Optimal Gradient-based Algorithms for Non-concave Bandit Optimization

Jason D. Lee
Princeton University

Joint work with
Qi Lei, Baihe Huang, Kaixuan Huang, Sham M Kakade, Jason
D Lee, Runzhe Wang, and Jiaqi Yang

Slides by Qi Lei

Qi Lei is on the academic job market for 2021-2022. Baihe Huang will be applying to PhD programs.
https://arxiv.org/abs/2107.04518

Bandit Problem

An agent interacts with the environment, only receives a scalar reward, and aims to maximize the reward.

- Each round, play action from action set: $\boldsymbol{a}_{t} \in \mathcal{A} \subset \mathbb{R}^{d}$,
- Unknown reward function f
- Observe the (noisy) reward: $r_{t}=f(\boldsymbol{a})+\eta_{t},\left(\eta_{t}\right.$ is mean-zero sub-gaussian noise)
- Goal: maximize reward and minimize regret:

$$
R(T)=\sum_{t=1}^{T} r^{*}-f\left(\boldsymbol{a}_{t}\right) \cdot r^{*}=\max _{\boldsymbol{a} \in \mathcal{A}} f(\boldsymbol{a})
$$

Applications

(1) Ad placement
(2) Recommendation services
(3) Network routing
(9) Dynamic pricing
© Resource allocation
(6) Necessary step to RL

- \cdot.

Our focus: beyond linearity and concavity

Motivation

- Linear bandit is well-studied, but doesn't have sufficient representation power
- Existing analysis on nonlinear setting is potentially sub-optimal

Our goal:

- What is the optimal regret for non-concave bandit problems, including structured polynomials (low-rank etc.)?
- Can we design algorithms with optimal dimension dependency?

Our focus:

Structured polynomial bandit

- The stochastic bandit eigenvector case

$$
\mathcal{F}_{\mathrm{EV}}=\left\{f_{\boldsymbol{\theta}}(\boldsymbol{a})=\boldsymbol{a}^{T} \boldsymbol{M} \boldsymbol{a}, \boldsymbol{M}=\sum_{j=1}^{k} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top}\right\} .
$$

Our focus:

Structured polynomial bandit

- The stochastic bandit eigenvector case
- The stochastic low-rank linear reward case

$$
\mathcal{F}_{\mathrm{LR}}=\left\{f_{\boldsymbol{\theta}}(\boldsymbol{A})=\langle\boldsymbol{M}, \boldsymbol{A}\rangle=\operatorname{vec}(\boldsymbol{M})^{\top} \operatorname{vec}(\boldsymbol{A})\right\}
$$

Our focus:

Structured polynomial bandit

- The stochastic bandit eigenvector case
- The stochastic low-rank linear reward case
- The stochastic homogeneous polynomial reward case Symmetric:

$$
\mathcal{F}_{\mathrm{SYM}}=\left\{f_{\boldsymbol{\theta}}(\boldsymbol{a})=\sum_{j=1}^{k} \lambda_{j}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{a}\right)^{p} \text { for orthonormal } \boldsymbol{v}_{j}\right\} ;
$$

Asymmetric:

$$
\mathcal{F}_{\mathrm{ASYM}}=\left\{\begin{array}{l}
f_{\boldsymbol{\theta}}(\boldsymbol{a})=\sum_{j=1}^{k} \lambda_{j} \prod_{q=1}^{p}\left(\boldsymbol{v}_{j}(q)^{\top} \boldsymbol{a}(q)\right) \\
\text { for orthonormal } \boldsymbol{v}_{j}(q) \text { for each } q
\end{array}\right\} .
$$

Our focus:

Structured polynomial bandit

- The stochastic bandit eigenvector case
- The stochastic low-rank linear reward case
- The stochastic homogeneous polynomial reward case
- The noiseless two-layer neural network case

$$
\begin{gathered}
\mathcal{F}_{\mathrm{NN}_{1}}=\left\{f_{\boldsymbol{\theta}}(\boldsymbol{a})=\sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{v}_{i}, \boldsymbol{a}\right\rangle^{p_{i}}, k \geq \max _{i}\left\{p_{i}\right\}\right\} . \\
\mathcal{F}_{\mathrm{NN}_{2}}=\left\{f_{\boldsymbol{\theta}}(\boldsymbol{a})=q(\boldsymbol{U} \boldsymbol{a}), \boldsymbol{U} \in \mathbb{R}^{k \times d}, \operatorname{deg} q(\cdot) \leq p\right\} .
\end{gathered}
$$

