# Provable Model-based Nonlinear Bandit (and RL)

#### Tengyu Ma



#### **Stanford University**



**Kefan Dong** Stanford University



Jiaqi Yang UC Berkeley

# Toward a Theory for **Deep** Reinforcement Learning?

Is this the right timing?

- Q: why should I study deep RL theory
  - before understanding deep learning
  - before understanding out-of-domain generalization and uncertainty quantification with neural nets?
- > My (debatable) answers:
  - Assuming computational oracle, deep RL theory may be easier than DL theory
  - Extrapolation to new domain in sequential setting may be easier than in static setting
    - online learning of neural nets is doable
    - but out-of-domain generalization for neural nets is challenging and requires assumptions on domain shift

#### State-of-the-art Analyses for RL (Until Recent 2-3 Months)

|                                                             | B-Rank                            | B-Complete   | W-Rank       | Bilinear Class (this work) |  |
|-------------------------------------------------------------|-----------------------------------|--------------|--------------|----------------------------|--|
| Tabular MDP                                                 | $\checkmark$                      | $\checkmark$ | $\checkmark$ | ✓                          |  |
| Reactive POMDP [Krishnamurthy et al., 2016]                 | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Block MDP [Du et al., 2019a]                                | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Flambe / Feature Selection [Agarwal et al., 2020b]          | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Reactive PSR [Littman and Sutton, 2002]                     | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Linear Bellman Complete [Munos, 2005]                       | X                                 | $\checkmark$ | ×            | $\checkmark$               |  |
| Linear MDPs [Yang and Wang, 2019, Jin et al., 2020]         | √!                                | $\checkmark$ | √!           | $\checkmark$               |  |
| Linear Mixture Model [Modi et al., 2020b]                   | X                                 | ×            | ×            | $\checkmark$               |  |
| Linear Quadratic Regulator                                  | X                                 | $\checkmark$ | ×            | $\checkmark$               |  |
| Kernelized Nonlinear Regulator [Kakade et al., 2020]        | X                                 | ×            | ×            | $\checkmark$               |  |
| Q <sup>*</sup> "irrelevant" State Aggregation [Li, 2009]    | $\checkmark$                      | ×            | ×            | $\checkmark$               |  |
| Linear $Q^*/V^*$ (this work)                                | X                                 | ×            | X            | $\checkmark$               |  |
| RKHS Linear MDP (this work)                                 | X                                 | ×            | X            | $\checkmark$               |  |
| RKHS Linear Mixture MDP (this work)                         | X                                 | ×            | X            | $\checkmark$               |  |
| Low Occupancy Complexity (this work)                        | ×                                 | ×            | X            | $\checkmark$               |  |
| Q <sup>*</sup> State-action Aggregation [Dong et al., 2020] | X                                 | ×            | X            | X                          |  |
| Deterministic linear $Q^*$ [Wen and Van Roy, 2013]          | ×                                 | X            | ×            | ×                          |  |
| Linear $Q^*$ [Weisz et al., 2020]                           | Sample efficiency is not possible |              |              |                            |  |

Claim: none of these applies to even RL with general one-layer neural net approximation for dynamics (more evidence later)

> [Bilinear Classes: A Structural Framework for Provable Generalization in RL. Du-Kakade-Lee-Lovett- Mahajan- Sun-Wang'21]

# **Neural Net Bandit:** A Simplification With H = 1

- > Reward function  $\eta(\theta, a)$ 
  - $\succ$  θ ∈ Θ: model parameter
  - $\succ a \in \mathcal{A}$ : continuous action
  - > Ex1: linear bandit:  $\eta(\theta, a) = \theta^{\top} a$
  - > Ex2: neural net bandit:  $\eta(\theta, a) = NN_{\theta}(a)$
- Realizable and deterministic reward setting:
  - ≻ Ground-truth  $\theta^* \in \Theta$
  - > We observe the ground-truth reward  $\eta(\theta^{\star}, a_t)$  after playing  $a_t$
- Goal: to find the best arm

