Sharp Matrix Concentration

March Boedihardjo (UC Irvine) Joint work with Afonso Bandeira and Ramon van Handel

Deep Learning Theory Symposium, 6th December 2021

KO K K Ø K K E K K E K V K K K K K K K K K

Supported by NSF DMS-1856221

KO K K Ø K K E K K E K V K K K K K K K K K

Problem

Given a random matrix X , how large is the expected spectral norm $E||X||?$

Matrix Khintchine: If X is a $d \times d$ Hermitian matrix with jointly Gaussian entries and $\mathbb{E}X = 0$, then

$$
\|\mathbb{E} X^2\|^{\frac{1}{2}}\lesssim \mathbb{E}\|X\|\lesssim \sqrt{\log d}\|\mathbb{E} X^2\|^{\frac{1}{2}}.
$$

Matrix Bernstein: If $X = \sum_{i=1}^{n} Y_i$ and Y_1, \ldots, Y_n are independent $d \times d$ Hermitian matrix with $EY_i = 0$, then

$$
\mathbb{E}\|X\|\lesssim \sqrt{\log d}\|\mathbb{E}X^2\|^{\frac{1}{2}}+ (\log d)(\mathbb{E}\max_i\|Y_i\|^2)^{\frac{1}{2}}.
$$

Question: These inequalities are sharp up a log factor, but when can the log factor be removed?

KORKAR KERKER ST VOOR

When is the log factor necessary?

(1) If
$$
X = \frac{1}{\sqrt{d}} \begin{bmatrix} g_{1,1} & \cdots & g_{1,d} \\ \vdots & \ddots & \vdots \\ g_{d,1} & \cdots & g_{d,d} \end{bmatrix}
$$
 is symmetric with i.i.d. $N(0, 1)$
entries, then $\mathbb{E}X^2 = I$ and $\mathbb{E}||X|| \approx 2$.

So log factor is not needed.

(2) If
$$
X = \begin{bmatrix} g_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & g_d \end{bmatrix}
$$
 has i.i.d. $N(0, 1)$ diagonal entries, then

$$
\mathbb{E}X^2 = I
$$
 and $\mathbb{E}||X|| \approx \sqrt{2 \log d}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

So log factor is needed.

When is the log factor necessary?

(1) If
$$
X = \frac{1}{\sqrt{d}} \begin{bmatrix} g_{1,1} & \cdots & g_{1,d} \\ \vdots & \ddots & \vdots \\ g_{d,1} & \cdots & g_{d,d} \end{bmatrix}
$$
 is symmetric with i.i.d. $N(0, 1)$
entries, then $\mathbb{E}X^2 = I$ and $\mathbb{E}||X|| \approx 2$.

So log factor is not needed. (Very noncommutative)

(2) If
$$
X = \begin{bmatrix} g_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & g_d \end{bmatrix}
$$
 has i.i.d. $N(0, 1)$ diagonal entries, then

$$
\mathbb{E}X^2 = I
$$
 and $\mathbb{E}||X|| \approx \sqrt{2 \log d}$.

So log factor is needed. (Commutative)

This suggests that if there is enough noncommutativity then $\mathbb{E}\|X\|\sim \|\mathbb{E}X^2\|^{\frac{1}{2}}$ (i.e., log factor not needed).

KORKAR KERKER E VOOR

How to quantify noncommutativity?

Tropp introduced the following quantity

$$
w(X) = \sup_{Q_1, Q_2, Q_3} \|\mathbb{E} X Q_1 Y Q_2 X Q_3 Y\|^{\frac{1}{4}},
$$

where the sup is over all unitary Q_1, Q_2, Q_3 and Y is an independent copy of X .

Tropp (2015): If X is a $d \times d$ Hermitian matrix with jointly Gaussian entries and $\mathbb{E}X = 0$, then

$$
\mathbb{E}\|X\| \lesssim (\log d)^{\frac{1}{4}}\|\mathbb{E}X^2\|^{\frac{1}{2}} + \sqrt{\log d} \,w(X).
$$

KID KA KERKER E VOOR

- \bullet Not sharp due to the $(\log d)^{\frac{1}{4}}$ factor in the first term.
- $w(X)$ is very hard to compute.

How to quantify noncommutativity?

Suppose X is a $d \times d$ Hermitian matrix with jointly Gaussian entries and $\mathbb{E}X = 0$.

Write $X = \sum_{k=1}^{n} g_k A_k$ for some i.i.d. $N(0,1)$ random variables g_1, \ldots, g_n and Hermitian A_1, \ldots, A_n .

View X as a Gaussian vector in $\mathbb{R}^{d^2}.$ Define $\nu(X)=\|\text{Cov}(X)\|^{\frac{1}{2}}.$ • $v(X)$ is easy to compute.

• If A_1, \ldots, A_n commute, they can be simultaneously diagonalized so

$$
X = \begin{bmatrix} X_{1,1} & & \\ & \ddots & \\ & & X_{d,d} \end{bmatrix}.
$$

 $\sqrt{\text{Var}(X_{i,i})} = ||\mathbb{E}(X^2)||^{\frac{1}{2}}$. We have $v(X) \geq \max_{i}$ If $\nu(X) \ll \|\mathbb{E}(X^2)\|^{\frac{1}{2}}$ then A_1, \ldots, A_n are very noncommutative. **KORK ERREST ADAMS**

Main results

Gaussian case:

If X is a $d \times d$ Hermitian matrix with jointly Gaussian entries and $\mathbb{E}X=0$, then

$$
\mathbb{E}\|X\| \lesssim \|\mathbb{E}X^2\|^{\frac{1}{2}} + (\log d)^{\frac{3}{2}}\|\text{Cov}(X)\|^{\frac{1}{2}}.
$$

General:

Let Z_1, \ldots, Z_n be independent $d \times d$ matrices with $\mathbb{E} Z_i = 0$. Let $X = \sum^{n} Z_i$. Then $i=1$

$$
\mathbb{E}\|X\| \lesssim \|\mathbb{E}X^*X\|^{\frac{1}{2}} + \|\mathbb{E}XX^*\|^{\frac{1}{2}} + \|\mathbb{E}XX^*\|^{\frac{1}{2}} + \|\text{Cov}(X)\|^{\frac{1}{2}}(\log d)^{\frac{3}{2}} + (\mathbb{E}[\max_i \|Z_i\|_{\text{F}}^2])^{\frac{1}{2}}(\log d)^2.
$$

KO K K Ø K K E K K E K V K K K K K K K K K