Outline

(1) Bandit problem

- Our focus: beyond linearity and concavity
(2) Stochastic Quadratic Reward
- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials

- Symmetric setting
- Lower bound
(4) Noiseless two-layer neural network
(5) Conclusion and Future direction
- Action set: $\mathcal{A}=\left\{\boldsymbol{a} \in \mathbb{R}^{d}:\|\boldsymbol{a}\|_{2} \leq 1\right\}$
- Noisy reward: $r_{t}=f_{\boldsymbol{\theta}}\left(\boldsymbol{a}_{t}\right)+\eta_{t}$.

$$
\begin{aligned}
& f_{\boldsymbol{\theta}}(\boldsymbol{a})=\boldsymbol{a}^{T} \boldsymbol{M} \boldsymbol{a}, \boldsymbol{M}=\sum_{j=1}^{k} \lambda_{j} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\top} \text { for orthonormal } \boldsymbol{v}_{j}, \\
& \boldsymbol{M} \in \mathbb{R}^{d \times d}, 1 \geq \lambda_{1} \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{k}\right|
\end{aligned}
$$

- Optimal action $\boldsymbol{a}^{*}= \pm \boldsymbol{v}_{1}$.

Prior Conjectures and Adapting Existing Work

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega\left(\sqrt{d^{3} T}\right)$

Prior Conjectures and Adapting Existing Work

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega\left(\sqrt{d^{3} T}\right)$
- Phase retrieval ($k=1$ case): lower bound of d^{3} / ϵ^{2} to attain ϵ-optimal solution in the non-adaptive setting (Candes et al. 2015) (Cai et al. 2016)

Prior Conjectures and Adapting Existing Work

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega\left(\sqrt{d^{3} T}\right)$
- Phase retrieval ($k=1$ case): lower bound of d^{3} / ϵ^{2} to attain ϵ-optimal solution in the non-adaptive setting
- Eluder dimension: With EluderUCB algorithm, one can achieve regret of $\widetilde{O}\left(\sqrt{d_{E} \log \mathcal{N} \cdot T}\right)=\widetilde{O}\left(\sqrt{d^{3} k T}\right)$, here covering number $\log \mathcal{N}=\widetilde{O}(d k)$, and eluder dimension $d_{E}=\widetilde{\Theta}\left(d^{2}\right)$. (e.g. Russo and Van Roy 2013)

Some related work

Prior Conjectures and Adapting Existing Work

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega\left(\sqrt{d^{3} T}\right)$
- Phase retrieval ($k=1$ case): lower bound of d^{3} / ϵ^{2} to attain ϵ-optimal solution in the non-adaptive setting
- Eluder dimension: With EluderUCB algorithm, one can achieve regret of $\widetilde{O}\left(\sqrt{d_{E} \log \mathcal{N} \cdot T}\right)=\widetilde{O}\left(\sqrt{d^{3} k T}\right)$, here covering number $\log \mathcal{N}=\widetilde{O}(d k)$, and eluder dimension $d_{E}=\widetilde{\Theta}\left(d^{2}\right)$. (e.g. Russo and Van Roy 2013)
- Bandit PCA: $\sqrt{d^{3} T}$ regret in the adversarial bandit setting (Kotłowski and Neu 2019)

Some related work

Prior Conjectures and Adapting Existing Work

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega\left(\sqrt{d^{3} T}\right)$
- Phase retrieval ($k=1$ case): lower bound of d^{3} / ϵ^{2} to attain ϵ-optimal solution in the non-adaptive setting
- Eluder dimension: With EluderUCB algorithm, one can achieve regret of $\widetilde{O}\left(\sqrt{d_{E} \log \mathcal{N} \cdot T}\right)=\widetilde{O}\left(\sqrt{d^{3} k T}\right)$, here covering number $\log \mathcal{N}=O(d k)$, and eluder dimension $d_{E}=\widetilde{\Theta}\left(d^{2}\right)$. (e.g. Russo and Van Roy 2013)
- Bandit PCA: $\sqrt{d^{3} T}$ regret in the adversarial bandit setting (Kotłowski and Neu 2019)
- Summary: $\sqrt{d^{3} T}$ is attainable and conjectured to be optimal.