 $a^{\star} = \operatorname*{argmax}_{a \in \mathcal{A}} \eta(\theta^{\star}, a)$ 

### **Even One-layer Neural Net Bandit is <b>Statistically Hard!**

 $\succ \Theta$  and  $\mathcal{A}$  are unit  $\ell_2$ -balls in  $\mathbb{R}^d$ 

$$\eta(\theta, a) = \operatorname{relu}(\theta^{\top} a - 0.9)$$
$$a^* = \operatorname{argm} ax \operatorname{relu}(\theta^{*\top} a - 0.9) = \theta^*$$
$$||a||_2 \le 1$$



#### Hard Instances Can Also Have Smooth and Non-Sparse Rewards



> Extendable to RL with nonlinear family of dynamics and known reward

# State-of-the-art Analyses for RL

|                                                             | B-Rank                            | B-Complete   | W-Rank       | Bilinear Class (this work) |  |
|-------------------------------------------------------------|-----------------------------------|--------------|--------------|----------------------------|--|
| Tabular MDP                                                 | $\checkmark$                      | $\checkmark$ | $\checkmark$ | $\checkmark$               |  |
| Reactive POMDP [Krishnamurthy et al., 2016]                 | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Block MDP [Du et al., 2019a]                                | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Flambe / Feature Selection [Agarwal et al., 2020b]          | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Reactive PSR [Littman and Sutton, 2002]                     | $\checkmark$                      | ×            | $\checkmark$ | $\checkmark$               |  |
| Linear Bellman Complete [Munos, 2005]                       | X                                 | $\checkmark$ | ×            | $\checkmark$               |  |
| Linear MDPs [Yang and Wang, 2019, Jin et al., 2020]         | √!                                | $\checkmark$ | √!           | $\checkmark$               |  |
| Linear Mixture Model [Modi et al., 2020b]                   | X                                 | ×            | ×            | $\checkmark$               |  |
| Linear Quadratic Regulator                                  | X                                 | $\checkmark$ | ×            | $\checkmark$               |  |
| Kernelized Nonlinear Regulator [Kakade et al., 2020]        | X                                 | ×            | ×            | $\checkmark$               |  |
| $Q^{\star}$ "irrelevant" State Aggregation [Li, 2009]       | $\checkmark$                      | ×            | ×            | $\checkmark$               |  |
| Linear $Q^*/V^*$ (this work)                                | X                                 | ×            | X            | $\checkmark$               |  |
| RKHS Linear MDP (this work)                                 | X                                 | ×            | ×            | $\checkmark$               |  |
| RKHS Linear Mixture MDP (this work)                         | X                                 | ×            | X            | $\checkmark$               |  |
| Low Occupancy Complexity (this work)                        | X                                 | ×            | X            | $\checkmark$               |  |
| Q <sup>*</sup> State-action Aggregation [Dong et al., 2020] | X                                 | ×            | X            | X                          |  |
| Deterministic linear $Q^*$ [Wen and Van Roy, 2013]          | X                                 | X            | ×            | ×                          |  |
| Linear $Q^*$ [Weisz et al., 2020]                           | Sample efficiency is not possible |              |              |                            |  |

Claim: none of these applies to even RL with general one-layer neural net approximations for dynamics

It's just impossible!

### What's the Path Forward?

> Empirically deep RL still works well largely---it's the limitation of theory

- > Option 1: change / weaken the goal
- Option 2: restrict to realistic family of problem instances
  - E.g., two-layer neural nets without bias (and sample complexity depends on width) [Huang et al.'21]
- > Option 3: combine option 1&2?

#### A Proposed Paradigm (Analogous to Non-convex Optimization Literature)

- 1. Convergences to local maxima for general instances
- Analysis of the quality of local maxima of the ground-truth η(θ<sup>\*</sup>,·)
  ➤ All local maxima are global or satisfactory enough?

some concave examples Focus of this

#### Baselines for Converging to Local Maxima: Zero-order Optimization for Bandit and Policy Gradient for RL

 $\succ$  Let  $\eta^{\star}(a) = \eta(\theta^{\star}, a)$ 

- > Zero-order optimization: estimate gradient  $\nabla \eta^*(a)$  from  $\eta^*(a)$ 
  - > Estimating  $\nabla \eta^*(a)$  doesn't help estimating  $\nabla \eta^*(a')$
  - > at least O(d) sample complexity where d = action dimension

Q: can we leverage the model extrapolation to improve sample efficiency?

