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Deep
Is this the right timing? 
Ø Q: why should I study deep RL theory

Ø before understanding deep learning
Ø before understanding out-of-domain generalization and uncertainty

quantification with neural nets?

Ø My (debatable) answers:
Ø Assuming computational oracle, deep RL theory may be easier than DL

theory
Ø Extrapolation to new domain in sequential setting may be easier than in

static setting
§ online learning of neural nets is doable
§ but out-of-domain generalization for neural nets is challenging and

requires assumptions on domain shift



Ø Claim: none of these applies to even RL with general one-layer neural 

net approximation for dynamics (more evidence later) 

[Bilinear Classes: A Structural Framework for Provable Generalization in RL. 

Du-Kakade-Lee-Lovett- Mahajan- Sun-Wang’21]



Ø Reward function !(#, %)
Ø # ∈ Θ: model parameter 
Ø % ∈ *: continuous action
Ø Ex1: linear bandit: ! #, % = #,%
Ø Ex2: neural net bandit: ! #, % = NN. %

Ø Realizable and deterministic reward setting:  
Ø Ground-truth #⋆ ∈ Θ
Ø We observe the ground-truth reward !(#⋆, %0) after playing %0

Ø Goal: to find the best arm 

%⋆ = argmax
6∈*

!(#⋆, %)



Statistically
Ø Θ and % are	unit	ℓ--balls	in	ℝ3

4 5, 7 = relu(5:7 − 0.9)

7⋆ = argm7C
||E||FGH

relu 5⋆:7 − 0.9 = 5⋆

{7: 5⋆:7 ≥ 0.9} has  
exp(−O) prob. mass

5⋆

Random actions 
have zero rewards 

and no info about 5⋆

needle in a haystack!

4(5⋆,⋅)

7H
7-



Smooth and Non-Sparse

local maximum
global maximum

random actions can 
only help learn the 

linear part 

Ø Extendable to RL with nonlinear family of dynamics and known reward

! (#, %), ' = #)' + +, ⋅ .(%) ' − 0.9)



Ø Claim: none of these applies to even RL with general one-layer neural 
net approximations for dynamics 
Ø It’s just impossible!



Ø Empirically deep RL still works well largely---it’s the limitation of theory

Ø Option 1: change / weaken the goal 

Ø Option 2: restrict to realistic family of problem instances
Ø E.g., two-layer neural nets without bias (and sample complexity 

depends on width) [Huang et al.’21]

Ø Option 3: combine option 1&2?



1. Convergences to local maxima for general instances

2. Analysis of the quality of local maxima of the ground-truth !(#⋆,⋅)
Ø All local maxima are global or satisfactory enough? 

Focus of this 
talk

some concave
examples



Baselines

Ø Let !⋆ # = !(&⋆, #)
Ø Zero-order optimization: estimate gradient ∇!⋆ # from !⋆ #

Ø Estimating ∇!⋆(#) doesn’t help estimating ∇!⋆(#′)
Ø at least +(,) sample complexity where , = action dimension

Q: can we leverage the model extrapolation to improve sample efficiency?
Ø Model-based methods are largely believed to be more sample-efficient 

than model-free methods 
Ø model = reward parameterization for bandit
Ø model = (dynamics model, reward) for RL



Theorem (informal): A model-based algorithm can converge to !-
approximate local maximum with "(ℜ Θ /!') samples, where ℜ(Θ) is a 
complexity measure of the model class ): + ),⋅ , ) ∈ Θ .

Ø complexity measure = sequential Rademacher complexity (which 
appears to be similar to standard Rademacher complexity) 



!", $" = argmax
+∈-

. /012 3421 5627894105:2

;($, !)

Ø Easy to learn >
Ø UCB keeps optimistically 

guessing >", ?" = (>⋆, ?)
and ! = ? for some random ?

Ø UCB fundamentally aims for global maximum and keeps exploring
Ø It also fails for deep RL empirically because the optimistic model  

fantasizes too much (anecdotal, [Luo et al.’18])

>"
?"

>⋆
?⋆

; (>, ?), ! = >A! + CD ⋅ F(?A ! − 0.9)



1. Exploration (virtual reward ≥ optimal reward)

by def. of optimism, " #$, &$ ≥ "(#⋆, &⋆)
2. Extrapolation (i.e., virtual ≈ real): 

∑$,-. " #$, &$ − " #⋆, &$
0 ≤ dim(Θ) ⋅ 7

Ø 1 + 2 ⇒ " #⋆, &$ ≈ " #$, &$ ≥ "(#⋆, &⋆)

Ø Step 2 fails for neural nets because 
Ø dim9:;<=>(Θ) = exp(C)
Ø b.c. learning #$ suboptimally: we only know that #$ fits past data

Ø e.g., Eluder dim

Ø virtual reward: " #$,⋅
Ø real reward: "(#⋆,⋅)

