Optimal Gradient-based Algorithms for Non-concave Bandit Optimization

Jason D. Lee Princeton University

Joint work with

Qi Lei, Baihe Huang, Kaixuan Huang, Sham M Kakade, Jason D Lee, Runzhe Wang, and Jiaqi Yang

Slides by Qi Lei

Qi Lei is on the academic job market for 2021-2022. Baihe Huang will be applying to PhD programs. https://arxiv.org/abs/2107.04518

Bandit Problem

An agent interacts with the environment, only receives a scalar reward, and aims to maximize the reward.

- Each round, play action from action set: $a_t \in \mathcal{A} \subset \mathbb{R}^d$,
- Unknown reward function f
- Observe the (noisy) reward: $r_t = f(a) + \eta_t$, (η_t is mean-zero sub-gaussian noise)
- Goal: maximize reward and minimize regret: $R(T) = \sum_{t=1}^{T} r^* - f(\boldsymbol{a}_t). \ r^* = \max_{\boldsymbol{a} \in \mathcal{A}} f(\boldsymbol{a}).$

- Ad placement
- 2 Recommendation services
- O Network routing
- Oynamic pricing
- Sesource allocation
- O Necessary step to RL
- **7** ...

Our focus: beyond linearity and concavity

Motivation

- Linear bandit is well-studied, but doesn't have sufficient representation power
- Existing analysis on nonlinear setting is potentially sub-optimal

Our goal:

- What is the optimal regret for non-concave bandit problems, including structured polynomials (low-rank etc.)?
- Can we design algorithms with optimal dimension dependency?

• The stochastic bandit eigenvector case

$$\mathcal{F}_{\mathsf{EV}} = \left\{ f_{\boldsymbol{\theta}}(\boldsymbol{a}) = \boldsymbol{a}^T \boldsymbol{M} \boldsymbol{a}, \boldsymbol{M} = \sum_{j=1}^k \lambda_j \boldsymbol{v}_j \boldsymbol{v}_j^\top \right\}$$

- The stochastic bandit eigenvector case
- The stochastic low-rank linear reward case

$$\mathcal{F}_{\mathsf{LR}} = \left\{ \begin{array}{l} f_{\boldsymbol{ heta}}(\boldsymbol{A}) = \langle \boldsymbol{M}, \boldsymbol{A}
angle = \mathrm{vec}(\boldsymbol{M})^{\top} \mathrm{vec}(\boldsymbol{A}) \end{array}
ight\}.$$

- The stochastic bandit eigenvector case
- The stochastic low-rank linear reward case
- The stochastic homogeneous polynomial reward case Symmetric:

$$\mathcal{F}_{\mathsf{SYM}} = \left\{ f_{\boldsymbol{\theta}}(\boldsymbol{a}) = \sum_{j=1}^{k} \lambda_j (\boldsymbol{v}_j^{\top} \boldsymbol{a})^p \text{ for orthonormal } \boldsymbol{v}_j \right\};$$

Asymmetric:

$$\mathcal{F}_{\mathsf{ASYM}} = \left\{ \begin{array}{l} f_{\boldsymbol{\theta}}(\boldsymbol{a}) = \sum_{j=1}^{k} \lambda_j \prod_{q=1}^{p} (\boldsymbol{v}_j(q)^{\top} \boldsymbol{a}(q)), \\ \text{for orthonormal } \boldsymbol{v}_j(q) \text{ for each } q \end{array} \right\}$$

- The stochastic bandit eigenvector case
- The stochastic low-rank linear reward case
- The stochastic homogeneous polynomial reward case
- The noiseless two-layer neural network case

$$\mathcal{F}_{\mathsf{NN}_1} = \left\{ f_{\boldsymbol{\theta}}(\boldsymbol{a}) = \sum_{i=1}^k \lambda_i \langle \boldsymbol{v}_i, \boldsymbol{a} \rangle^{p_i}, k \ge \max_i \{p_i\} \right\}.$$
$$\mathcal{F}_{\mathsf{NN}_2} = \left\{ f_{\boldsymbol{\theta}}(\boldsymbol{a}) = q(\boldsymbol{U}\boldsymbol{a}), \boldsymbol{U} \in \mathbb{R}^{k \times d}, \deg q(\cdot) \le p \right\}.$$