- Model-based methods are largely believed to be more sample-efficient than model-free methods
  - model = reward parameterization for bandit
  - model = (dynamics model, reward) for RL

### Main Results on Bandit

Theorem (informal): A model-based algorithm can converge to  $\epsilon$ approximate local maximum with  $O(\Re(\Theta)/\epsilon^4)$  samples, where  $\Re(\Theta)$  is a complexity measure of the model class  $\{\theta: \eta(\theta, \cdot), \theta \in \Theta\}$ .

complexity measure = sequential Rademacher complexity (which appears to be similar to standard Rademacher complexity)

#### **Does Classical Model-based UCB Converge to Local Max?**

 $a_t, \theta_t = \underset{\substack{a \in \mathcal{A} \\ \theta \text{ fits past observations}}}{\operatorname{argmax}} \eta(\theta, a)$ 



 $\succ$  Easy to learn  $\gamma$ 

► UCB keeps optimistically guessing (γ<sub>t</sub>, β<sub>t</sub>) = (γ<sup>\*</sup>, β) and a = β for some random β

 $\eta((\gamma,\beta),a) = \gamma^{\mathsf{T}}a + c_0 \cdot \sigma(\beta^{\mathsf{T}}a - 0.9)$ 

UCB fundamentally aims for global maximum and keeps exploring

It also fails for deep RL empirically because the optimistic model fantasizes too much (anecdotal, [Luo et al.'18])

# Where Does UCB Analysis Break?

virtual reward:  $\eta(\theta_t, \cdot)$ real reward:  $\eta(\theta^*, \cdot)$ 

1. Exploration (virtual reward  $\geq$  optimal reward)

by def. of optimism,  $\eta(\theta_t, a_t) \geq \eta(\theta^*, a^*)$ 

2. Extrapolation (i.e., virtual  $\approx$  real):

$$\sum_{t=1}^{T} \left( \eta(\theta_t, a_t) - \eta(\theta^*, a_t) \right)^2 \le \sqrt{\dim(\Theta) \cdot T}$$

e.g., Eluder dim

#### Step 2 fails for neural nets because

$$\succ \dim_{\mathrm{Eluder}}(\Theta) = \exp(d)$$

 $\succ$  b.c. learning  $\theta_t$  suboptimally: we only know that  $\theta_t$  fits past data

[Russo-Van Roy'13, Eluder Dimension and the Sample Complexity of Optimistic Exploration ]

2. Extrapolation by an online learning (OL) algorithm

$$\sum_{t=1}^{T} (\eta(\theta_t, a_t) - \eta(\theta^*, a_t))^2 \leq \text{SRC}_T(\Theta)$$
  
Sequential Rademacher Complexity  
[Rakhlin-Sridharan-Tewari'15]

> For finite hypothesis  $\Theta$ ,  $SRC_T(\Theta) = \sqrt{\log |\Theta| \cdot T}$ 

> For neural nets:

SRC =  $poly(d) \cdot \sqrt{T}$  vs. Eluder dim = exp(d)

SRC can be dimension-free and only depend on the weight norm

Source of gains: OL oracle chooses θ<sub>t</sub> better than UCB by stochastic predictions that hedges risks

### **OL Oracle Extrapolates Better**

$$\text{loss} = \sum \left( \ell(\theta_t, a_t) - \ell(\theta^\star, a_t) \right)^2$$

ground-truth  $\eta(\theta^{\star}, \cdot)$ 

OL:  $\beta_t = 0$  (to hedge the risk) loss = 0 at action  $a_t = \gamma_t$ 



UCB:

 $\beta_t$  is random (to be optimistic) loss  $\gg 0$  at action  $a_t = \beta_t$ 

1. Exploration (virtual reward  $\geq$  optimal reward)

2. Extrapolation by an online learning (OL)

$$\sum_{t=1}^{T} \left( \eta(\theta_t, a_t) - \eta(\theta^*, a_t) \right)^2 \le \text{SRC}_T(\Theta)$$



1. Exploration (virtual reward  $\geq$  optimal reward)

Local, model-based exploration: virtual reward increases incrementally

2. Extrapolation by an online learning (OL)

$$\sum_{t=1}^{T} \left( \eta(\theta_t, a_t) - \eta(\theta^*, a_t) \right)^2 \le \text{SRC}_T(\Theta)$$

