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Fully-connected two-layer neural network

Define two-layer neural network fθ : Rd → R, x "→ fθ(x) by

fθ(X ) = w⊤ 1√
N

σ(WX ).

• X ∈ Rn×d is the dataset, W ∈ RN×d is the weight matrix.
X1 = 1√

N σ(WX ) is the output of the first hidden layer.
• Training parameters: θ = (W , w). At initialization, all

parameters in θ are drawn from i.i.d. N (0, 1).
• σ is a Lipschitz function applied entrywise to WX .



Two kernel matrices
1. The Conjugate Kernel

KCK = X ⊤
1 X1 ∈ Rn×n

• KCK governs the properties of random feature regression or
two-layer network with random first layer weights. [Neal ’94], [Williams

’97], [Cho, Saul ’09], [Rahimi, Recht ’09], [Daniely et al ’16], [Poole et al ’16], [Schoenholz et al ’17],

[Lee et al ’18], [Mei, Montanari ’20], ...
• Recently, its limiting spectrum was studied when

N/d → c1, d/n → c2, c1, c2 ∈ (0, ∞) in nonlinear random
matrices. [Pennington et al ’17], [Louart et al ’18], [Benigni, Péché ’19], [Fan, Wang ’20]

[Benigni, Péché ’19]



Two kernel matrices

2. The Neural Tangent Kernel

KNTK :=(∇θfθ(X ))⊤(∇θfθ(X )) ∈ Rn×n

=X ⊤X ⊙
!

1
N σ′ (WX )⊤ diag(w)2σ′ (WX )

"
+ X ⊤

1 X1.

• Training errors evolved during gradient descent is governed by
this empirical kernel KNTK. For N → ∞ and fixed n, KNTK

converges to its expectation and is fixed over training.

[Jacot, Gabriel, Hongler ’18], [Chizat et al ’18], [Du et al ’19], [Allen-Zhu et al ’19], [Lee et al ’19], [Arora et al

’19], [Adlam et al ’20], [Fan, Wang ’20], ...



Question:
What are the spectral behaviors of CK and NTK when the width of
neural network goes to infinity faster than the training sample size?
Namely N/n → ∞ as n, N → ∞ (ultra-wide network).



Semicircle law for sample covariance matrices

Theorem (Bai, Yin ’88)
Let X ∈ Rd×n be random matrix with i.i.d. entries. If E|X11|4 < ∞ and
Var(X11) = 1, then almost surely

lim spec
#

d
n

!
1
d X ⊤X − Id

"
= µs ,

as d/n → ∞ and n → ∞.

Figure: limiting spectral distributions with increasing d
n



Assumptions

KCK = X ⊤
1 X1 = 1

N σ(WX )⊤σ(WX ).

• Approximately pairwise orthogonality of X :
$$‖xα‖2 − 1

$$ ≤ εn,
$$x⊤

α xβ

$$ ≤ εn, nε4
n → 0,

n%

α=1
(‖xα‖2 − 1)2 ≤ B2, ‖X‖ ≤ B.

• lim spec(X ⊤X ) = µ0.
• σ is centered and normalized w.r.t. ξ ∼ N(0, 1), with bounded σ′′ or

piecewise linear:

E[σ(ξ)] = 0, E[σ2(ξ)] = 1, bσ := E[σ′(ξ)].



Deformed semicircle law
Theorem (Wang, Z. ’21)
Under above assumptions, the empirical eigenvalue distribution of

#
N
n

&
KCK − E[KCK]

'

converges weakly to µ := µs ⊠
(

(1 − b2
σ) + b2

σ · µ0

)
almost surely as

N, n, d → ∞, N/n → ∞. The same result holds for KNTK.

When bσ = E[σ′(ξ)] = 0, µ = µs , independent of µ0.

σ = cos(x) with normalization, n = 1.9 × 103, d = 2 × 103 and N = 2 × 105



Simulations for Gaussian data

Eigenvalues of (KCK − EKCK) and theoretical predictions in red. σ = ex
ex +1 , x+, x, x

1+e−βx with normalization



Ingredients in the proof

• Nonlinear Hanson-Wright inequality: If y = σ(w⊤X )⊤, w ∼ N(0, I),
and Φ = Eyy⊤ with E[y] = 0, then, for any t > 0,

P(|y⊤Ay−Tr AΦ|≥t)≤2 exp
(

− 1
C min

*
t2

4λ4
σ‖X‖4‖A‖2

F
, t

λ2
σ‖X‖2‖A‖

+)
.

[Louart et al ’18]

• Using Hermite polynomial expansion of σ, we can approximate
E[X ⊤

1 X1] = Ew[σ(w⊤X )⊤σ(w⊤X )] by

Φ0:=b2
σX⊤X+(1−b2

σ)Id+ low-norm terms.



Non-asymptotic bound

Theorem (Wang, Z. ’21)
Assume

,n
i=1(‖xi‖2 − 1)2 ≤ B2, and Eσ(ξ) = 0, σ is λσ-Lipschitz. With

probability at least 1 − 4e−2n,

--KCK − EKCK-- ≤ C
!#

n
N + n

N

"
λ2

σ‖X‖2 + 32Bλ2
σ‖X‖

#
n
N .

=⇒
--KCK − EKCK-- = Θ

(.
n/N

)
w.h.p.

Similar bounds hold for KNTK.



Random feature regression

• Training labels are given by y = X ⊤β∗ + ε, β∗ ∼ N (0, σ2
β Id),

ε ∼ N (0, σ2
εId).

• A test data x ∈ Rd is independent with X such that
X̃ := [x1, . . . , xn, x] ∈ Rd×(n+1) is also (εn, B)-orthonormal, and
Ex[xx⊤] = 1

d Id.

• Test error L(f̂ ) := Ex[|f̂ (x) − f ∗(x)|2].

Theorem (Test error approximation)

For any ε ∈ (0, 1/2), the difference of test errors satisfies
!

N
n

" 1
2 −ε $$$L(f̂ (RF )

λ (x)) − L(f̂ (EKCK)
λ (x))

$$$ → 0,

in probability, when N/n → ∞ and n → ∞.

[Mei et al. ’21]



Thank You!


