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Overview

* RL & Optimization

« MDP homomorpisms & equivariance

e Equivariant multiagent systems

Picture created by Maurice Weiler

(Lizards adapted under the Creative Commons Attribution 4.0
International license by courtesy of Twitter.)




What is Reinforcement Learning?

action

_—

Learning from trial and error



What is Reinforcement Learning?

Sty1 = T'(s¢,ay)

ar = m(st) & | 71 = R(st,a4)

Markov Decision Process (MDP): (S, A, T, R)
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What is Reinforcement Learning?

R s = T(st,a)

a; = T8 OO
(st) rir1 = R(s¢,a4)

Tt+1

actions
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Markov Decision Process (MDP): (?‘ , A, 1;, R)
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What is Reinforcement Learning?

a; = 7(s¢)

reward

T't4+1
ac“ons fu nction

\
Markov Decision Process (MDP): (?‘ , A, 1;, R)

states transition function



What is Reinforcement Learning?

policy
\

Sty1 = T'(s¢,ay)

ar = m(st) & | 71 = R(st,a4)

Goal: Policy that maximizes cumulative reward



Relation between RL & Optimization

ATTENTION, LEARN TO SOLVE ROUTING PROBLEMS!
Deep Policy Dynamic Programming

for Vehicle Routing Problems

Wouter Kool Herke van Hoof Max Welling

University of Amsterdam University of Amsterdam University of Amsterdam
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Reinforcement learning is very data hungry
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There are useful symmetries in RL!

L




What is a group?

Examples:

o of fewh

Translations Reflections Rotations

Ny

A set with an operation obeying the group axioms

(identity, invertibility, closure, associativity) Figures from Daniel Worrall's MLSS slides



Symmetries in Reinforcement Learning

For all states and actions, and all group elements:

Rewards and dynamics are invariant under group transformations:

R(s,a) = R(gs, ga)

G

(a)

T(s'|s,a) = T(gs'|gs, ga)

N
4 *“E
S

{A,B}

G

(b)

(Ravindran & Barto 2004)

(3, a)and ( gs, ga) are symmetric state-action pairs and have the same 7T



Equivariance

f(gx)=g1(x)

Invariance

f(gx)=1(x)

Figures adapted from Daniel E. Worrall



Advantages Equivariance

First transform then convolve =
First convolve then transform

‘Encapsulates’ symmetries of input
Works on manifolds

Advantages:
* Data efficiency
* Disentangling pose and presence
* Creates easy patterns for next layer
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First appearance in ML: Group CNNs
Cohen & W. ’16, Dieleman et al, ‘16
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Equivariant Convolution

Pose of object

Eyes Capsule

Mouth Capsule




Homomorphism

Structure-preserving map such that f(z - y) = f(z) - f(y)

Examples:
Linear map between vector spaces
Tw+w) =T(v) + T(w)
Exponential function between the reals and the positive reals
e* Y = e%eY
Group representation between a group and the general linear group

p(g9192) = p(91)p(g2)



MDP Homomorphisms

Map ground MDP — abstract MDP, preserve dynamics (ravindran & Barto 2001)

Sx A

Y J LY
SN SN

Original problem



MDP Homomorphisms

Map ground MDP — abstract MDP, preserve dynamics (ravindran & Barto 2001)
(s,a) (gs,90a)
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MDP Homomorphisms

Map ground MDP — abstract MDP, preserve dynamics (ravindran & Barto 2001)
(s,a) (gs,g90a)

MDP Homomorphlsm
@ @ (5.0)

Original problem Reduced problem

(s,a) and(gs, ga) are symmetric state-action pairs and have the same 70



Abstractions Preserve Symmetries under Equivariance

tion / homomorphism

Abstrac




MDP Homomorphic Networks:
Group Symmetries in RL

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)

—

~—|

-

-



MDP Homomorphic Networks:

Group Symmetries in RL
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MDP Homomorphic Networks:
Group Symmetries in RL

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)

Symmetric (s, a) pairs have the same policy 7T : ass
K[n(s)] = m(L[s]) L
L is a transformation on states, K a transformation on policies . —
-



MDP Homomorphic Networks:
Group Symmetries in RL

(van der Pol, Worrall, van Hoof, Oliehoek & Welling, NeurIPS 2020)

Symmetric (s, a) pairs have the same policy 7T : —

K[n(s)] = m(L[s])
(s) K[r(s)] = w(Lls))
L is a transformation on states, K a transformation on policies

