Optimal Gradient-based Algorithms for

Non-concave Bandit Optimization

Jason D. Lee

Princeton University

Joint work with

Qi Lei, Baihe Huang, Kaixuan Huang, Sham M Kakade, Jason
D Lee, Runzhe Wang, and Jiagi Yang

Slides by Qi Lei

Qi Lei is on the academic job market for 2021-2022. Baihe Huang
will be applying to PhD programs.

https://arxiv.org/abs/2107.04518


 https://arxiv.org/abs/2107.04518

Bandit Problem

Bandit Problem

An agent interacts with the environment, only receives a scalar
reward, and aims to maximize the reward.

Action a; € A

T

~_

Reward f(a;)
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Bandit Problem

Action a; € A

—

~_

Reward f(a;)

e Each round, play action from action set: a; € A C R¢,
@ Unknown reward function f

@ Observe the (noisy) reward: r, = f(a) + n, (1 is mean-zero
sub-gaussian noise)

@ Goal: maximize reward and minimize regret:
R(T) = S0, r* = flar). r* = maxaea f(a).
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Applications

@ Ad placement

@ Recommendation services
© Network routing

@ Dynamic pricing

© Resource allocation

© Necessary step to RL

Q -
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Our focus: beyond linearity and concavity

@ Linear bandit is well-studied, but doesn’t have sufficient
representation power

@ Existing analysis on nonlinear setting is potentially sub-optimal

Our goal:

@ What is the optimal regret for non-concave bandit problems,
including structured polynomials (low-rank etc.)?

@ Can we design algorithms with optimal dimension
dependency?
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Our focus:

Structured polynomial bandit

@ The stochastic bandit eigenvector case

o= { )= = s ] }

Structured polynomial bandit



Our focus:

Structured polynomial bandit

@ The stochastic bandit eigenvector case

@ The stochastic low-rank linear reward case

Fir = { fo(A) = (M, A) = vec(M) Tvec(A) } .
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Our focus:

Structured polynomial bandit

@ The stochastic bandit eigenvector case
@ The stochastic low-rank linear reward case

@ The stochastic homogeneous polynomial reward case
Symmetric:

Fsym = { fola) = Z?zl )\j(v]-Ta)p for orthonormal v } c
Asymmetric:

Frow = { 1) = b A Tl (v5(0) a(a)), 3

for orthonormal v;(gq) for each ¢
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Our focus:

Structured polynomial bandit

@ The stochastic bandit eigenvector case

@ The stochastic low-rank linear reward case

@ The stochastic homogeneous polynomial reward case
°

The noiseless two-layer neural network case

k
FNN, = {fa(a) =Y (v, @) k> m?X{Pi}} :

=1

Fun, = { fo(a) = 4(Ua).U € R™*, degq() < p}.
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Q Stochastic Quadratic Reward
@ Stochastic Bandit Eigenvector Problem
@ Stochastic Low-rank linear reward
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Problem |: the Stochastic Bandit Eigenvector Problem

o Action set: A= {a c R?:|a|. <1}
e Noisy reward: 7, = fg(ay) + n;.

fo(a) =a"Ma, M = Z?:l )\j'ujv]—-r for orthonormal v;;,
M e R*E1> M > [Xo| = - = [\ '

@ Optimal action a* = f+wv.
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Some related work

Prior Conjectures and Adapting Existing Work

@ Jun et al. 2019 conjecture the regret for bandit eigenvector is

at least Q(vd3T)
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Some related work

Prior Conjectures and Adapting Existing Work

@ Jun et al. 2019 conjecture the regret for bandit eigenvector is

at least Q(vd3T)

o Phase retrieval (k = 1 case): lower bound of d3/e? to
attain e-optimal solution in the non-adaptive setting
(Candes et al. 2015) (Cai et al. 2016)
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Some related work

