The Spectrum of Nonlinear Random Matrices for
Ultra-Wide Neural Networks

Yizhe Zhu
UC Irvine

Joint work with Zhichao Wang (UC San Diego)
arXiv:2109.09304

Deep Learning Theory Symposium, Simons Institute, Berkeley
December 7, 2021



Fully-connected two-layer neural network

Define two-layer neural network fy : R — R, x — fz(x) by

fy(X) = WT%U(WX).

e X € R™9 is the dataset, W € RN*9 is the weight matrix.

X1 = ﬁa(WX) is the output of the first hidden layer.

e Training parameters: § = (W, w). At initialization, all
parameters in 6 are drawn from i.i.d. A/(0,1).

® o is a Lipschitz function applied entrywise to WX.



Two kernel matrices

1. The Conjugate Kernel
K= XX e R™"
® KK governs the properties of random feature regression or
two-layer network with random first layer weights. [Neal '94], [williams

'97], [Cho, Saul '09], [Rahimi, Recht '09], [Daniely et al '16], [Poole et al '16], [Schoenholz et al '17],
[Lee et al '18], [Mei, Montanari '20], ...

® Recently, its limiting spectrum was studied when
N/d — c,d/n— ¢, c1,c € (0,00) in nonlinear random

matrices. [Pennington et al '17], [Louart et al 18], [Benigni, Péché '19], [Fan, Wang '20]

-
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[Benigni, Péché 19]



Two kernel matrices

2. The Neural Tangent Kernel
KNTK = (Vofy(X)) T (Vofo(X)) € R
1
=X"X0® (NU/ (WX) " diag(w)?c’ (WX)) + X Xq.

® Training errors evolved during gradient descent is governed by
this empirical kernel KNTK For N — co and fixed n, KNTK
converges to its expectation and is fixed over training.

[Jacot, Gabriel, Hongler '18], [Chizat et al '18], [Du et al '19], [Allen-Zhu et al '19], [Lee et al '19], [Arora et al
'19], [Adlam et al '20], [Fan, Wang '20], ...



Question:

What are the spectral behaviors of CK and NTK when the width of
neural network goes to infinity faster than the training sample size?
Namely N/n — oo as n, N — oo (ultra-wide network).




Semicircle law for sample covariance matrices

Theorem (Bai, Yin '88)

Let X € R9*" be random matrix with i.i.d. entries. If E|X11|* < oo and

Var(X11) = 1, then almost surely

lim spec \/E (lXTX — Id) = Us,
n \ d

asd/n— oo and n — oo.
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Figure: limiting spectral distributions with increasing %



Assumptions
KK =X"X, = %J(WX)TO'(WX).

® Approximately pairwise orthogonality of X:

’||Xa||2—1f < €ps |XIX5’ < &ny net =0,
n
Y (xallz =12 < B%  |X] <B.
a=1

® limspec(X T X) = uo.

® o is centered and normalized w.r.t. £ ~ N(0, 1), with bounded o or
piecewise linear:

Elo(©)] =0, E[*@€)]=1  by:=E['(¢)]



Deformed semicircle law
Theorem (Wang, Z. '21)

Under above assumptions, the empirical eigenvalue distribution of

\/g (KCK . E[KCK])

converges weakly to p := us X ((1 —b2)+ b2 - u0> almost surely as

N,n,d — oo, N/n — co. The same result holds for KNTK.

When b, = E[0'(§)] = 0, & = us, independent of pg.

—— Limiting law
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o = cos(x) with normalization, n = 1.9 X 103, d =2 x 10% and N = 2 x 10°
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Ingredients in the proof

* Nonlinear Hanson-Wright inequality: If y = o(w ' X) T, w ~ N(0, /),
and ® = Eyy ' with E[y] = 0, then, for any t > 0,

T Ay— s ¢ t
B(ly" Ay TrAq’th)SZexp( Cmm{M‘,‘,HXII“HAHi’A?,IIXH2HAH })
[Louart et al '18]

® Using Hermite polynomial expansion of o, we can approximate
E[X, X1] = Ey[o(wTX)Ta(wT X)] by

¢O;:ngTX+(17b§ )ld+ low-norm terms.



Non-asymptotic bound

Theorem (Wang, Z. '21)

Assume >1_ (||xi||> — 1)? < B2, and Eo(£) =0, o is A\,-Lipschitz. With

probability at least 1 — 4e~2",

CK CK noony g 2 2 w
|K¥ —EKH|| < ¢ (ﬁ+ N) 2] +32B/\U|X||\/;.

— |K¥ ~EK™|| =& (V/n/N) whep,

Similar bounds hold for KNTK,



Random feature regression
® Training labels are given by y = X 8* 4+ ¢, * ~ N(0,0‘%ld),
e ~ N(0,021d).

® A test data x € R? is independent with X such that
X = [x1,..., %X, x] € R*("1) is also (&,, B)-orthonormal, and
Ex[xx "] = L1ld.

e Test error £(F) := E[|F(x) — £*(x)[3].

Theorem (Test error approximation)

For any € € (0,1/2), the difference of test errors satisfies

(%) e - 2| o

n

in probability, when N /n — oo and n — cc.

[Mei et al. "21]
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