1}{|G|} \sum_{g \in G} g(p)$$

### **Key Properties**

- (a) The Reynolds operator \* is a K-linear map.
- (b) The Reynolds operator \* restricts to the identity on  $S^G$ .
- (c) The Reynolds operator \* is an  $S^{G}$ -module homomorphism, i.e.

$$(p \cdot q)^* = p \cdot q^*$$
 for all invariants  $p \in S^G$ .

#### Definition

More generally, a matrix group G is called reductive if it admits an operator  $*: S \to S^G$  with these three properties.

#### Remark

Finite matrix groups in characteristic zero are reductive.

### Theorem (David Hilbert, 1890)

The invariant ring  $S^G$  of a reductive group G is finitely generated.

### Proof.

By (a), the invariant ring  $S^G$  is the *K*-vector space spanned by all symmetrized monomials  $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$ . Let  $I_G$  be the **ideal** in *S* generated by these invariants, for  $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$ .

### Theorem (David Hilbert, 1890)

The invariant ring  $S^G$  of a reductive group G is finitely generated. Proof.

By (a), the invariant ring  $S^G$  is the *K*-vector space spanned by all symmetrized monomials  $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$ . Let  $I_G$  be the **ideal** in *S* generated by these invariants, for  $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$ .

By Hilbert's Basis Theorem, the ideal  $I_G$  is generated by a finite subset of these invariants, say,  $I_G = \langle p_1, p_2, \dots, p_m \rangle$ . We claim that  $S^G = K[p_1, p_2, \dots, p_m]$ .

### Theorem (David Hilbert, 1890)

The invariant ring  $S^G$  of a reductive group G is finitely generated. Proof.

By (a), the invariant ring  $S^G$  is the *K*-vector space spanned by all symmetrized monomials  $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$ . Let  $I_G$  be the **ideal** in *S* generated by these invariants, for  $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$ .

By Hilbert's Basis Theorem, the ideal  $I_G$  is generated by a finite subset of these invariants, say,  $I_G = \langle p_1, p_2, \dots, p_m \rangle$ . We claim that  $S^G = K[p_1, p_2, \dots, p_m]$ .

Suppose not, and pick  $q \in S^G \setminus K[p_1, \dots, p_m]$  of minimum degree.

### Theorem (David Hilbert, 1890)

The invariant ring  $S^G$  of a reductive group G is finitely generated. Proof.

By (a), the invariant ring  $S^G$  is the *K*-vector space spanned by all symmetrized monomials  $(x_1^{e_1}x_2^{e_2}\cdots x_n^{e_n})^*$ . Let  $I_G$  be the **ideal** in *S* generated by these invariants, for  $(e_1, \ldots, e_n) \neq (0, \ldots, 0)$ .

By Hilbert's Basis Theorem, the ideal  $I_G$  is generated by a finite subset of these invariants, say,  $I_G = \langle p_1, p_2, \dots, p_m \rangle$ . We claim that  $S^G = K[p_1, p_2, \dots, p_m]$ .

Suppose not, and pick  $q \in S^G \setminus K[p_1, ..., p_m]$  of minimum degree. Since  $q \in I_G$ , we can write  $q = f_1p_1 + f_2p_2 + \cdots + f_mp_m$ , where  $f_i \in S$  are homogeneous of strictly smaller degree. By (b) and (c),

$$q = q^* = f_1^* \cdot p_1 + f_2^* \cdot p_2 + \cdots + f_m^* \cdot p_m.$$

By minimality, each  $f_i^*$  lies in  $K[p_1, \ldots, p_m]$ . Hence so does q.

# Finite Groups

Let G be finite and char(K) = 0.

Theorem (Emmy Noether, 1916)

The invariant ring  $S^{G}$  is generated by invariants of degree  $\leq |G|$ .

# Finite Groups

Let G be finite and char(K) = 0.

### Theorem (Emmy Noether, 1916)

The invariant ring  $S^{G}$  is generated by invariants of degree  $\leq |G|$ .

### Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring  $S^G$  is the average of the inverted characteristic polynomials of all group elements, i.e.

$$\sum_{d=0}^{\infty} \dim_{\mathcal{K}}(S_d^{\mathcal{G}}) \cdot z^d = \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \frac{1}{\det(\mathrm{Id} - z \cdot g)}$$

## Finite Groups

Let G be finite and char(K) = 0.

### Theorem (Emmy Noether, 1916)

The invariant ring  $S^{G}$  is generated by invariants of degree  $\leq |G|$ .

### Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring  $S^G$  is the average of the inverted characteristic polynomials of all group elements, i.e.

$$\sum_{d=0}^{\infty} \dim_{\mathcal{K}}(S_d^{\mathcal{G}}) \cdot z^d \quad = \quad \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \frac{1}{\det(\mathrm{Id} - z \cdot g)}.$$

Example (Rotations by 90 Degrees)

$$\begin{vmatrix} 1-z & 0 \\ 0 & 1-z \end{vmatrix}^{-1} + \begin{vmatrix} 1+z & 0 \\ 0 & 1+z \end{vmatrix}^{-1} + \begin{vmatrix} 1 & z \\ -z & 1 \end{vmatrix}^{-1} + \begin{vmatrix} 1 & -z \\ z & 1 \end{vmatrix}^{-1}$$
$$= \frac{1-z^8}{(1-z^2)^2 \cdot (1-z^4)} = 1+z^2+3z^4+3z^6+\cdots$$

# Two Algorithms

### **Crude Algorithm**

- 1. Compute the Molien series.
- 2. Produce invariants of low degree using the Reynolds operator.
- 3. Compute the Hilbert series of the current subalgebra of S.
- 4. If that Hilbert series equals the Molien series, we are done.
- 5. If not, increase the degree and go back to 2.

## Two Algorithms

### **Crude Algorithm**

- 1. Compute the Molien series.
- 2. Produce invariants of low degree using the Reynolds operator.
- 3. Compute the Hilbert series of the current subalgebra of S.
- 4. If that Hilbert series equals the Molien series, we are done.
- 5. If not, increase the degree and go back to 2.

### Derksen's Algorithm (1999)

- 1. Introduce three sets of variables:  $\mathbf{x} = (x_1, \dots, x_n)$  and  $\mathbf{y} = (y_1, \dots, y_n)$  for  $\mathcal{K}^n$ , and  $\mathbf{g} = (g_1, \dots, g_r)$  for  $\mathcal{G} \subset \mathrm{GL}(n, \mathcal{K})$ . 2. Consider the ideal  $J = \langle \mathbf{y} - \mathbf{g} \cdot \mathbf{x} \rangle + \langle \mathbf{g} \in \mathcal{G} \rangle$  in  $\mathcal{K}[\mathbf{x}, \mathbf{y}, \mathbf{g}]$ .
- 3. Compute generators  $p_1, \ldots, p_m$  for  $I_G = (J \cap K[\mathbf{x}, \mathbf{y}])|_{\mathbf{y}=0}$ .
- 4. Output: The invariants  $p_1^*, \ldots, p_m^*$  generate  $K[\mathbf{x}]^G$ .

Torus Action Example:

$$\langle u - t^2 x, v - t^3 y, w - s^7 z, st - 1 \rangle \cap K[x, y, z, u, v, w] \big|_{u = v = w = 0}$$

### Classical Invariant Theory

We fix a polynomial representation of the special linear group:

$$\operatorname{SL}(d,K) \stackrel{
ho}{\longrightarrow} \ \mathcal{G} \, \subset \, \operatorname{GL}(V) \qquad ext{ where } V \simeq K^n.$$

**Fact**: The matrix group *G* is reductive.

What is the Reynolds operator?

### Classical Invariant Theory

We fix a polynomial representation of the special linear group:

$$\mathrm{SL}(d,K) \stackrel{
ho}{\longrightarrow} \ \mathcal{G} \, \subset \, \mathrm{GL}(V) \qquad ext{ where } V \simeq K^n.$$

**Fact**: The matrix group *G* is reductive.

What is the Reynolds operator?

