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Brief Personal History

My Masters Thesis (“Diplom”, Darmstadt 1984)

used classical invariants (“brackets”) as a tool
for geometric computations with convex polytopes.

At that time, I was inspired by Felix Klein’s Erlanger Programm
(1872) which postulates that Geometry is Invariant Theory.

In Fall 1987, during my first postdoc at the IMA in Minneapolis,
I was the notetaker for Gian-Carlo Rota’s lectures Introduction to
Invariant Theory in Superalgebras. This became our joint paper.

In Spring 1989, during my second postdoc at RISC-Linz, Austria,
I taught a course on Algorithms in Invariant Theory. This was
published as a book in the RISC series of Springer, Vienna.

During the year 1989-90, DIMACS at Rutgers ran a program
on Computational Geometry. There I met Ketan Mulmuley....
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Changing Coordinates
Fix a field K of characteristic zero. Consider a matrix group G
inside the group GL(n,K ) of all invertible n × n-matrices.

Every matrix g = (gij) in G gives a linear change of coordinates
on Kn. This transforms polynomials in K [x1, x2, . . . , xn] via

xi 7→ gi1x1 + gi2x2 + · · ·+ ginxn for i = 1, 2, . . . , n.

An invariant of G is a polynomial that is left unchanged by these
transformations for all g ∈ G . These form the invariant ring

K [x1, x2, . . . , xn]G ⊂ K [x1, x2, . . . , xn].

Example

For the group Sn of n × n permutation matrices, this
is the ring of symmetric polynomials. For instance,

K [x1, x2, x3]S3 = K
[
x1 + x2 + x3 , x1x2 + x1x3 + x2x3 , x1x2x3

]
= K

[
x1 + x2 + x3 , x2

1 + x2
2 + x2

3 , x3
1 + x3

2 + x3
3

]
.
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Rotating by 90 Degrees

The cyclic group

G = Z/4Z =

{(
1 0
0 1

)
,

(
−1 0

0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)}
has the invariant ring

K [x , y ]G =
{

f ∈ K [x , y ] : f (−y , x) = f (x , y)
}

= K
[
x2 + y2, x2y2, x3y − xy3

]
This is the coordinate ring of the quotient space K 2//G .

The three generators embed this surface into K 3 via

K [x , y ]G ' K [a, b, c]/〈c2 − a2b + 4b2〉

Q: How can we be sure that there are no other invariants?
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Scaling the Coordinates
The multiplicative group G = K ∗ is known as the algebraic torus.
Consider its action on S = K [x , y , z ] via

x 7→ t2x , y 7→ t3y , z 7→ t−7z .

The invariant ring equals

SG = K
{

x iy jzk : 2i + 3j = 7k
}

= K
[
x7z2, x2yz , xy4z2, y7z3

]
Big Question: Is SG always finitely generated as a K -algebra?

True if G is an algebraic torus.

Reason: Every semigroup of the form Nn ∩ L, where
L ⊂ Qn is a linear subspace, has a finite Hilbert basis.

Also true if G is a finite group.
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Averaging Polynomials
For a finite matrix group G , the Reynolds operator is the map

S → SG , p 7→ p∗ =
1

|G |
∑
g∈G

g(p)

Key Properties

(a) The Reynolds operator ∗ is a K -linear map.

(b) The Reynolds operator ∗ restricts to the identity on SG .

(c) The Reynolds operator ∗ is an SG -module homomorphism, i.e.

(p · q)∗ = p · q∗ for all invariants p ∈ SG .

Definition
More generally, a matrix group G is called reductive if it
admits an operator ∗ : S → SG with these three properties.

Remark
Finite matrix groups in characteristic zero are reductive.
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Finite Generation

Theorem (David Hilbert, 1890)

The invariant ring SG of a reductive group G is finitely generated.

Proof.
By (a), the invariant ring SG is the K -vector space spanned by all
symmetrized monomials (xe1

1 xe2
2 · · · xen

n )∗. Let IG be the ideal in S
generated by these invariants, for (e1, . . . , en) 6= (0, . . . , 0).

By Hilbert’s Basis Theorem, the ideal IG is generated by a
finite subset of these invariants, say, IG = 〈p1, p2, . . . , pm〉.
We claim that SG = K [p1, p2, . . . , pm].

Suppose not, and pick q ∈ SG\K [p1, . . . , pm] of minimum degree.

Since q ∈ IG , we can write q = f1p1 + f2p2 + · · ·+ fmpm, where
fi ∈ S are homogeneous of strictly smaller degree. By (b) and (c),

q = q∗ = f ∗1 · p1 + f ∗2 · p2 + · · ·+ f ∗m · pm.

By minimality, each f ∗i lies in K [p1, . . . , pm]. Hence so does q.
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Finite Groups
Let G be finite and char(K ) = 0.

Theorem (Emmy Noether, 1916)

The invariant ring SG is generated by invariants of degree ≤ |G |.

