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Bandit Problem

Bandit Problem

An agent interacts with the environment, only receives a scalar
reward, and aims to maximize the reward.
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Bandit Problem

Each round, play action from action set: at ∈ A ⊂ Rd,

Unknown reward function f

Observe the (noisy) reward: rt = f(a) + ηt, (ηt is mean-zero
sub-gaussian noise)

Goal: maximize reward and minimize regret:
R(T ) =

∑T
t=1 r

∗ − f(at). r∗ = maxa∈A f(a).
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Applications

1 Ad placement

2 Recommendation services

3 Network routing

4 Dynamic pricing

5 Resource allocation

6 Necessary step to RL

7 · · ·
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Our focus: beyond linearity and concavity

Motivation

Linear bandit is well-studied, but doesn’t have sufficient
representation power

Existing analysis on nonlinear setting is potentially sub-optimal

Our goal:

What is the optimal regret for non-concave bandit problems,
including structured polynomials (low-rank etc.)?

Can we design algorithms with optimal dimension
dependency?
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Our focus:

Structured polynomial bandit

The stochastic bandit eigenvector case

FEV =
{

fθ(a) = aTMa,M =
∑k

j=1 λjvjv
⊤
j

}
.

The stochastic low-rank linear reward case

The stochastic homogeneous polynomial reward case

The noiseless two-layer neural network case
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The stochastic low-rank linear reward case

FLR =
{

fθ(A) = ⟨M ,A⟩ = vec(M)⊤vec(A)
}
.

The stochastic homogeneous polynomial reward case

The noiseless two-layer neural network case

Structured polynomial bandit



6/30

Our focus:

Structured polynomial bandit

The stochastic bandit eigenvector case

The stochastic low-rank linear reward case

The stochastic homogeneous polynomial reward case
Symmetric:

FSYM =
{

fθ(a) =
∑k

j=1 λj(v
⊤
j a)

p for orthonormal vj

}
;

Asymmetric:

FASYM =

{
fθ(a) =

∑k
j=1 λj

∏p
q=1(vj(q)

⊤a(q)),

for orthonormal vj(q) for each q

}
.

The noiseless two-layer neural network case

Structured polynomial bandit



6/30

Our focus:

Structured polynomial bandit

The stochastic bandit eigenvector case

The stochastic low-rank linear reward case

The stochastic homogeneous polynomial reward case

The noiseless two-layer neural network case

FNN1 =

{
fθ(a) =

k∑
i=1

λi⟨vi,a⟩pi , k ≥ max
i

{pi}

}
.

FNN2 =
{
fθ(a) = q(Ua),U ∈ Rk×d, deg q(·) ≤ p

}
.
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Outline

1 Bandit problem
Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward
Stochastic Bandit Eigenvector Problem
Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials
Symmetric setting
Lower bound

4 Noiseless two-layer neural network

5 Conclusion and Future direction
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Problem I: the Stochastic Bandit Eigenvector Problem

Action set: A = {a ∈ Rd : ∥a∥2 ≤ 1}
Noisy reward: rt = fθ(at) + ηt.

fθ(a) = aTMa,M =
∑k

j=1 λjvjv
⊤
j for orthonormal vj ,

M ∈ Rd×d, 1 ≥ λ1 ≥ |λ2| ≥ · · · ≥ |λk|
.

Optimal action a∗ = ±v1.
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Some related work

Prior Conjectures and Adapting Existing Work

Jun et al. 2019 conjecture the regret for bandit eigenvector is
at least Ω(

√
d3T )

Phase retrieval (k = 1 case): lower bound of d3/ϵ2 to
attain ϵ-optimal solution in the non-adaptive setting

Eluder dimension: With EluderUCB algorithm, one can
achieve regret of Õ(

√
dE logN · T ) = Õ(

√
d3kT ), here

covering number logN = Õ(dk), and eluder dimension
dE = Θ̃(d2). (e.g. Russo and Van Roy 2013)

Bandit PCA:
√
d3T regret in the adversarial bandit setting

(Kot lowski and Neu 2019)

Summary:
√
d3T is attainable and conjectured to be optimal.
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√
dE logN · T ) = Õ(
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Why the Conjecture?