Why the Conjecture?

Intuition of Jun et al. 2019]

Let's first look at the simplest case: $f\left(\boldsymbol{a}_{t}\right)=\left(\boldsymbol{a}_{t}^{\top} \boldsymbol{\theta}^{*}\right)^{2}$ (Bandit phase retrieval)

- A random action $\boldsymbol{a} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$ has $f(\boldsymbol{a}) \asymp 1 / d$
- Noise has standard deviation $\Omega(1)$
- SNR is $O\left(1 / d^{2}\right)$
- $\boldsymbol{\theta}^{*}$ requires d bits to encode

Conclusion: if we were to play non-adaptively, this would require $O\left(d^{3}\right)$ queries and result in regret $\sqrt{d^{3} T}$.

Non-adaptive: $\sum_{s=1}^{d} d^{2}=d^{3}$

Our method: PAC bound and regret bound

Define $\kappa:=\frac{\lambda_{1}}{\lambda_{1}-\left|\lambda_{2}\right|}$.

- Samples per iteration: $\widetilde{O}\left(d^{2} \kappa^{2} / \epsilon^{2}\right)$
- Total iterations: $\kappa \log (d / \epsilon)$
- PAC sample complexity: $\widetilde{O}\left(\kappa^{3} d^{2} / \epsilon^{2}\right)$ to make sure $\tan \theta\left(a, a^{*}\right) \leq \epsilon$
- PAC to regret: $\sqrt{\kappa^{3} d^{2} T}$.

Concurrent work of Lattimore and Hao also show $\sqrt{d^{2} T}$ regret in the rank 1 case.

Problem II: Stochastic Low-rank linear reward

- Action set: $\mathcal{A}=\left\{\boldsymbol{A} \in \mathbb{R}^{d \times d}:\|\boldsymbol{M}\|_{F} \leq 1\right\}$
- Noisy reward: $r_{t}=f_{\boldsymbol{\theta}}\left(\boldsymbol{a}_{t}\right)+\eta_{t}$.

$$
\begin{aligned}
& f_{\boldsymbol{\theta}}(\boldsymbol{A})=\langle\boldsymbol{M}, \boldsymbol{A}\rangle=\operatorname{vec}(\boldsymbol{M})^{\top} \operatorname{vec}(\boldsymbol{A}), \\
& \operatorname{rank}(\boldsymbol{M})=k
\end{aligned}
$$

- Optimal action $A^{*}=\boldsymbol{M} /\|M\|_{F}$.

Our algorithm: noisy subspace iteration

X converges to right eigenvector of M, A converges to $A^{*}=M /\|M\|_{F}$

$$
\begin{gathered}
\boldsymbol{z}_{t} \sim \mathcal{N}\left(0, \sigma^{2} \boldsymbol{I}\right) \\
Y \approx M X, A^{+} \approx M X X^{\top}
\end{gathered}
$$

Regret comparisons: quadratic reward

$\mathcal{F}_{\text {EV }}$	LB $(k=1)$	Jun et al, 2019	NPM	Gap-free NPM	Subspace Iteration
Regret	$\sqrt{d^{2} T}$	$\sqrt{d^{3} k \lambda_{k}^{-2} T}$	$\sqrt{\kappa^{3} d^{2} T}$	$d^{2 / 5} T^{4 / 5}$	$\min \left(k^{4 / 3}(d T)^{2 / 3}, k^{1 / 3}(\widetilde{\kappa} d T)^{2 / 3}\right)$
$\mathcal{F}_{\text {LR }}$	LB (Lu et al, 2021)	UB (Lu et al, 2021)			Subspace Iteration
Regret	$\Omega\left(\sqrt{d^{2} k^{2} T}\right)$	$\sqrt{d^{3} k T}{ }^{*}$ or $\sqrt{d^{3} k \lambda_{k}^{-2} T}$	$\min \left(\sqrt{d^{2} k \lambda_{k}^{-2} T},(d k T)^{2 / 3}\right)$		