Theorem (Theodor Molien, 1897)

The Hilbert series of the invariant ring SG is the average of the
inverted characteristic polynomials of all group elements, i.e.

∞∑
d=0

dimK (SG
d ) · zd =

1

|G |
∑
g∈G

1

det(Id− z · g)
.

Example (Rotations by 90 Degrees)∣∣∣∣1−z 0
0 1−z

∣∣∣∣−1

+

∣∣∣∣1+z 0
0 1+z

∣∣∣∣−1

+

∣∣∣∣ 1 z
−z 1

∣∣∣∣−1

+

∣∣∣∣1 −z
z 1

∣∣∣∣−1

=
1− z8

(1− z2)2 · (1− z4)
= 1 + z2 + 3z4 + 3z6 + · · ·
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Two Algorithms
Crude Algorithm

1. Compute the Molien series.

2. Produce invariants of low degree using the Reynolds operator.

3. Compute the Hilbert series of the current subalgebra of S .

4. If that Hilbert series equals the Molien series, we are done.

5. If not, increase the degree and go back to 2.

Derksen’s Algorithm (1999)

1. Introduce three sets of variables: x = (x1, . . . , xn) and
y = (y1, . . . , yn) for Kn, and g = (g1, . . . , gr ) for G ⊂ GL(n,K ).

2. Consider the ideal J = 〈y − g · x〉+ 〈g ∈ G 〉 in K [x, y, g].

3. Compute generators p1, . . . , pm for IG = (J ∩ K [x, y])
∣∣
y=0

.

4. Output: The invariants p∗1 , . . . , p
∗
m generate K [x]G .

Torus Action Example:

〈u − t2x , v − t3y ,w − s7z , st − 1〉 ∩ K [x , y , z , u, v ,w ]
∣∣
u=v=w=0
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Classical Invariant Theory
We fix a polynomial representation of the special linear group:

SL(d ,K )
ρ−→ G ⊂ GL(V ) where V ' Kn.

Fact: The matrix group G is reductive. What is the Reynolds operator?

Example

Let d = 2, n = 4 and consider the adjoint representation where
g ∈ SL(2,K ) acts on matrix space V = K 2×2 via g 7→ g · x · g−1.

Explicitly, this is the quadratic representation given by

ρ(g) =


g11g22 −g11g21 g12g22 −g12g21
−g11g12 g2

11 −g2
12 g11g12

g21g22 −g2
21 g2

22 −g21g22
−g12g21 g11g21 −g12g22 g11g22


The vectorization of the 2× 2-matrix g · x · g−1 equals the

4× 4-matrix ρ(g) times the vectorization of x =

(
x11 x12
x21 x22

)
.
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Orbits
The invariant ring for the adjoint action on 2× 2-matrices x is

C[x]SL(2,C) = C[trace(x), det(x)].

The invariants are constant along orbits and their closures.

Example

The orbit of

(
2 3
5 7

)
is closed. It is the variety defined by the ideal

〈 trace(x)− 9, det(x) + 1 〉 = 〈 trace(x)− 9, trace(x2)− 83 〉.

Question: Are all orbits closed? Do the invariants separate orbits?

Answer: Not quite. The nullcone V (〈trace(x),det(x)〉) contains
many orbits (of nilpotent matrices) that cannot be separated.

Recall the Jordan canonical form, and consider the orbits of(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 2
0 0

)
, . . .

21 / 33



Orbits
The invariant ring for the adjoint action on 2× 2-matrices x is

C[x]SL(2,C) = C[trace(x), det(x)].

The invariants are constant along orbits and their closures.

Example

The orbit of

(
2 3
5 7

)
is closed. It is the variety defined by the ideal

〈 trace(x)− 9, det(x) + 1 〉 = 〈 trace(x)− 9, trace(x2)− 83 〉.

Question: Are all orbits closed? Do the invariants separate orbits?

Answer: Not quite. The nullcone V (〈trace(x),det(x)〉) contains
many orbits (of nilpotent matrices) that cannot be separated.

Recall the Jordan canonical form, and consider the orbits of(
0 0
0 0

)
,

(
0 1
0 0

)
,

(
0 2
0 0

)
, . . .

22 / 33



Brackets ... back to Felix Klein

Let n = dm and V = Kd×m = the space of d ×m-matrices.
Our group G = SL(d ,K ) acts on V by left multiplication.

First Fundamental Theorem
K [V ]G is generated by the

(m
d

)
maximal minors of x = (xij).

Second Fundamental Theorem
The relations among these generators, which are denoted by
[i1i2 · · · id ], are generated by the quadratic Plücker relations.

Example

For d = 2,m = 4, the generators are [ i j ] = x1i ·x2j − x1j ·x2i
and the ideal of relations is

〈
[12]·[34]− [13]·[24] + [14]·[23]

〉
.