Prior Conjectures and Adapting Existing Work

@ Jun et al. 2019 conjecture the regret for bandit eigenvector is
at least Q(vd3T)
o Phase retrieval (k = 1 case): lower bound of d3/e? to

attain e-optimal solution in the non-adaptive setting

@ Eluder dimension: With EluderUCB algorithm, one can
achieve regret of O(v/dglog N - T) = O(Vd3kT), here
covering number log NV = O(dk), and eluder dimension
dg = O(d?). (e.g. Russo and Van Roy 2013)
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e Bandit PCA: V3T regret in the adversarial bandit setting
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Some related work

Prior Conjectures and Adapting Existing Work

@ Jun et al. 2019 conjecture the regret for bandit eigenvector is

at least Q(vd3T)

o Phase retrieval (k = 1 case): lower bound of d3/e? to
attain e-optimal solution in the non-adaptive setting

@ Eluder dimension: With EluderUCB algorithm, one can
achieve regret of O(v/dglog N - T) = O(Vd3kT), here
covering number log NV = O(dk), and eluder dimension
dg = O(d?). (e.g. Russo and Van Roy 2013)

e Bandit PCA: Vd3T regret in the adversarial bandit setting
(Kottowski and Neu 2019)

@ Summary: Vd3T is attainable and conjectured to be optimal.
v
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Why the Conjecture?
Intuition of Jun et al. 2019]

Let's first look at the simplest case: f(a;) = (a/ 8*)? (Bandit
phase retrieval)

o A random action a ~ Unif(S*1) has f(a) < 1/d
@ Noise has standard deviation §2(1)

e SNRis O(1/d?)

@ O* requires d bits to encode

Conclusion: if we were to play non-adaptively, this would require
O(d3) queries and result in regret v d3T.

d bits
A
r B d
| | | | Non-adaptive: Zd2 =d3
s=1

snr = need d? samples

d_27
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d bits
A
r B d
Non-adaptive: & =d
v | pive: 3
snr = 7x need d? samples
d bits
e
8 2| d d2
| | | | | | Adaptive: Z - ~ d?
I I I I | | s
%/—)
s s? d?

snr = ' need ) samples
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Our method: noisy power method

Frv Stochastic Eigenvector case

Initialization action a

Notice Observe:
Convergence:

E[r:z:] x Ma

tanf(a®,a*)
< ctan6f(a,a”)

Update action:

a+<— E TtZ¢,

and normalize

2y ~ N(0,0%1).
Recall f(a) = a' Ma.
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Our method: PAC bound and regret bound

A1

Define k := NPl
o Samples per iteration: O(d%k2/e?)
e Total iterations: xlog(d/e)

o PAC sample complexity: O(k3d2/e2) to make sure
tanf(a,a*) < e

e PAC to regret: Vk3d2T.

Concurrent work of Lattimore and Hao also show Vd?T regret in
the rank 1 case.
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Problem |l: Stochastic Low-rank linear reward

o Action set: A={A c R |M|r <1}
e Noisy reward: 7. = fg(a¢) + n;.

fo(A) = (M, A) = vec(M) "vec(A),
rank(M) =k ’

e Optimal action A* = M /||M||r.
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Our algorithm: noisy subspace iteration

Frr Stochastic Low-rank Linear

/4 lterate X (maintain A ~ MXX ) ’
Update action: Notice
AT Y (xH)' Elrs 2] o« Mz,

and normalize

l roj = (M, xizl )+

Y.y = Zrt,jzt
¢

X*R + QR(Y)

Convergence:

X converges to right eigenvector of M,
A converges to A* = M/|M||r

2z ~ N(0,0%1)
Y~MX At~ MXXT



Regret comparisons: quadratic reward

Fev LB (k=1) | Jun et al, 2019 NPM Gap-free NPM Subspace lteration

Regret |  d’T \/ BENSET | VRBET | a7 min(k%3(dT)?/3, kY3 (RdT)?/?)
Fir || LB (Luetal, 2021) | UB (Lu et al, 2021) Subspace lteration

Regret Q(Vd2E2T) VBT or \/d3k’/\;2T 111111(\/(]2]<?/\]:2T, (dkT)?/3)
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© Stochastic high-order homogeneous polynomials
@ Symmetric setting
@ Lower bound
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Higher-order problems