Bandit problem

• Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward

- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward
- 3 Stochastic high-order homogeneous polynomials
 - Symmetric setting
 - Lower bound
- 4 Noiseless two-layer neural network
- 5 Conclusion and Future direction

- Action set: $\mathcal{A} = \{ \boldsymbol{a} \in \mathbb{R}^d : \| \boldsymbol{a} \|_2 \leq 1 \}$
- Noisy reward: $r_t = f_{\theta}(a_t) + \eta_t$.

$$f_{\boldsymbol{ heta}}(\boldsymbol{a}) = \boldsymbol{a}^T \boldsymbol{M} \boldsymbol{a}, \boldsymbol{M} = \sum_{j=1}^k \lambda_j \boldsymbol{v}_j \boldsymbol{v}_j^{\top}$$
 for orthonormal $\boldsymbol{v}_j,$
 $\boldsymbol{M} \in \mathbb{R}^{d imes d}, 1 \ge \lambda_1 \ge |\lambda_2| \ge \cdots \ge |\lambda_k|$

• Optimal action $oldsymbol{a}^*=\pmoldsymbol{v}_1.$

Prior Conjectures and Adapting Existing Work

• Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega(\sqrt{d^3T})$

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega(\sqrt{d^3T})$
- Phase retrieval (k = 1 case): lower bound of d^3/ϵ^2 to attain ϵ -optimal solution in the non-adaptive setting (Candes et al. 2015) (Cai et al. 2016)

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega(\sqrt{d^3T})$
- Phase retrieval (k = 1 case): lower bound of d^3/ϵ^2 to attain ϵ -optimal solution in the non-adaptive setting
- Eluder dimension: With EluderUCB algorithm, one can achieve regret of $\widetilde{O}(\sqrt{d_E \log \mathcal{N} \cdot T}) = \widetilde{O}(\sqrt{d^3 kT})$, here covering number $\log \mathcal{N} = \widetilde{O}(dk)$, and eluder dimension $d_E = \widetilde{\Theta}(d^2)$. (e.g. Russo and Van Roy 2013)

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega(\sqrt{d^3T})$
- Phase retrieval (k = 1 case): lower bound of d^3/ϵ^2 to attain ϵ -optimal solution in the non-adaptive setting
- Eluder dimension: With EluderUCB algorithm, one can achieve regret of $\widetilde{O}(\sqrt{d_E \log \mathcal{N} \cdot T}) = \widetilde{O}(\sqrt{d^3 k T})$, here covering number $\log \mathcal{N} = \widetilde{O}(dk)$, and eluder dimension $d_E = \widetilde{\Theta}(d^2)$. (e.g. Russo and Van Roy 2013)
- Bandit PCA: $\sqrt{d^3T}$ regret in the adversarial bandit setting (Kotłowski and Neu 2019)

- Jun et al. 2019 conjecture the regret for bandit eigenvector is at least $\Omega(\sqrt{d^3T})$
- Phase retrieval (k = 1 case): lower bound of d^3/ϵ^2 to attain ϵ -optimal solution in the non-adaptive setting
- Eluder dimension: With EluderUCB algorithm, one can achieve regret of $\widetilde{O}(\sqrt{d_E \log \mathcal{N} \cdot T}) = \widetilde{O}(\sqrt{d^3 k T})$, here covering number $\log \mathcal{N} = \widetilde{O}(dk)$, and eluder dimension $d_E = \widetilde{\Theta}(d^2)$. (e.g. Russo and Van Roy 2013)
- Bandit PCA: $\sqrt{d^3T}$ regret in the adversarial bandit setting (Kotłowski and Neu 2019)
- Summary: $\sqrt{d^3T}$ is attainable and conjectured to be optimal.

Why the Conjecture?

Intuition of Jun et al. 2019]

Let's first look at the simplest case: $f(a_t) = (a_t^{\top} \theta^*)^2$ (Bandit phase retrieval)

- A random action ${\boldsymbol{a}} \sim {\sf Unif}(\mathbb{S}^{d-1})$ has $f({\boldsymbol{a}}) symp 1/d$
- Noise has standard deviation $\Omega(1)$
- SNR is ${\cal O}(1/d^2)$
- $\boldsymbol{\theta}^*$ requires d bits to encode

Conclusion: if we were to play non-adaptively, this would require $O(d^3)$ queries and result in regret $\sqrt{d^3T}.$

Our method: noisy power method

Recall $f(\boldsymbol{a}) = \boldsymbol{a}^{\top} \boldsymbol{M} \boldsymbol{a}$.