Intuition of Jun et al. 2019]

Let’s first look at the simplest case: f(at) = (a⊤
t θ

∗)2 (Bandit
phase retrieval)

A random action a ∼ Unif(Sd−1) has f(a) ≍ 1/d

Noise has standard deviation Ω(1)

SNR is O(1/d2)

θ∗ requires d bits to encode

Conclusion: if we were to play non-adaptively, this would require
O(d3) queries and result in regret

√
d3T .

Structured polynomial bandit
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Beating d3
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Our method: noisy power method

zt ∼ N (0, σ2I).
Recall f(a) = a⊤Ma.
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Our method: PAC bound and regret bound

Define κ := λ1
λ1−|λ2| .

Samples per iteration: Õ(d2κ2/ϵ2)

Total iterations: κ log(d/ϵ)

PAC sample complexity: Õ(κ3d2/ϵ2) to make sure
tan θ(a, a∗) ≤ ϵ

PAC to regret:
√
κ3d2T .

Concurrent work of Lattimore and Hao also show
√
d2T regret in

the rank 1 case.

Structured polynomial bandit
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Problem II: Stochastic Low-rank linear reward

Action set: A = {A ∈ Rd×d : ∥M∥F ≤ 1}
Noisy reward: rt = fθ(at) + ηt.

fθ(A) = ⟨M ,A⟩ = vec(M)⊤vec(A),
rank(M) = k

.

Optimal action A∗ = M/∥M∥F .
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15/30

Our algorithm: noisy subspace iteration

zt ∼ N (0, σ2I)

Y ≈ MX,A+ ≈ MXX⊤
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Regret comparisons: quadratic reward

FEV LB (k = 1) Jun et al, 2019 NPM Gap-free NPM Subspace Iteration

Regret
√
d2T

√
d3kλ−2

k T
√
κ3d2T d2/5T 4/5 min(k4/3(dT )2/3, k1/3(κ̃dT )2/3)

FLR LB (Lu et al, 2021) UB (Lu et al, 2021) Subspace Iteration

Regret Ω(
√
d2k2T )

√
d3kT

∗
or

√
d3kλ−2

k T min(
√
d2kλ−2

k T , (dkT )2/3)
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Outline

1 Bandit problem
Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward
Stochastic Bandit Eigenvector Problem
Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials
Symmetric setting
Lower bound

4 Noiseless two-layer neural network

5 Conclusion and Future direction
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Higher-order problems

p = 2 p = 5 p = 10 p = 50

Signal strength becomes weaker for larger p

Random action a ∼ Unif(Sd−1), the average signal strength is:
(a⊤a∗)p ∼ d−p/2.

Eluder-UCB incurs
√
dp+1T regret, which is also what the

incorrect heuristic predicts

Structured polynomial bandit



19/30

Problem III: Symmetric High-order Polynomial Bandit

Action set: A = {a ∈ Rd : ∥a∥2 ≤ 1}
Noisy reward: rt = fθ(at) + ηt.

fθ(a) =
∑k

j=1 λj(v
⊤
j a)

p, for orthonormal vj ,

1 ≥ r∗ = |λ1| ≥ |λ2| ≥ · · · ≥ |λk|
.

Equivalently f(a) = T (a⊗p), where T =
∑k

j=1 λjv
⊗p
j

Optimal action a∗ = v1.

Structured polynomial bandit
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Algorithm: Zeroth order gradient-like ascent

f(a) = T (a⊗p).
a+ performs multiple tensor product on a with order p, p− 2, · · ·

Structured polynomial bandit
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Overall Regret Comparisons

Regret FSYM FASYM FEV FLR

LinUCB/eluder
√
dp+1kT

√
dp+1kT

√
d3kT

√
d3kT

Our Results
NPM

Gap N/A N/A
√
κ3d2T

√
d2kλ−2

k T

Gap-free
√
dpkT

√
kpdpT k4/3(dT )2/3 (dkT )2/3

Lower Bound
√
dpT

√
dpT

√
d2T

√
d2k2T 1

1from Lu et al. 2021
Structured polynomial bandit
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Two phases

Tighter Analysis

We can first learn a to constant accuracy via kdp/(r∗)2 actions
and then can use fewer samples per iteration:

Õ(
kdp

r∗
+
√
kd2T ).