. ~ B
— -

MDP homomorphic networks exploit symmetries in reinforcement learning



MDP Homomorphic Networks

We bridge MDP homomorphisms and equivariant networks

@ @ MDP Homomorphlsm
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Problem with symmetries Reduced problem



MDP Homomorphic Networks

We bridge MDP homomorphisms and equivariant networks

@@,

Sx A Sx A
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We create deep networks constrained by MDP homomorphisms that enforce equivariance



MDP Homomorphic Networks

We bridge MDP homomorphisms and equivariant networks

© @,
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We create deep networks constrained by MDP homomorphisms that enforce equivariance

We introduce a new method, the Symmetrizer, to construct equivariant weights



Group Equivariant CNN

Model policy with a group equivariant CNN

m(x) = GCNN(z; w)
Kn(x) = GCNN(Lx; w)

Group Equivariant Convolutional Networks

Taco S. Cohen T.S.COHEN@UVA.NL
University of Amsterdam
Max Welling M.WELLING@UVA.NL
University of Amsterdam

University of California Irvine
Canadian Institute for Advanced Research




Average Return
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Fewer interactions with the world needed



Multi-Agent Systems
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Centralized vs Distributed Multi-Agent Systems

Centralized: CNN Distributed: GNN



Multi-Agent MDP Homomorphic Networks

(van der Pol, van Hoof, Oliehoek & Welling, under review 2021)
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Multi-Agent MDP Homomorphic Networks

Distributed: global equivariance through local equivariant computation &
equivariant communication

SISEES  rotate S Model policy as equivariant Graph NN:
! % — I '
: , ' _ .
| | m(x) = EGNN(z; w)
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Graph Neural Networks

Normal convolution

Graph convolution

Convolution on a set

GNN
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E(n) Equivariant Graph Neural Network

E(n) Equivariant Graph Neural Networks

Victor Garcia Satorras! Emiel Hoogeboom ! Max Welling !

Figure 1. Example of rotation equivariance on a graph with a graph
neural network ¢

State: {h}, zt, vl}

Features:{ @i, @;; }

arans: {1, |2 — 2 1}
Equivariant Updates:

m;; = @ (hiahé-a Hxﬁ — X3”2 7aij)
vith = ¢, (M) vi+ > (xi — %) ¢ (myy)

J#i
+1 _ 1 I+1
X, =X;+V,
m,; = E mij
JEN (1)

hi*' = ¢, (h{, m;)



SE(3) Equivariant GNNs

Step 1: Get nearest neighbours and relative positions

Step 3: Propagate queries, keys, and values to edges
Vij = WV (Xj — Xl') fj
kij = WK (X]' — xi) fj

Figure 2: Updating the node features using our equivariant attention mechanism in four steps. A
more detailed description, especially of step 2, is provided in the Appendix. Steps 3 and 4 visualise a
graph network perspective: features are passed from nodes to edges to compute keys, queries and

Step 2: Get SO(3)-equivariant weight matrices
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Clebsch- Radial Neural Spherical
Gordon Coeff. Network Harmonics
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Step 4: Compute attention and aggregate

~ exp(q/ky)
> exp(a] kiy)

values, which depend both on features and relative positions in a rotation-equivariant manner.
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SE(3)-Transformers: 3D Roto-Translation
Equivariant Attention Networks

Fabian B. Fuchs*f Daniel E. Worrall*
Bosch Center for Artificial Intelligence Amsterdam Machine Learning Lab, Philips Lab
A2I Lab, Oxford University University of Amsterdam
fabian@robots.ox.ac.uk d.e.worrall@uva.nl

Volker Fischer Max Welling
Bosch Center for Artificial Intelligence Amsterdam Machine Learning Lab
volker.fischer@de.bosch.com University of Amsterdam
m.welling@uva.nl

Steerable Equivariant Message Passing

on Molecular Graphs
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Conclusions

By exploiting symmetries, the agent needs fewer experiences / interactions with the world / collect less data to
perform well.

There is nice relation between MDP homomorphisms and equivariance: the orbit of a group transformation is
mapped to a single point in the abstract space and the policy transforms properly on these orbits.

First papers to apply equivariance to action spaces.
We have studied a global symmetry in for local distributed agents: Compute Locally, Coordinate Globally.

Relevance to workshop: RL is often used to “learn to optimize”. With these tools, you can exploit symmetries.
E.g. TSP