### Example

Let d = 2, n = 4 and consider the *adjoint representation* where  $g \in SL(2, K)$  acts on matrix space  $V = K^{2 \times 2}$  via  $g \mapsto g \cdot \mathbf{x} \cdot g^{-1}$ .

Explicitly, this is the quadratic representation given by

$$\rho(g) = \begin{pmatrix} g_{11}g_{22} & -g_{11}g_{21} & g_{12}g_{22} & -g_{12}g_{21} \\ -g_{11}g_{12} & g_{11}^2 & -g_{12}^2 & g_{11}g_{12} \\ g_{21}g_{22} & -g_{21}^2 & g_{22}^2 & -g_{21}g_{22} \\ -g_{12}g_{21} & g_{11}g_{21} & -g_{12}g_{22} & g_{11}g_{22} \end{pmatrix}$$

The vectorization of the 2 × 2-matrix  $g \cdot \mathbf{x} \cdot g^{-1}$  equals the 4 × 4-matrix  $\rho(g)$  times the vectorization of  $\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$ .

## Orbits

The invariant ring for the adjoint action on 2  $\times$  2-matrices **x** is  $\mathbb{C}[\mathbf{x}]^{\mathrm{SL}(2,\mathbb{C})} = \mathbb{C}[\mathrm{trace}(\mathbf{x}), \det(\mathbf{x})].$ 

The invariants are constant along orbits and their closures.

### Example

The orbit of  $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$  is closed. It is the variety defined by the ideal

 $\langle \operatorname{trace}(\boldsymbol{x}) - 9, \, \det(\boldsymbol{x}) + 1 \, \rangle \; = \; \langle \operatorname{trace}(\boldsymbol{x}) - 9, \, \operatorname{trace}(\boldsymbol{x}^2) - 83 \, \rangle.$ 

Question: Are all orbits closed? Do the invariants separate orbits?

## Orbits

The invariant ring for the adjoint action on 2  $\times$  2-matrices **x** is  $\mathbb{C}[\mathbf{x}]^{\mathrm{SL}(2,\mathbb{C})} = \mathbb{C}[\mathrm{trace}(\mathbf{x}), \det(\mathbf{x})].$ 

The invariants are constant along orbits and their closures.

Example The orbit of  $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$  is closed. It is the variety defined by the ideal

 $\langle \operatorname{trace}(\boldsymbol{x}) - 9, \, \det(\boldsymbol{x}) + 1 \, \rangle \; = \; \langle \operatorname{trace}(\boldsymbol{x}) - 9, \, \operatorname{trace}(\boldsymbol{x}^2) - 83 \, \rangle.$ 

Question: Are all orbits closed? Do the invariants separate orbits?

**Answer**: Not quite. The nullcone  $V(\langle \text{trace}(\mathbf{x}), \det(\mathbf{x}) \rangle)$  contains many orbits (of nilpotent matrices) that cannot be separated.

Recall the Jordan canonical form, and consider the orbits of

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \dots$$

### Brackets ... back to Felix Klein

Let n = dm and  $V = K^{d \times m}$  = the space of  $d \times m$ -matrices. Our group G = SL(d, K) acts on V by left multiplication.

#### First Fundamental Theorem

 $K[V]^G$  is generated by the  $\binom{m}{d}$  maximal minors of  $\mathbf{x} = (x_{ij})$ .

### Second Fundamental Theorem

The relations among these generators, which are denoted by  $[i_1i_2\cdots i_d]$ , are generated by the quadratic Plücker relations.

#### Example

For d = 2, m = 4, the generators are  $[ij] = x_{1i} \cdot x_{2j} - x_{1j} \cdot x_{2i}$ and the ideal of relations is  $\langle [12] \cdot [34] - [13] \cdot [24] + [14] \cdot [23] \rangle$ .

