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Problem Formulation

Suppose f : Rd → Rd. The aim is to find a solution to f(θ) = 0,
when only noisy measurements of f(·) are available.

Start with an initial guess θ0 ∈ Rd. At step t ≥ 0, let

yt+1 = f(θt) + ξt+1,

where ξt+1 is the measurement error. Update via

θt+1 = θt + αtyt+1 = θt + αt(f(θt) + ξt+1),

where {αt}t≥1 is a predetermined sequence of step sizes.

Question: When does θt → θ∗, where f(θ∗) = 0?

Started by Robbins and Monro (1951).
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Some Standard Assumptions

(F). θ∗ is the unique solution of f(θ) = 0.

(N). Define θt0 = {θ0, · · · ,θt}, and let Ft = σ(θt0, ξ
t
1). Then (i)

the measurements are unbiased, i.e.,

E(ξt+1|Ft) = 0 a.s.,

and (ii) the conditional variance grows quadratically, i.e.,
∃d <∞ such that

E(‖ξt+1‖22|Ft) ≤ d(1 + ‖θt‖22).

(S). Robbins-Monro (RM) conditions:

∞∑
t=0

αt =∞,
∞∑
t=0

α2
t <∞.
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A Typical Theorem

Theorem

Suppose (F), (N), and (S) hold. If f(·) satisfies some more
conditions, and if the iterates {θt} are bounded almost surely, then
θt → θ∗, a.s. as t→∞.

Almost sure boundedness of the iterates (“stability”) is a part of
the hypothesis, not a conclusion.

Question: Can the stability of the iterates be made a conclusion,
instead of being a part of the hypotheses?
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Borkar-Meyn Theorem (2000)

Assumptions:

All the standard assumptions (F), (N), (S).

f(·) is globally Lipschitz continuous, i.e., ∃L <∞ such that

‖f(θ)− f(φ)‖2 ≤ L‖θ − φ‖2, ∀θ,φ ∈ Rd.

There is a “limit function” f∞ such that

f(rθ)

r
→ f∞(θ) as r →∞,

uniformly over compact subsets of Rd.

0 is a globally exponentially stable equilibrium of

θ̇ = f∞(θ).
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Borkar-Meyn Theorem (2000) – Cont’d

Theorem

Under the stated assumptions,

1 {θt} is bounded almost surely.

2 θt → θ∗ as t→∞.

The a.s. boundedness of {θt} is a conclusion, not a hypothesis.

Proof is based on the ODE method, which states that the sample
paths of the iterates “converge” to the deterministic solution
trajectories of the ODE θ̇ = f∞(θ).

Method pioneered by Ljung (1974), Deveritskii and Fradkov
(1974), Kushner-Clark (1978); see also Métivier-Priouret (1984).

Rather technical – worthwhile to find an easier proof.
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Gladyshev’s Theorem (1965)

Theorem

Assumptions (F), (N), but not (S). In addition

inf
ε<‖θ−θ∗‖2<1/ε

〈θ − θ∗, f(θ〉 < 0, 0 < ε < 1.

Then

1 If
∑∞

t=0 α
2
t <∞, then {θt} is bounded almost surely.

2 If in addition
∑∞

t=0 αt =∞, then θt → θ∗ almost surely as
t→∞.

If f(·) is continuous, the above is equivalent to

〈θ − θ∗, f(θ〉 < 0, ∀θ 6= θ∗,

or f(·) is a “passive” function.

M. Vidyasagar FRS A Simple Convergence Proof for Stochastic Approximation



Beyond Gladyshev’s Theorem

Very easy proof, based on supermartingale theory.

Clear “division of labor”: Square-summability of step sizes
gives stability, and divergence of step sizes gives convergence.

Can this approach be extended beyond passive functions?

Yes, by using “converse” Lyapunov theory (topic of this lecture).

Suppose θ∗ is the only solution of f(θ) = 0. Then θ∗ is also the
only equilibrium of the ODE θ̇ = f(θ).

“Forward” Lyapunov theory: If there exists a function V with
certain properties, then θ∗ has certain stability properties.

