The Spectrum of Nonlinear Random Matrices for Ultra-Wide Neural Networks

Yizhe Zhu UC Irvine

Joint work with Zhichao Wang (UC San Diego) arXiv:2109.09304

Deep Learning Theory Symposium, Simons Institute, Berkeley December 7, 2021

Define two-layer neural network f_{θ} : $\mathbb{R}^d \to \mathbb{R}$, $\mathbf{x} \mapsto f_{\theta}(\mathbf{x})$ by

$$
f_{\theta}(X) = \mathbf{w}^{\top} \frac{1}{\sqrt{N}} \sigma(WX).
$$

- $X \in \mathbb{R}^{n \times d}$ is the dataset, $W \in \mathbb{R}^{N \times d}$ is the weight matrix. $X_1 = \frac{1}{\sqrt{N}} \sigma(WX)$ is the output of the first hidden layer.
- *•* Training parameters: *θ* = (*W ,* **w**). At initialization, all parameters in θ are drawn from i.i.d. $\mathcal{N}(0, 1)$.
- *• σ* is a Lipschitz function applied entrywise to *WX*.

Two kernel matrices

1. The **Conjugate Kernel**

$$
\mathsf{K}^{\mathsf{CK}} = X_1^\top X_1 \in \mathbb{R}^{n \times n}
$$

- *• K*CK governs the properties of random feature regression or two-layer network with random first layer weights. [Neal '94], [Williams '97], [Cho, Saul '09], [Rahimi, Recht '09], [Daniely et al '16], [Poole et al '16], [Schoenholz et al '17], [Lee et al '18], [Mei, Montanari '20], ...
- Recently, its limiting spectrum was studied when $N/d \rightarrow c_1, d/n \rightarrow c_2, c_1, c_2 \in (0, \infty)$ in nonlinear random matrices. [Pennington et al '17], [Louart et al '18], [Benigni, Péché '19], [Fan, Wang '20]

Two kernel matrices

2. The **Neural Tangent Kernel**

$$
\begin{aligned} \mathsf{K}^{\mathsf{NTK}} := & (\nabla_\theta \mathit{f}_\theta(\mathsf{X}))^\top (\nabla_\theta \mathit{f}_\theta(\mathsf{X})) \in \mathbb{R}^{n \times n} \\ = & \mathsf{X}^\top \mathsf{X} \odot \left(\frac{1}{N} \sigma' \left(\mathsf{W} \mathsf{X} \right)^\top \mathsf{diag}(\mathsf{w})^2 \sigma' \left(\mathsf{W} \mathsf{X} \right) \right) + \mathsf{X}_1^\top \mathsf{X}_1. \end{aligned}
$$

• Training errors evolved during gradient descent is governed by this empirical kernel K^{NTK} . For $N \to \infty$ and fixed *n*, K^{NTK} converges to its expectation and is fixed over training.

[Jacot, Gabriel, Hongler '18], [Chizat et al '18], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], [Arora et al '19], [Adlam et al '20], [Fan, Wang '20], ...

Question:

What are the spectral behaviors of CK and NTK when the width of neural network goes to infinity faster than the training sample size? Namely $N/n \to \infty$ as $n, N \to \infty$ (ultra-wide network).

Semicircle law for sample covariance matrices

Theorem (Bai, Yin '88)

 Let $X \in \mathbb{R}^{d \times n}$ *be random matrix with i.i.d. entries. If* $\mathbb{E}|X_{11}|^4 < \infty$ and $Var(X_{11}) = 1$ *, then almost surely*

$$
\lim \mathrm{spec}\,\sqrt{\frac{d}{n}}\left(\frac{1}{d}X^{\top}X - \mathrm{Id}\right) = \mu_s,
$$

as
$$
d/n \to \infty
$$
 and $n \to \infty$.

Figure: limiting spectral distributions with increasing $\frac{d}{n}$

Assumptions

$$
K^{CK} = X_1^{\top} X_1 = \frac{1}{N} \sigma(WX)^{\top} \sigma(WX).
$$

• Approximately pairwise orthogonality of *X*:

$$
\left|\|\mathbf{x}_{\alpha}\|_{2}-1\right| \leq \varepsilon_{n}, \qquad \left|\mathbf{x}_{\alpha}^{\top}\mathbf{x}_{\beta}\right| \leq \varepsilon_{n}, \qquad n\varepsilon_{n}^{4} \to 0,
$$

$$
\sum_{\alpha=1}^{n} (\|\mathbf{x}_{\alpha}\|_{2}-1)^{2} \leq B^{2}, \qquad \|\mathbf{X}\| \leq B.
$$

- lim spec $(X^{\top} X) = \mu_0$.
- *• σ* is centered and normalized w.r.t. *ξ* ∼ *N*(0*,* 1), with bounded *σ*′′ or piecewise linear:

$$
\mathbb{E}[\sigma(\xi)]=0, \qquad \mathbb{E}[\sigma^2(\xi)]=1, \qquad b_{\sigma}:=\mathbb{E}[\sigma'(\xi)].
$$