Outline

(1) Bandit problem

- Our focus: beyond linearity and concavity
(2) Stochastic Quadratic Reward
- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials

- Symmetric setting
- Lower bound
(4) Noiseless two-layer neural network
(5) Conclusion and Future direction

$$
p=2
$$

$p=5$

$p=10$
$p=50$

Signal strength becomes weaker for larger p

Random action $\boldsymbol{a} \sim \operatorname{Unif}\left(\mathbb{S}^{d-1}\right)$, the average signal strength is: $\left(\boldsymbol{a}^{\top} \boldsymbol{a}^{*}\right)^{p} \sim d^{-p / 2}$.

Eluder-UCB incurs $\sqrt{d^{p+1} T}$ regret, which is also what the incorrect heuristic predicts

- Action set: $\mathcal{A}=\left\{\boldsymbol{a} \in \mathbb{R}^{d}:\|\boldsymbol{a}\|_{2} \leq 1\right\}$
- Noisy reward: $r_{t}=f_{\boldsymbol{\theta}}\left(\boldsymbol{a}_{t}\right)+\eta_{t}$.

$$
\begin{aligned}
& f_{\boldsymbol{\theta}}(\boldsymbol{a})=\sum_{j=1}^{k} \lambda_{j}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{a}\right)^{p}, \text { for orthonormal } \boldsymbol{v}_{j}, \\
& 1 \geq r^{*}=\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{k}\right|
\end{aligned}
$$

- Equivalently $f(\boldsymbol{a})=\boldsymbol{T}\left(\boldsymbol{a}^{\otimes p}\right)$, where $\boldsymbol{T}=\sum_{j=1}^{k} \lambda_{j} \boldsymbol{v}_{j}^{\otimes p}$
- Optimal action $\boldsymbol{a}^{*}=\boldsymbol{v}_{1}$.

Algorithm: Zeroth order gradient-like ascent

\boldsymbol{a}^{+}performs multiple tensor product on \boldsymbol{a} with order $p, p-2, \cdots$

Overall Regret Comparisons

Regret		$\mathcal{F}_{\mathrm{SYM}}$	$\mathcal{F}_{\mathrm{ASYM}}$	$\mathcal{F}_{\mathrm{EV}}$	$\mathcal{F}_{\mathrm{LR}}$	
LinUCB/eluder		$\sqrt{d^{p+1} k T}$	$\sqrt{d^{p+1} k T}$	$\sqrt{d^{3} k T}$	$\sqrt{d^{3} k T}$	
Our Results	NPM	Gap	N / A	N / A	$\sqrt{\kappa^{3} d^{2} T}$	$\sqrt{d^{2} k \lambda_{k}^{-2} T}$
		Gap-free	$\sqrt{d^{p} k T}$	$\sqrt{k^{p} d^{p} T}$	$k^{4 / 3}(d T)^{2 / 3}$	$(d k T)^{2 / 3}$
	Lower Bound	$\sqrt{d^{p} T}$	$\sqrt{d^{p} T}$	$\sqrt{d^{2} T}$	$\sqrt{d^{2} k^{2} T}{ }^{1}$	

Tighter Analysis

We can first learn \boldsymbol{a} to constant accuracy via $k d^{p} /\left(r^{*}\right)^{2}$ actions and then can use fewer samples per iteration:

$$
\widetilde{O}\left(\frac{k d^{p}}{r^{*}}+\sqrt{k d^{2} T}\right)
$$

- The hardest part is the burn-in to get constant accuracy.
- Once in a region of local strong convexity, linear convergence ensures good regret.