Define $\kappa := \frac{\lambda_1}{\lambda_1 - |\lambda_2|}$.

- Samples per iteration: $\widetilde{O}(d^2\kappa^2/\epsilon^2)$
- Total iterations: $\kappa \log(d/\epsilon)$
- PAC sample complexity: $\widetilde{O}(\kappa^3 d^2/\epsilon^2)$ to make sure $\tan\theta(a,a^*) \leq \epsilon$
- PAC to regret: $\sqrt{\kappa^3 d^2 T}$.

Concurrent work of Lattimore and Hao also show $\sqrt{d^2T}$ regret in the rank 1 case.

Problem II: Stochastic Low-rank linear reward

- Action set: $\mathcal{A} = \{ \boldsymbol{A} \in \mathbb{R}^{d \times d} : \| \boldsymbol{M} \|_F \leq 1 \}$
- Noisy reward: $r_t = f_{\theta}(a_t) + \eta_t$.

$$f_{\boldsymbol{\theta}}(\boldsymbol{A}) = \langle \boldsymbol{M}, \boldsymbol{A} \rangle = \operatorname{vec}(\boldsymbol{M})^{\top} \operatorname{vec}(\boldsymbol{A}),$$

rank $(\boldsymbol{M}) = k$

• Optimal action $A^* = M/\|M\|_F$.

٠

Our algorithm: noisy subspace iteration

$$\boldsymbol{z}_t \sim \mathcal{N}(0, \sigma^2 \boldsymbol{I})$$
$$\boldsymbol{Y} \approx \boldsymbol{M} \boldsymbol{X}, \boldsymbol{A}^+ \approx \boldsymbol{M} \boldsymbol{X} \boldsymbol{X}^\top$$

Regret comparisons: quadratic reward

\mathcal{F}_{EV}	$LB\;(k=1)$	Jun et al, 2019	NPM	Gap-free NPM	Subspace Iteration	
Regret	$\sqrt{d^2T}$	$\sqrt{d^3k\lambda_k^{-2}T}$	$\sqrt{\kappa^3 d^2 T}$	$d^{2/5}T^{4/5}$	$\min(k^{4/3}(dT)^{2/3}, k^{1/3}(\widetilde{\kappa}dT)^{2/3})$	
\mathcal{F}_{LR}	LB (Lu e	t al, 2021)	UB (Lu et al, 2021)		Subspace Iteration	
Regret	$\Omega(\sqrt{a})$	$\overline{d^2k^2T}$) \checkmark	$\sqrt{d^3kT}^*$ or $\sqrt{d^3k\lambda_k^{-2}T}$		$\min(\sqrt{d^2k\lambda_k^{-2}T}, (dkT)^{2/3})$	

1 Bandit problem

• Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward

- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward

Stochastic high-order homogeneous polynomials

- Symmetric setting
- Lower bound
- 4 Noiseless two-layer neural network

5 Conclusion and Future direction

Higher-order problems

Signal strength becomes weaker for larger p

Random action $a \sim \text{Unif}(\mathbb{S}^{d-1})$, the average signal strength is: $(a^{\top}a^*)^p \sim d^{-p/2}$.

Eluder-UCB incurs $\sqrt{d^{p+1}T}$ regret, which is also what the incorrect heuristic predicts

Problem III: Symmetric High-order Polynomial Bandit

• Action set: $\mathcal{A} = \{ \boldsymbol{a} \in \mathbb{R}^d : \| \boldsymbol{a} \|_2 \leq 1 \}$

• Noisy reward: $r_t = f_{\theta}(a_t) + \eta_t$.

$$\begin{aligned} f_{\boldsymbol{\theta}}(\boldsymbol{a}) &= \sum_{j=1}^{k} \lambda_j (\boldsymbol{v}_j^{\top} \boldsymbol{a})^p, \text{ for orthonormal } \boldsymbol{v}_j, \\ 1 &\geq r^* = |\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_k| \end{aligned}$$

- Equivalently $f(a) = T(a^{\otimes p})$, where $T = \sum_{j=1}^k \lambda_j v_j^{\otimes p}$
- Optimal action $oldsymbol{a}^* = oldsymbol{v}_1.$