- > Step 1: modify the loss to predict directional reward gradient  $(\eta(\theta, a) \eta(\theta^*, a))^2 + \langle \nabla \eta(\theta, a') \nabla \eta(\theta^*, a'), u \rangle^2$
- Step 2: take the best action according to the virtual reward
  accurate gradient estimation guarantees local first-order improvements (exploration)
- Model-based learning of gradient is more sample-efficient than modelfree estimate

1. Exploration (virtual reward  $\geq$  optimal reward)

Local, model-based exploration: virtual reward increases incrementally

2. Extrapolation by an online learning (OL)

$$\sum_{t=1}^{T} \left( \eta(\theta_t, a_t) - \eta(\theta^*, a_t) \right)^2 \le \text{SRC}_T(\Theta)$$



#### A Proposed Paradigm (Analogous to Non-convex Optimization Literature)

- 1. Convergences to local maxima for general instances
- Analysis of the quality of local maxima of the ground-truth η(θ<sup>\*</sup>,·)
  ➤ All local maxima are global or satisfactory enough?

some concave examples Focus of this

#### Implications of the Theorem Where All Local Max are Global Max

> Linear bandit with structured model family:  $\eta(\theta, a) = \theta^{\top} a$ 

- $\succ \Theta$  is finite:  $O(\log |\Theta|)$  sample complexity
  - squareUCB [Foster-Rakhlin'21] depends on action dimension
- ➤ Θ contains s-sparse vectors or only has s-degree of freedom: O(s log d) sample complexity
- > Negative-weights neural net bandit:  $\eta(W, a) = w_2^T \sigma(W_1 a)$ 
  - > assume O(1) norms bounds on  $||w_2||_1$ ,  $|W_1|_1$
  - $\succ \eta(W, \cdot)$  is concave in a --- all local max are global
  - > SRC  $\leq O(\sqrt{T})$ , sample complexity =  $\tilde{O}(1)$
  - with general weights then can only find local max
    - conjecture: with random weights local max perhaps are very good?
  - NB: recovering the neural nets parameters does NOT seem to be easy (the learning loss is nonconvex)

# A First-Cut Extension to Model-based RL

- > Dynamics  $T_{\theta}$  and policy  $\pi_{\psi}$
- $> \eta(\theta, \psi) =$ total expected return of policy  $\pi_{\psi}$  on dynamics  $T_{\theta}$
- > Goal: find local max of  $\eta(\theta^*, \cdot)$

Challenge:

How does learning dynamics help estimate the  $\eta(\theta^*, \cdot)$  and its gradient?

 $\begin{aligned} & \blacktriangleright A \text{ result for stochastic policies} \\ & |\eta(\theta,\psi) - \eta(\theta^*,\psi)| \lesssim \mathbb{E}_{s,a\sim T_{\theta^*},\pi_{\psi}}[\|T_{\theta}(s,a) - T_{\theta^*}(s,a)\|^2] \\ & \|\nabla\eta(\theta,\psi) - \nabla\eta(\theta^*,\psi)\| \lesssim \mathbb{E}_{s,a\sim T_{\theta^*},\pi_{\psi}}[\|T_{\theta}(s,a) - T_{\theta^*}(s,a)\|^2] \\ & \|\nabla^2\eta(\theta,\psi) - \nabla^2\eta(\theta^*,\psi)\| \lesssim \mathbb{E}_{s,a\sim T_{\theta^*},\pi_{\psi}}[\|T_{\theta}(s,a) - T_{\theta^*}(s,a)\|^2] \end{aligned}$ 

With many assumptions:

- Value functions are Lipschitz/smooth in states and policy paramaters
- $\nabla \log \pi_{\psi}$  is bounded in various ways
- Not vacuous: e.g.,  $T(s, a) = NN_{\theta}(s + a)$  and linear policy can work

# Summary

Global regret for nonlinear models is statistically intractable

ViOL converges to a local maximum with sample complexity that only depends on the model class complexity

Open questions:

- Bandit with stochastic rewards
- Faster convergence rate / smaller regret
- > Analyze *Q*-learning algorithms?
- Analyze more special instances with global convergence

#### Thank you!