Lower bound: Optimal dependence on d

Minimax regret lower bound
For all adaptive algorithms:

- Symmetric action set: $R(T) \geq \Omega\left(\sqrt{d^{p} T} / p^{p}\right)$

Lower bound: Optimal dependence on d

Minimax regret lower bound
For all adaptive algorithms:

- Symmetric action set: $R(T) \geq \Omega\left(\sqrt{d^{p} T} / p^{p}\right)$
- Asymmetric action set: $R(T) \geq \Omega\left(\sqrt{d^{p} T}\right)$

Lower bound: Optimal dependence on d

Minimax regret lower bound

For all adaptive algorithms:

- Symmetric action set: $R(T) \geq \Omega\left(\sqrt{d^{p} T} / p^{p}\right)$
- Asymmetric action set: $R(T) \geq \Omega\left(\sqrt{d^{p} T}\right)$

Optimality on burn-in phase

For all adaptive algorithms, we need at least $\Omega\left(\frac{d^{p}}{\left(r^{*}\right)^{2}}\right)$ actions to get reward at least constant of the optimal reward r^{*}.

Outline

(1) Bandit problem

- Our focus: beyond linearity and concavity
(2) Stochastic Quadratic Reward
- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials

- Symmetric setting
- Lower bound
(4) Noiseless two-layer neural network
(5) Conclusion and Future direction

Upper bound via solving polynomial equations

$$
\begin{aligned}
& f(\boldsymbol{a})=\sum_{i=1}^{k} \lambda_{i}\left\langle\boldsymbol{v}_{i}, \boldsymbol{a}\right\rangle^{p_{i}}, k \geq \max _{i}\left\{p_{i}\right\}: \\
& R(T) \lesssim \min \{T, d k\} \\
& \text { - } f(\boldsymbol{a})=q(\boldsymbol{U} \boldsymbol{a}), \boldsymbol{U} \in \mathbb{R}^{k \times d}, \operatorname{deg} q(\cdot) \leq p \\
& \qquad R(T) \lesssim \min \left\{T, d k+(k+1)^{p}\right\} .
\end{aligned}
$$

However, we can construct action sets where any $U C B$ algorithm

$$
R(T) \geq \min \left\{T,\binom{d}{p}\right\}
$$

Extension to RL in simulator setting

$$
\mathcal{T}_{h}\left(Q_{h+1}\right)(s, a)=r_{h}(s, a)+\mathbb{E}_{s^{\prime} \sim \mathbb{P}(\cdot \mid s, a)}\left[\max _{a^{\prime}} Q_{h+1}\left(s^{\prime}, a^{\prime}\right)\right] .
$$

Extension to RL in simulator setting

$$
\mathcal{T}_{h}\left(Q_{h+1}\right)(s, a)=r_{h}(s, a)+\mathbb{E}_{s^{\prime} \sim \mathbb{P}(\cdot \mid s, a)}\left[\max _{a^{\prime}} Q_{h+1}\left(s^{\prime}, a^{\prime}\right)\right] .
$$

Settings:

- Assume $\mathcal{F}_{E V}=\left\{f_{M}(s, a)=\phi(s, a)^{\top} \boldsymbol{M} \phi(s, a)\right.$, $\operatorname{rank}(M) \leq k\}$ is Bellman complete
- Observation: we query s_{h-1}, a_{h-1}, we observe $s_{h}^{\prime} \sim \mathbb{P}\left(\cdot \mid s_{h-1}, a_{h-1}\right)$ and reward $r_{h-1}\left(s_{h-1}, a_{h-1}\right)$.

$$
\mathcal{T}_{h}\left(Q_{h+1}\right)(s, a)=r_{h}(s, a)+\mathbb{E}_{s^{\prime} \sim \mathbb{P}(\cdot \mid s, a)}\left[\max _{a^{\prime}} Q_{h+1}\left(s^{\prime}, a^{\prime}\right)\right] .
$$

Settings:

- Assume $\mathcal{F}_{E V}=\left\{f_{\boldsymbol{M}}(s, a)=\phi(s, a)^{\top} \boldsymbol{M} \phi(s, a)\right.$, $\operatorname{rank}(M) \leq k\}$ is Bellman complete
- Observation: we query s_{h-1}, a_{h-1}, we observe $s_{h}^{\prime} \sim \mathbb{P}\left(\cdot \mid s_{h-1}, a_{h-1}\right)$ and reward $r_{h-1}\left(s_{h-1}, a_{h-1}\right)$.
Extend our findings from bandit:
- We can estimate $\widehat{\boldsymbol{M}}_{h}, h=H, H-1, \cdots 1$ up to ϵ / H error with $\widetilde{O}\left(d^{2} k^{2} H^{2} / \epsilon^{2}\right)$ samples
- Overall we can learn ϵ-optimal policy π with $\widetilde{O}\left(d^{2} k^{2} H^{3} / \epsilon^{2}\right)$ samples

$$
\mathcal{T}_{h}\left(Q_{h+1}\right)(s, a)=r_{h}(s, a)+\mathbb{E}_{s^{\prime} \sim \mathbb{P}(\cdot \mid s, a)}\left[\max _{a^{\prime}} Q_{h+1}\left(s^{\prime}, a^{\prime}\right)\right] .
$$

Settings:

- Assume $\mathcal{F}_{E V}=\left\{f_{M}(s, a)=\phi(s, a)^{\top} \boldsymbol{M} \phi(s, a)\right.$, $\operatorname{rank}(M) \leq k\}$ is Bellman complete
- Observation: we query s_{h-1}, a_{h-1}, we observe $s_{h}^{\prime} \sim \mathbb{P}\left(\cdot \mid s_{h-1}, a_{h-1}\right)$ and reward $r_{h-1}\left(s_{h-1}, a_{h-1}\right)$.
Extend our findings from bandit:
- We can estimate $\widehat{M}_{h}, h=H, H-1, \cdots 1$ up to ϵ / H error with $\widetilde{O}\left(d^{2} k^{2} H^{2} / \epsilon^{2}\right)$ samples
- Overall we can learn ϵ-optimal policy π with $\widetilde{O}\left(d^{2} k^{2} H^{3} / \epsilon^{2}\right)$ samples
In contrast, optimistic algorithm requires $O\left(d^{3} H^{3} / \epsilon^{2}\right)$ samples (or $O\left(d^{3} H^{2} / \epsilon^{2}\right)$ trajectories) (Zanette et al. 2020, Jin et al. 2021)

Outline

(1) Bandit problem

- Our focus: beyond linearity and concavity
(2) Stochastic Quadratic Reward
- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward
(3) Stochastic high-order homogeneous polynomials
- Symmetric setting
- Lower bound
(4) Noiseless two-layer neural network
(5) Conclusion and Future direction

Conclusions

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- Optimistic algorithms have suboptimal regret \Rightarrow allow to play suboptimally sometimes

Conclusions

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- Optimistic algorithms have suboptimal regret \Rightarrow allow to play suboptimally sometimes
- Initial snr is already $1 / d^{p} \Rightarrow$ with (super)linear convergence rate, can hope to get optimal dependence on d

Conclusions

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- Optimistic algorithms have suboptimal regret \Rightarrow allow to play suboptimally sometimes
- Initial snr is already $1 / d^{p} \Rightarrow$ with (super)linear convergence rate, can hope to get optimal dependence on d
- Initial phase is the hardest \Rightarrow play adaptively and consider burn-in algorithms

Conclusions

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- Optimistic algorithms have suboptimal regret \Rightarrow allow to play suboptimally sometimes
- Initial snr is already $1 / d^{p} \Rightarrow$ with (super)linear convergence rate, can hope to get optimal dependence on d
- Initial phase is the hardest \Rightarrow play adaptively and consider burn-in algorithms
- Strongly convex action set \Rightarrow Still have \sqrt{T} PAC to regret conversion with explore-then-commit

Future directions

- Settle whether the condition number dependence is necessary

Future directions

- Settle whether the condition number dependence is necessary
- Non-orthogonal high-order polynomials?

Future directions

- Settle whether the condition number dependence is necessary
- Non-orthogonal high-order polynomials?
- Discrete action set?

Future directions

- Settle whether the condition number dependence is necessary
- Non-orthogonal high-order polynomials?
- Discrete action set?
- Extension multi-task representation learning for bandits or MDPs

Thank you!