#### Example

For d = 3, m = 6, our matrix **x** represents six points in  $\mathbb{P}^2$ . These lie on a conic if and only if [123][145][246][356] = [124][135][236][456].

# Algebraic Geometry

Let  $n = \binom{d+m-1}{m-1}$  and consider the action of G = SL(d, K) on  $V = S^d K^m = \{\text{homog. polynomials of degree } d \text{ in } m \text{ variables} \}.$ 

The invariant ring  $K[V]^G$  is finitely generated. Its generators express geometric properties of hypersurfaces of degree d in  $\mathbb{P}^{m-1}$ .

This is the point of departure for Geometric Invariant Theory.

#### Example

Let d = m = 2, n = 3, so V is the 3-dim'l space of binary quadrics

$$f(t_0, t_1) = x_1 \cdot t_0^2 + x_2 \cdot t_0 t_1 + x_3 \cdot t_1^2$$

**Pop Quiz**: Can **you** write down the  $3 \times 3$ -matrix  $\rho(g)$ ? Do now.

Check: The invariant ring is generated by the discriminant

$$K[x_1, x_2, x_3]^G = K[x_2^2 - 4x_1x_3].$$

# **Plane Cubics**

The case d = m = 3 corresponds to cubic curves in the plane  $\mathbb{P}^2$ . A ternary cubic has n = 10 coefficients:

 $x_1t_0^3 + x_2t_1^3 + x_3t_2^3 + x_4t_0^2t_1 + x_5t_0^2t_2 + x_6t_0t_1^2 + x_7t_0t_2^2 + x_8t_1^2t_2 + x_9t_1t_2^2 + x_{10}t_0t_1t_2$ 

The invariant ring  $K[V]^G$  is a subring of  $K[V] = K[x_1, x_2, ..., x_{10}]$ . It is generated by two classical invariants:

a quartic S with 26 terms;

 $\leftarrow$  the Aronhold invariant

▶ a sextic *T* with 103 terms.

## Plane Cubics

The case d = m = 3 corresponds to cubic curves in the plane  $\mathbb{P}^2$ . A ternary cubic has n = 10 coefficients:

 $x_1 t_0^3 + x_2 t_1^3 + x_3 t_2^3 + x_4 t_0^2 t_1 + x_5 t_0^2 t_2 + x_6 t_0 t_1^2 + x_7 t_0 t_2^2 + x_8 t_1^2 t_2 + x_9 t_1 t_2^2 + x_{10} t_0 t_1 t_2$ 

The invariant ring  $K[V]^G$  is a subring of  $K[V] = K[x_1, x_2, \dots, x_{10}]$ . It is generated by two classical invariants:

- ▶ a quartic S with 26 terms;  $\leftarrow$  the Aronhold invariant

a sextic T with 103 terms.

Another important invariant is the discriminant  $\Delta = T^2 - 64S^3$ which has 2040 terms of degree 12. It vanishes if and only if the cubic curve is singular. If  $\Delta \neq 0$  then the cubic is an elliptic curve.

Number theorists love the *j*-invariant:

$$j = \frac{S^3}{\Delta}$$

This serves as the coordinate on the *moduli space* 

$$V//G = \operatorname{Proj}(K[V]^G) = \operatorname{Proj}(K[S, T])$$

## Old and New

### Theorem (Cayley-Bacharach)

Let  $P_1, \ldots, P_8$  be eight distinct points in the plane, no three on a line, and no six on a conic. There exists a unique ninth point  $P_9$  such that every cubic curve through  $P_1, \ldots, P_8$  also contains  $P_9$ .



My paper with Qingchun Ren and Jürgen Richter-Gebert (May 2014) gives an explicit formula (in brackets) for  $P_9$  in terms of  $P_1, P_2, \ldots, P_8$ .

## Hilbert's 14th Problem

Given any matrix group G, is the invariant ring  $K[V]^G$  always finitely generated?

Does Hilbert's 1890 Theorem extend to non-reductive groups?