Algorithm: Zeroth order gradient-like ascent

 $f(\boldsymbol{a}) = \boldsymbol{T}(\boldsymbol{a}^{\otimes p}).$

 $oldsymbol{a}^+$ performs multiple tensor product on $oldsymbol{a}$ with order $p,p-2,\cdots$

Regret			\mathcal{F}_{SYM}	\mathcal{F}_{ASYM}	\mathcal{F}_{EV}	\mathcal{F}_{LR}
LinUCB/eluder			$\sqrt{d^{p+1}kT}$	$\sqrt{d^{p+1}kT}$	$\sqrt{d^3kT}$	$\sqrt{d^3kT}$
	NPM	Gap	N/A	N/A	$\sqrt{\kappa^3 d^2 T}$	$\sqrt{d^2k\lambda_k^{-2}T}$
Our Results		Gap-free	$\sqrt{d^p kT}$	$\sqrt{k^p d^p T}$	$k^{4/3}(dT)^{2/3}$	$(dkT)^{2/3}$
	Lower Bound		$\sqrt{d^pT}$	$\sqrt{d^pT}$	$\sqrt{d^2T}$	$\sqrt{d^2k^2T}$ 1

Tighter Analysis

We can first learn a to constant accuracy via $kd^p/(r^*)^2$ actions and then can use fewer samples per iteration:

$$\widetilde{O}(\frac{kd^p}{r^*} + \sqrt{kd^2T}).$$

- The hardest part is the burn-in to get constant accuracy.
- Once in a region of local strong convexity, linear convergence ensures good regret.

Minimax regret lower bound

For all adaptive algorithms:

• Symmetric action set: $R(T) \ge \Omega(\sqrt{d^pT}/p^p)$

Minimax regret lower bound

For all adaptive algorithms:

- Symmetric action set: $R(T) \ge \Omega(\sqrt{d^pT}/p^p)$
- Asymmetric action set: $R(T) \ge \Omega(\sqrt{d^pT})$

Minimax regret lower bound

For all adaptive algorithms:

- Symmetric action set: $R(T) \ge \Omega(\sqrt{d^pT}/p^p)$
- Asymmetric action set: $R(T) \ge \Omega(\sqrt{d^pT})$

Optimality on burn-in phase

For all adaptive algorithms, we need at least $\Omega(\frac{d^p}{(r^*)^2})$ actions to get reward at least constant of the optimal reward r^* .

1 Bandit problem

• Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward

- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials

- Symmetric setting
- Lower bound

4 Noiseless two-layer neural network

5 Conclusion and Future direction

Upper bound via solving polynomial equations

•
$$f(\boldsymbol{a}) = \sum_{i=1}^{k} \lambda_i \langle \boldsymbol{v}_i, \boldsymbol{a} \rangle^{p_i}, \ k \ge \max_i \{p_i\}$$
:

 $R(T) \lesssim \min\{T, dk\}$

•
$$f(\boldsymbol{a}) = q(\boldsymbol{U}\boldsymbol{a}), \boldsymbol{U} \in \mathbb{R}^{k \times d}, \deg q(\cdot) \le p$$
:

$$R(T) \lesssim \min\{T, dk + (k+1)^p\}.$$

However, we can construct action sets where any UCB algorithm

$$R(T) \ge \min\left\{T, \begin{pmatrix} d \\ p \end{pmatrix}\right\}.$$

Extension to RL in simulator setting

$$\mathcal{T}_{h}(Q_{h+1})(s,a) = r_{h}(s,a) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)}[\max_{a'} Q_{h+1}(s',a')].$$

Extension to RL in simulator setting

$$\mathcal{T}_{h}(Q_{h+1})(s,a) = r_{h}(s,a) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)}[\max_{a'} Q_{h+1}(s',a')].$$

Settings:

- Assume $\mathcal{F}_{EV} = \{ f_M(s, a) = \phi(s, a)^\top M \phi(s, a),$ rank $(M) \leq k \}$ is Bellman complete
- Observation: we query s_{h-1}, a_{h-1} , we observe $s'_h \sim \mathbb{P}(\cdot | s_{h-1}, a_{h-1})$ and reward $r_{h-1}(s_{h-1}, a_{h-1})$.