The hardest part is the burn-in to get constant accuracy.

Once in a region of local strong convexity, linear convergence
ensures good regret.

Structured polynomial bandit
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Lower bound: Optimal dependence on d

Minimax regret lower bound

For all adaptive algorithms:

Symmetric action set: R(T ) ≥ Ω(
√
dpT/pp)

Asymmetric action set: R(T ) ≥ Ω(
√
dpT )

Structured polynomial bandit
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Lower bound: Optimal dependence on d

Minimax regret lower bound

For all adaptive algorithms:

Symmetric action set: R(T ) ≥ Ω(
√
dpT/pp)

Asymmetric action set: R(T ) ≥ Ω(
√
dpT )

Optimality on burn-in phase

For all adaptive algorithms, we need at least Ω( dp

(r∗)2 ) actions to

get reward at least constant of the optimal reward r∗.
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Outline

1 Bandit problem
Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward
Stochastic Bandit Eigenvector Problem
Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials
Symmetric setting
Lower bound

4 Noiseless two-layer neural network

5 Conclusion and Future direction
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Problem V: Noiseless two-layer neural network reward

Upper bound via solving polynomial equations

f(a) =
∑k

i=1 λi⟨vi,a⟩pi , k ≥ maxi{pi}:

R(T ) ≲ min{T, dk}

f(a) = q(Ua),U ∈ Rk×d, deg q(·) ≤ p:

R(T ) ≲ min{T, dk + (k + 1)p}.

However, we can construct action sets where any UCB algorithm

R(T ) ≥ min

{
T,

(
d

p

)}
.

Structured polynomial bandit
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Extension to RL in simulator setting

Th(Qh+1)(s, a) = rh(s, a) + Es′∼P(·|s,a)[max
a′

Qh+1(s
′, a′)].

Settings:

Assume FEV = {fM (s, a) = ϕ(s, a)⊤Mϕ(s, a),
rank(M) ≤ k} is Bellman complete

Observation: we query sh−1, ah−1, we observe
s′h ∼ P(·|sh−1, ah−1) and reward rh−1(sh−1, ah−1).

Extend our findings from bandit:

We can estimate M̂h, h = H,H − 1, · · · 1 up to ϵ/H error
with Õ(d2k2H2/ϵ2) samples

Overall we can learn ϵ-optimal policy π with Õ(d2k2H3/ϵ2)
samples

In contrast, optimistic algorithm requires O(d3H3/ϵ2) samples (or
O(d3H2/ϵ2) trajectories) (Zanette et al. 2020, Jin et al. 2021)
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samples

In contrast, optimistic algorithm requires O(d3H3/ϵ2) samples (or
O(d3H2/ϵ2) trajectories) (Zanette et al. 2020, Jin et al. 2021)

Structured polynomial bandit



26/30

Extension to RL in simulator setting

Th(Qh+1)(s, a) = rh(s, a) + Es′∼P(·|s,a)[max
a′

Qh+1(s
′, a′)].

Settings:

Assume FEV = {fM (s, a) = ϕ(s, a)⊤Mϕ(s, a),
rank(M) ≤ k} is Bellman complete

Observation: we query sh−1, ah−1, we observe
s′h ∼ P(·|sh−1, ah−1) and reward rh−1(sh−1, ah−1).

Extend our findings from bandit:

We can estimate M̂h, h = H,H − 1, · · · 1 up to ϵ/H error
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Conclusions

We find optimal regret for different types of reward function
classes:

the stochastic bandit eigenvector case

the stochastic low-rank linear reward case

the stochastic homogeneous polynomial reward case

the noiseless neural network with polynomial activation

Take-away messages

Optimistic algorithms have suboptimal regret ⇒ allow to play
suboptimally sometimes

Initial snr is already 1/dp ⇒ with (super)linear convergence
rate, can hope to get optimal dependence on d

Initial phase is the hardest ⇒ play adaptively and consider
burn-in algorithms

Strongly convex action set ⇒ Still have
√
T PAC to regret

conversion with explore-then-commit
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Future directions

Future directions

Settle whether the condition number dependence is necessary

Non-orthogonal high-order polynomials?

Discrete action set?

Extension multi-task representation learning for bandits or
MDPs
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Thank you!
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