Example
For d = 3,m = 6, our matrix x represents six points in P2. These lie

on a conic if and only if [123][145][246][356] = [124][135][236][456].
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Algebraic Geometry
Let n =

(d+m−1
m−1

)
and consider the action of G = SL(d ,K ) on

V = SdKm = {homog. polynomials of degree d in m variables}.

The invariant ring K [V ]G is finitely generated. Its generators
express geometric properties of hypersurfaces of degree d in Pm−1.

This is the point of departure for Geometric Invariant Theory.

Example

Let d = m = 2, n = 3, so V is the 3-dim’l space of binary quadrics

f (t0, t1) = x1 · t20 + x2 · t0t1 + x3 · t21

Pop Quiz: Can you write down the 3× 3-matrix ρ(g)? Do now.

Check: The invariant ring is generated by the discriminant

K [x1, x2, x3]G = K
[
x2
2 − 4x1x3

]
.
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Plane Cubics
The case d = m = 3 corresponds to cubic curves in the plane P2.

A ternary cubic has n = 10 coefficients:

x1t30+x2t31+x3t32+x4t20 t1+x5t20 t2+x6t0t21+x7t0t22+x8t21 t2+x9t1t22+x10t0t1t2

The invariant ring K [V ]G is a subring of K [V ] = K [x1, x2, . . . , x10].
It is generated by two classical invariants:

I a quartic S with 26 terms; ← the Aronhold invariant
I a sextic T with 103 terms.

Another important invariant is the discriminant ∆ = T 2 − 64S3

which has 2040 terms of degree 12. It vanishes if and only if the
cubic curve is singular. If ∆ 6= 0 then the cubic is an elliptic curve.

Number theorists love the j-invariant:

j =
S3

∆
This serves as the coordinate on the moduli space

V//G = Proj(K [V ]G ) = Proj(K [S ,T ])
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Old and New

Theorem (Cayley-Bacharach)

Let P1, . . . ,P8 be eight distinct points in the plane, no three on a
line, and no six on a conic. There exists a unique ninth point P9

such that every cubic curve through P1, . . . ,P8 also contains P9.

My paper with Qingchun Ren and Jürgen Richter-Gebert (May 2014)

gives an explicit formula (in brackets) for P9 in terms of P1,P2, . . . ,P8.
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Hilbert’s 14th Problem

Given any matrix group G ,
is the invariant ring K [V ]G always finitely generated?

Does Hilbert’s 1890 Theorem extend to non-reductive groups?

Note: Subalgebras of a polynomial ring
need not be finitely generated, e.g.

K [x , xy , xy2, xy3, . . .] ⊂ K [x , y ].

A negative answer was given by Masayoshi Nagata in 1959.

We shall describe Nagata’s counterexample, following the exposition in

[SAGBI bases of Cox-Nagata Rings (with Z. Xu, JEMS 2010)]
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Additive Groups
Fix n = 2m. The group (Km,+) is not reductive.
It acts on K [x, y] = K [x1, . . . , xm, y1, . . . , ym] via

xi 7→ xi and
yi 7→ yi + uixi for u ∈ Km.

Let d ≤ m and fix a generic d ×m-matrix U.

Let G = rowspace(U) ⊂ Km. The additive group
(G ,+) ' (Kd ,+) acts on K [x, y] by the rule above.

Among the invariants are x1, . . . , xm and the maximal minors of(
U

y1/x1 · · · xm/ym

)
· diag(x1, . . . , xm)

Theorem
The ring K [x, y]G is not finitely generated when m = d + 3 ≥ 9.

Proof.
Blow up m = 5, 6, 7, 8, 9, . . . general points in the plane P2

and you will discover the Weyl groups D5,E6,E7,E8,E9, . . . .
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Blow up m = 5, 6, 7, 8, 9, . . . general points in the plane P2

and you will discover the Weyl groups D5,E6,E7,E8,E9, . . . .
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Additive Groups
Fix n = 2m. The group (Km,+) is not reductive.
It acts on K [x, y] = K [x1, . . . , xm, y1, . . . , ym] via

xi 7→ xi and
yi 7→ yi + uixi for u ∈ Km.

Let d ≤ m and fix a generic d ×m-matrix U.

Let G = rowspace(U) ⊂ Km. The additive group
(G ,+) ' (Kd ,+) acts on K [x, y] by the rule above.

Among the invariants are x1, . . . , xm and the maximal minors of(
U

y1/x1 · · · xm/ym

)
· diag(x1, . . . , xm)

Theorem
The ring K [x, y]G is not finitely generated when m = d + 3 ≥ 9.

Proof.
Blow up m = 5, 6, 7, 8, 9, . . . general points in the plane P2

and you will discover the Weyl groups D5,E6,E7,E8,E9, . . . . 32 / 33



Conclusion
Invariant theory is timeless, relevant and fun.

Reinhard Laubenbacher and I had lots of fun when translating and editing

the notes from Hilbert’s course (Summer Semester 1897 at Göttingen)
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