[Russo-Van Roy’13, Eluder Dimension and the Sample Complexity of Optimistic Exploration ]



2. Extrapolation by an online learning (OL) algorithm

∑"#$% & '", )" − & '⋆, )"
, ≤ SRC%(Θ)

Sequential Rademacher Complexity
[Rakhlin-Sridharan-Tewari’15]

Ø For finite hypothesis Θ, SRC4 Θ = log |Θ| ⋅ ;
Ø For neural nets: 

SRC = poly < ⋅ ; vs.    Eluder dim = exp(<)
Ø SRC can be dimension-free and only depend on the weight norm

Ø Source of gains: OL oracle chooses '" better than UCB by stochastic
predictions that hedges risks



ground-truth !(#⋆,⋅)

(⋆
)⋆

(*
)* = 0

(*
)*

loss

OL: )* = 0 (to hedge the risk)
loss = 0 at action  -* = (*

UCB: 
)* is random (to be optimistic) 

loss ≫ 0 at action  -* = )*

loss = ∑ ℓ #*, -* − ℓ #⋆, -*
2



1. Exploration (virtual reward ≥ optimal reward)

2. Extrapolation by an online learning (OL) 

∑#$%& ' (#, *# − ' (⋆, *#
- ≤ SRC&(Θ)

'((#,⋅) *

*#
*#6%

*%

'((⋆,⋅)

UCB will pick optimistic models
but too optimistic

an arbitrary model that fits
past observation



1. Exploration (virtual reward ≥ optimal reward)
Local, model-based exploration: virtual reward increases incrementally
2. Extrapolation by an online learning (OL) 

∑#$%& ' (#, *# − ' (⋆, *#
- ≤ SRC&(Θ)

Ø Step 1: modify the loss to predict directional reward gradient 
' (, * − ' (⋆, * - + ∇' (, *′ − ∇' (⋆, *′ , 8 -

Ø Step 2: take the best action according to the virtual reward
Ø accurate gradient estimation guarantees local first-order 

improvements (exploration)

Ø Model-based learning of gradient is more sample-efficient than model-
free estimate



1. Exploration (virtual reward ≥ optimal reward)
Local, model-based exploration: virtual reward increases incrementally
2. Extrapolation by an online learning (OL) 

∑#$%& ' (#, *# − ' (⋆, *#
- ≤ SRC&(Θ)

*

*#*#5%

*%

*#6%'((⋆,⋅)
matching gradient



1. Convergences to local maxima for general instances

2. Analysis of the quality of local maxima of the ground-truth !(#⋆,⋅)
Ø All local maxima are global or satisfactory enough? 

Focus of this 
talk

some concave
examples



Ø Linear bandit with structured model family: ! ", $ = "&$
Ø Θ is finite: O(log |Θ|) sample complexity 

§ squareUCB [Foster-Rakhlin’21] depends on action dimension
Ø Θ contains /-sparse vectors or only has /-degree of freedom: 
0(/ log 1) sample complexity

Ø Negative-weights neural net bandit: ! 2, $ = 34&5(26$)
Ø assume 0(1) norms bounds on ||34||6, |26|6
Ø !(2,⋅) is concave in $ --- all local max are global 
Ø SRC ≤ 0 : , sample complexity = ;0 1
Ø with general weights then can only find local max

§ conjecture: with random weights local max perhaps are very good?
ØNB: recovering the neural nets parameters does NOT seem to be easy 

(the learning loss is nonconvex)



Ø Dynamics !" and policy #$
Ø % &, ( = total expected return of policy #$ on dynamics !"
Ø Goal:  find local max of % &⋆,⋅
Challenge: 

How does learning dynamics help estimate the % &⋆,⋅ and its gradient? 
ØA result for stochastic policies

% &, ( − % &⋆, ( ≲ -.,/∼12⋆,34 !" 5, 6 − !"⋆(5, 6) 9

∇% &, ( − ∇% &⋆, ( ≲ -.,/∼12⋆,34[ !" 5, 6 − !"⋆(5, 6) 9]
∇9% &, ( − ∇9% &⋆, ( ≲ -.,/∼12⋆,34[ !" 5, 6 − !"⋆(5, 6) 9]

Ø With many assumptions: 
§ Value functions are Lipschitz/smooth in states and policy paramaters
§ ∇ log #$ is bounded in various ways
§ Not vacuous: e.g., ! 5, 6 = AA"(5 + 6) and  linear policy can work 



Ø Global regret for nonlinear models is statistically intractable 
Ø ViOL converges to a local maximum with sample complexity that only 

depends on the model class complexity

Open questions: 
Ø Bandit with stochastic rewards
Ø Faster convergence rate / smaller regret
Ø Analyze !-learning algorithms?
Ø Analyze more special instances with global convergence

Thank you!