**Note**: Subalgebras of a polynomial ring need not be finitely generated, e.g.

$$K[x, xy, xy^2, xy^3, \ldots] \subset K[x, y]$$

## Hilbert's 14th Problem

Given any matrix group G, is the invariant ring  $K[V]^G$  always finitely generated?

Does Hilbert's 1890 Theorem extend to non-reductive groups?

**Note**: Subalgebras of a polynomial ring need not be finitely generated, e.g.

$$K[x, xy, xy^2, xy^3, \ldots] \subset K[x, y].$$

A negative answer was given by Masayoshi Nagata in 1959.

We shall describe Nagata's counterexample, following the exposition in [SAGBI bases of Cox-Nagata Rings (with Z. Xu, JEMS 2010)]

## Additive Groups

Fix n = 2m. The group  $(K^m, +)$  is not reductive. It acts on  $K[\mathbf{x}, \mathbf{y}] = K[x_1, \dots, x_m, y_1, \dots, y_m]$  via

$$x_i \mapsto x_i$$
 and  
 $y_i \mapsto y_i + u_i x_i$  for  $u \in K^m$ .

Let  $d \le m$  and fix a generic  $d \times m$ -matrix U. Let  $G = \text{rowspace}(U) \subset K^m$ . The additive group  $(G, +) \simeq (K^d, +)$  acts on  $K[\mathbf{x}, \mathbf{y}]$  by the rule above.

## Additive Groups

Fix n = 2m. The group  $(K^m, +)$  is not reductive. It acts on  $K[\mathbf{x}, \mathbf{y}] = K[x_1, \dots, x_m, y_1, \dots, y_m]$  via

$$x_i \mapsto x_i$$
 and  
 $y_i \mapsto y_i + u_i x_i$  for  $u \in K^m$ .

Let  $d \leq m$  and fix a generic  $d \times m$ -matrix U.

Let  $G = \text{rowspace}(U) \subset K^m$ . The additive group  $(G, +) \simeq (K^d, +)$  acts on  $K[\mathbf{x}, \mathbf{y}]$  by the rule above.

Among the invariants are  $x_1, \ldots, x_m$  and the maximal minors of

$$\begin{pmatrix} U \\ y_1/x_1 & \cdots & x_m/y_m \end{pmatrix} \cdot \operatorname{diag}(x_1, \dots, x_m)$$

Theorem

The ring  $K[\mathbf{x}, \mathbf{y}]^G$  is not finitely generated when  $m = d + 3 \ge 9$ .

## Additive Groups

Fix n = 2m. The group  $(K^m, +)$  is not reductive. It acts on  $K[\mathbf{x}, \mathbf{y}] = K[x_1, \dots, x_m, y_1, \dots, y_m]$  via

$$x_i \mapsto x_i$$
 and  
 $y_i \mapsto y_i + u_i x_i$  for  $u \in K^m$ .

Let  $d \leq m$  and fix a generic  $d \times m$ -matrix U.

Let  $G = \text{rowspace}(U) \subset K^m$ . The additive group  $(G, +) \simeq (K^d, +)$  acts on  $K[\mathbf{x}, \mathbf{y}]$  by the rule above.

Among the invariants are  $x_1, \ldots, x_m$  and the maximal minors of

$$\begin{pmatrix} U \\ y_1/x_1 & \cdots & x_m/y_m \end{pmatrix} \cdot \operatorname{diag}(x_1, \dots, x_m)$$

#### Theorem

The ring  $K[\mathbf{x}, \mathbf{y}]^G$  is not finitely generated when  $m = d + 3 \ge 9$ .

#### Proof.

Blow up m = 5, 6, 7, 8, 9, ... general points in the plane  $\mathbb{P}^2$ and you will discover the Weyl groups  $D_5, E_6, E_7, E_8, E_9, ...$ 

## Conclusion

#### Invariant theory is timeless, relevant and fun.



Reinhard Laubenbacher and I had lots of **fun** when translating and editing the notes from Hilbert's course (Summer Semester 1897 at Göttingen)