Extension to RL in simulator setting

$$\mathcal{T}_h(Q_{h+1})(s,a) = r_h(s,a) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)}[\max_{a'} Q_{h+1}(s',a')].$$

Settings:

- Assume $\mathcal{F}_{EV} = \{f_M(s, a) = \phi(s, a)^\top M \phi(s, a),$ rank $(M) \leq k\}$ is Bellman complete
- Observation: we query s_{h-1}, a_{h-1} , we observe $s'_h \sim \mathbb{P}(\cdot | s_{h-1}, a_{h-1})$ and reward $r_{h-1}(s_{h-1}, a_{h-1})$.

Extend our findings from bandit:

- We can estimate $\widehat{M}_h, h = H, H 1, \cdots 1$ up to ϵ/H error with $\widetilde{O}(d^2k^2H^2/\epsilon^2)$ samples
- Overall we can learn $\epsilon\text{-optimal policy }\pi$ with $\widetilde{O}(d^2k^2H^3/\epsilon^2)$ samples

Extension to RL in simulator setting

$$\mathcal{T}_h(Q_{h+1})(s,a) = r_h(s,a) + \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)}[\max_{a'} Q_{h+1}(s',a')].$$

Settings:

- Assume $\mathcal{F}_{EV} = \{ f_M(s, a) = \phi(s, a)^\top M \phi(s, a),$ rank $(M) \leq k \}$ is Bellman complete
- Observation: we query s_{h-1}, a_{h-1} , we observe $s'_h \sim \mathbb{P}(\cdot | s_{h-1}, a_{h-1})$ and reward $r_{h-1}(s_{h-1}, a_{h-1})$.

Extend our findings from bandit:

- We can estimate $\widehat{M}_h, h=H,H-1,\cdots 1$ up to ϵ/H error with $\widetilde{O}(d^2k^2H^2/\epsilon^2)$ samples
- Overall we can learn $\epsilon\text{-optimal policy }\pi$ with $\widetilde{O}(d^2k^2H^3/\epsilon^2)$ samples

In contrast, optimistic algorithm requires $O(d^3H^3/\epsilon^2)$ samples (or $O(d^3H^2/\epsilon^2)$ trajectories) (Zanette et al. 2020, Jin et al. 2021)

1 Bandit problem

• Our focus: beyond linearity and concavity

2 Stochastic Quadratic Reward

- Stochastic Bandit Eigenvector Problem
- Stochastic Low-rank linear reward

3 Stochastic high-order homogeneous polynomials

- Symmetric setting
- Lower bound
- 4 Noiseless two-layer neural network

5 Conclusion and Future direction

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

 $\bullet~$ Optimistic algorithms have suboptimal regret $\Rightarrow~$ allow to play suboptimally sometimes

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- $\bullet\,$ Optimistic algorithms have suboptimal regret \Rightarrow allow to play suboptimally sometimes
- Initial snr is already $1/d^p \Rightarrow$ with (super)linear convergence rate, can hope to get optimal dependence on d

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- $\bullet~$ Optimistic algorithms have suboptimal regret $\Rightarrow~$ allow to play suboptimally sometimes
- Initial snr is already $1/d^p \Rightarrow$ with (super)linear convergence rate, can hope to get optimal dependence on d
- Initial phase is the hardest ⇒ play adaptively and consider burn-in algorithms

We find optimal regret for different types of reward function classes:

- the stochastic bandit eigenvector case
- the stochastic low-rank linear reward case
- the stochastic homogeneous polynomial reward case
- the noiseless neural network with polynomial activation

Take-away messages

- $\bullet\,$ Optimistic algorithms have suboptimal regret \Rightarrow allow to play suboptimally sometimes
- Initial snr is already $1/d^p \Rightarrow$ with (super)linear convergence rate, can hope to get optimal dependence on d
- Initial phase is the hardest \Rightarrow play adaptively and consider burn-in algorithms
- Strongly convex action set \Rightarrow Still have \sqrt{T} PAC to regret conversion with explore-then-commit

• Settle whether the condition number dependence is necessary

- Settle whether the condition number dependence is necessary
- Non-orthogonal high-order polynomials?

- Settle whether the condition number dependence is necessary
- Non-orthogonal high-order polynomials?
- Discrete action set?

- Settle whether the condition number dependence is necessary
- Non-orthogonal high-order polynomials?
- Discrete action set?
- Extension multi-task representation learning for bandits or MDPs

Thank you!