Signal strength becomes weaker for larger p

Random action a ~ Unif(S?~1), the average signal strength is:
(aTa*)P ~ d P2,

Eluder-UCB incurs VdPt1T regret, which is also what the
incorrect heuristic predicts
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Problem IlI: Symmetric High-order Polynomial Bandit

Action set: A= {a € R%: |a|2 < 1}
Noisy reward: 7 = fg(at) + .

fola) = Z (vaa)p for orthonormal v;;,

L= \/\1| > o] = - = [ A

Equivalently f(a) = T (a®P), where T = Z?Zl )\j'v?p

Optimal action a* = v;.
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Algorithm: Zeroth order gradient-like ascent

Fsym Stochastic High-order Symmetric Homogeneous polynomial

Initialization action a ‘

E[(r; —)z) = a T(@®?) @ I) Observe:
+C3T(a®(,v73) ® I®2)
+ cee
1 Zs
r=f((1-—-)a+—)+
+ = f(( p) P )+

= f(%)ﬂfz

Convergence:
tanf(a®,a*)

< ctanf(a,a”) ~_

Update action:

a’t Z(rt — 1)z,

and normalize

f(a) = T(a®).
a™ performs multiple tensor product on a with order p,p — 2, - --
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Overall Regret Comparisons

Regret Fsym Fasym Fev Fir
LinUCB/eluder VAPHET | Var kT | VdB3kT Vd3kT
e | Gap N/A N/A VRET | kAT
Our Results Gap-free | VdPkT | VEkrdeT | k*Y3(dT)?/3 | (dkT)?/3
Lower Bound drT drT 2T Vad2k2T 1

from Lu et al. 2021

Structured polynomial bandit



Tighter Analysis

We can first learn a to constant accuracy via kdP/(r*)? actions
and then can use fewer samples per iteration:

. /4
0(’% + Vkd2T).

@ The hardest part is the burn-in to get constant accuracy.

@ Once in a region of local strong convexity, linear convergence
ensures good regret.
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Lower bound: Optimal dependence on d

Minimax regret lower bound

For all adaptive algorithms:
e Symmetric action set: R(T") > Q(v/dPT /pP)
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Lower bound: Optimal dependence on d

Minimax regret lower bound

For all adaptive algorithms:
o Symmetric action set: R(T) > Q(\/dPT /pP)
o Asymmetric action set: R(T) > Q(v/dPT)

Structured polynomial bandit



Lower bound: Optimal dependence on d

Minimax regret lower bound

For all adaptive algorithms:
o Symmetric action set: R(T) > Q(+/dPT /pP)
o Asymmetric action set: R(T) > Q(vdPT)

v

Optimality on burn-in phase

For all adaptive algorithms, we need at least Q(( *)2) actions to
get reward at least constant of the optimal reward r*
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@ Noiseless two-layer neural network
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Problem V: Noiseless two-layer neural network reward
Upper bound via solving polynomial equations

o f(a)=F  N(wi,a)?, k> max,{p;}:

R(T) < min{T, dk}

o f(a) =q(Ua),U € RF*4 degq(-) < p:

R(T) < min{T,dk + (k + 1)P}.

However, we can construct action sets where any UC'B algorithm

R(T) > min{, () 1.
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Extension to RL in simulator setting

E(Qh‘f‘l)(‘s? a’) = Th(‘sv a) + ES’NP(-\S,CL) [HE}X Qh+1(8/, a/)]-
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Extension to RL in simulator setting

ﬁL(Qh—H)(Sv a’) = Th(‘sv a) + Es’wP(-\s,a) [HE}X Qh+1(5/7 a/)]‘

Settings:

o Assume Fry = {fam(s,a) = ¢(s,a) T M ¢(s,a),
rank(M) < k} is Bellman complete

@ Observation: we query sj,_1,ap_1, we observe
/
sy, ~ P(:|sp—1,ap—1) and reward rp_1(sp—1, an—1).
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Extension to RL in simulator setting