Deformed semicircle law

Theorem (Wang, Z. '21)

Under above assumptions, the empirical eigenvalue distribution of

$$
\sqrt{\frac{N}{n}}\left(K^{\mathsf{CK}} - \mathbb{E}[K^{\mathsf{CK}}] \right)
$$

 ι *converges weakly to* $\mu := \mu_s \boxtimes \left((1 - b_\sigma^2) + b_\sigma^2 \cdot \mu_0\right)$ *almost surely as* $N, n, d \rightarrow \infty, N/n \rightarrow \infty$ *. The same result holds for* K^{NTK} *.*

When $b_\sigma = \mathbb{E}[\sigma'(\xi)] = 0$, $\mu = \mu_s$, independent of μ_0 .

 $\sigma = \cos(x)$ with normalization, $n = 1.9 \times 10^3$, $d = 2 \times 10^3$ and $N = 2 \times 10^5$

Simulations for Gaussian data

Eigenvalues of $(K^{CK} - \mathbb{E}K^{CK})$ and theoretical predictions in red. $\sigma = \frac{e^X}{e^X + 1}, x^+, x, \frac{x}{1 + e^- \beta x}$ with normalization

Ingredients in the proof

• Nonlinear Hanson-Wright inequality: If **y** = *σ*(**w**⊤*X*)⊤*,w* ∼ *N*(0*, I*)*,* and $\Phi = \mathbb{E} y y^\top$ with $\mathbb{E}[y] = 0$, then, for any $t > 0$,

$$
\mathbb{P}\Big(\vert\textbf{y}^\top A\textbf{y} - \text{Tr}\,A\Phi\vert\!\geq\! t\Big) \!\!\leq\!\! 2\exp\!\left(-\tfrac{1}{\zeta}\min\!\left\{\tfrac{t^2}{4\lambda_\sigma^4\Vert X\Vert^4\Vert A\Vert_F^2},\tfrac{t}{\lambda_\sigma^2\Vert X\Vert^2\Vert A\Vert}\right\}\right)\!.
$$

[Louart et al '18]

• Using Hermite polynomial expansion of *σ*, we can approximate $\mathbb{E}[X_1^{\top} X_1] = \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{w}^{\top} X)^{\top} \sigma(\mathbf{w}^{\top} X)]$ by

 Φ_0 : $=b_\sigma^2 X^\top X + (1-b_\sigma^2)$ Id+ low-norm terms.

Non-asymptotic bound

Theorem (Wang, Z. '21)

 A *ssume* $\sum_{i=1}^{n} (||\mathbf{x}_i||^2 - 1)^2 \leq B^2$, and $\mathbb{E}\sigma(\xi) = 0$, σ is λ_{σ} -Lipschitz. With *probability at least* ¹ [−] ⁴*e*−2*n,*

$$
\left\|K^{CK}-\mathbb{E}K^{CK}\right\|\leq C\left(\sqrt{\frac{n}{N}}+\frac{n}{N}\right)\lambda_{\sigma}^{2}\|X\|^{2}+32B\lambda_{\sigma}^{2}\|X\|\sqrt{\frac{n}{N}}.
$$

$$
\implies \left\|K^{CK}-\mathbb{E}K^{CK}\right\| = \Theta\left(\sqrt{n/N}\right) \quad \text{w.h.p.}
$$

Similar bounds hold for K^{NTK} .

Random feature regression

- *•* Training labels are given by $\mathbf{y} = X^\top \beta^* + \varepsilon$, $\beta^* \sim \mathcal{N}(0, \sigma_\beta^2 \mathsf{Id})$, $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon}^2 \mathsf{Id}).$
- *•* ^A test data **^x** [∈] ^R*^d* is independent with *^X* such that $\tilde{X} := [\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{x}] \in \mathbb{R}^{d \times (n+1)}$ is also (ε_n, B) -orthonormal, and $\mathbb{E}_{\mathbf{x}}[\mathbf{x}\mathbf{x}^{\top}]=\frac{1}{d}\mathsf{Id}.$

• Test error
$$
\mathcal{L}(\hat{f}) := \mathbb{E}_{\mathbf{x}}[|\hat{f}(\mathbf{x}) - f^*(\mathbf{x})|^2].
$$

Theorem (Test error approximation)

For $any \varepsilon \in (0, 1/2)$ *, the difference of test errors satisfies*

$$
\left(\frac{N}{n}\right)^{\frac{1}{2}-\varepsilon}\left|\mathcal{L}(\hat{f}_{\lambda}^{(RF)}(\mathbf{x}))-\mathcal{L}(\hat{f}_{\lambda}^{(\mathbb{E}K^{CK})}(\mathbf{x}))\right|\to 0,
$$

in probability, when $N/n \to \infty$ *and* $n \to \infty$ *.*

[Mei et al. '21]

Thank You!