E(Qh‘f‘l)(‘s? CL) = Th(‘sv a) + ES’NP(-\S,CL) [HE}X Qh+1(8/, a/)]-

Settings:

o Assume Fry = {fam(s,a) = ¢(s,a) T M ¢(s,a),
rank(M) < k} is Bellman complete

@ Observation: we query sj,_1,ap_1, we observe
sy ~ P(-|sp—1,an—1) and reward 75,1 (Sp—1, ap—1).
Extend our findings from bandit:
e We can estimate ﬁh,h =H,H—1,---1uptoe/H error
with O(d?k?>H?/€?) samples
o Overall we can learn e-optimal policy 7 with O(d2k2H?3 /€2)
samples
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Extension to RL in simulator setting

ﬁL(Qh—H)(Sv a’) = Th(‘sv a) + Es’wP(-\s,a) [HE}X Qh+1(5/7 a/)]‘

Settings:
o Assume Fry = {fam(s,a) = ¢(s,a) T M ¢(s,a),
rank(M) < k} is Bellman complete
@ Observation: we query sj,_1,ap_1, we observe
sy ~ P(-|sp—1,an—1) and reward 75,1 (Sp—1, ap—1).
Extend our findings from bandit:
e We can estimate ﬁh,h =H,H—1,---1uptoe/H error
with O(d?k?>H?/€?) samples
o Overall we can learn e-optimal policy 7 with O(d2k2H?3 /€2)
samples

In contrast, optimistic algorithm requires O(d®H3/¢?) samples (or
O(d®H?/€?) trajectories) (Zanette et al. 2020, Jin et al. 2021)
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© Conclusion and Future direction
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Conclusions

We find optimal regret for different types of reward function
classes:

@ the stochastic bandit eigenvector case

@ the stochastic low-rank linear reward case

@ the stochastic homogeneous polynomial reward case

@ the noiseless neural network with polynomial activation

Take-away messages

@ Optimistic algorithms have suboptimal regret = allow to play
suboptimally sometimes

v
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@ the stochastic bandit eigenvector case

@ the stochastic low-rank linear reward case

@ the stochastic homogeneous polynomial reward case

@ the noiseless neural network with polynomial activation

Take-away messages

@ Optimistic algorithms have suboptimal regret = allow to play
suboptimally sometimes

e Initial snr is already 1/dP = with (super)linear convergence
rate, can hope to get optimal dependence on d

v

Structured polynomial bandit




Conclusions

We find optimal regret for different types of reward function
classes:

@ the stochastic bandit eigenvector case

@ the stochastic low-rank linear reward case

@ the stochastic homogeneous polynomial reward case

@ the noiseless neural network with polynomial activation

Take-away messages

@ Optimistic algorithms have suboptimal regret = allow to play
suboptimally sometimes

e Initial snr is already 1/dP = with (super)linear convergence
rate, can hope to get optimal dependence on d

@ Initial phase is the hardest = play adaptively and consider
burn-in algorithms

v
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Conclusions

We find optimal regret for different types of reward function
classes:

@ the stochastic bandit eigenvector case

@ the stochastic low-rank linear reward case

@ the stochastic homogeneous polynomial reward case

@ the noiseless neural network with polynomial activation

Take-away messages

@ Optimistic algorithms have suboptimal regret = allow to play
suboptimally sometimes

e Initial snr is already 1/dP = with (super)linear convergence
rate, can hope to get optimal dependence on d

@ Initial phase is the hardest = play adaptively and consider
burn-in algorithms

@ Strongly convex action set = Still have v/T' PAC to regret
conversion with explore-then-commit

v
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Future directions

Future directions

@ Settle whether the condition number dependence is necessary
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Future directions

Future directions

@ Settle whether the condition number dependence is necessary

@ Non-orthogonal high-order polynomials?
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Future directions

Future directions

@ Settle whether the condition number dependence is necessary
@ Non-orthogonal high-order polynomials?

@ Discrete action set?
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Future directions

Future directions

Settle whether the condition number dependence is necessary
@ Non-orthogonal high-order polynomials?

@ Discrete action set?
o

Extension multi-task representation learning for bandits or
MDPs
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Thank you!
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