“Converse” Lyapunov theory: If the equilibrium θ∗ has certain
stability properties, then there exists a suitable V .
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Definition of Global Exponential Stability

Suppose f is globally Lipschitz continuous, and define
s : R+ × Rd → Rd via: s(t,θ) is the unique solution of

ds(t,θ)

dt
= f(s(t,θ)), s(0,θ) = θ.

Suppose f(θ∗) = 0. The equilibrium θ∗ is globally exponentially
stable (GES) if there exist µ <∞, γ > 0 such that

‖s(t,θ)− θ∗‖2 ≤ µ‖θ − θ∗‖2 exp(−γt), ∀t ≥ 0, ∀θ ∈ Rd.
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Standard Converse Lyapunov Theorem for GES

Theorem

Suppose f is globally Lipschitz continuous, that θ∗ is a GES
equilibrium. Then the function V : Rd → R+ defined by

V (θ) :=

∫ ∞
0
‖s(t,θ)‖22dt.

satisfies the following: There exist c1, c2, c3 > 0 such that

c1‖θ − θ∗‖22 ≤ V (θ) ≤ c2‖θ − θ∗‖22,

V̇ (θ) ≤ −c3‖θ − θ∗‖22, ∀θ ∈ Rd,

where
V̇ (θ) = 〈∇V (θ), f(θ)〉.

This is not good enough for current application.
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New Converse Lyapunov Theorem for GES

Theorem

Suppose in addition that f ∈ C2, and thata

sup
θ∈Rd

‖∇2fi(θ)‖S · ‖θ − θ∗‖2 <∞, ∀i ∈ [d].

Choose

0 < κ < γ,
lnµ

γ − κ
≤ T <∞, V (θ) :=

∫ T

0
eκτ‖s(τ,θ − θ∗‖22 dτ

Then V is C2, and also satisfies

‖∇2V (θ)‖S ≤ 2M, ∀θ ∈ Rd.
aHere ‖ · ‖S denotes the spectral norm, and [d] = {1, . . . , d}.

Builds on earlier work of Corless and Glielmo (1998).
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Convergence of Stochastic Approximation

Theorem

Suppose (i) θ∗ is the only zero of f(·), (ii) θ∗ is a GES equilibrium
of θ̇ = f(θ), (iii) f(·) is globally Lipschitz continuous, and (iv)

sup
θ∈Rd

‖∇2fi(θ)‖S · ‖θ − θ∗‖2 <∞, ∀i ∈ [d].

Suppose further that {ξt} satisfies (N). Then

1 If
∑∞

t=0 α
2
t <∞, then {θt} is bounded almost surely.

2 If in addition
∑∞

t=0 αt =∞, then θt → θ∗ almost surely as
t→∞.

We don’t need
f∞ := lim

r→∞
f(rθ)/r,

but Borkar-Meyn (2000) don’t need (iv).
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Sketch of Proof

Construct a suitable Lyapunov function V with a globally bounded
Hessian. Since

c1‖θ − θ∗‖22 ≤ V (θ) ≤ c2‖θ − θ∗‖22,

{θt} is bounded if and only if {V (θt} is bounded.

Define a new stochastic process

Zt = atV (θt) + bt,

and define constants at, bt recursively so that

E(Zt+1|Ft) ≤ Zt a.s.,

By construction, at ↓ a∞ ≥ 1 and bt ↓ b∞ ≥ 0. Hence {Zt} is a
nonnegative supermartingale. So Zt → ζ, some random variable.
So V (θt) is bounded, and so is {θt} (almost surely).

Convergence of θt to θ∗ follows via a separate argument.
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Batch Stochastic Gradient Descent

Another application of supermartingale methods (not directly
related to converse Lyapunov theory) is “Batch Stochastic
Gradient Descent” (BSGD) for convex optimization.

It is widely used in Deep Learning because the dimension d is
huge (though the problems are not convex).

Suppose we wish to find a global minimum of a convex
function J : Rd → R using gradient descent:

θt+1 = θt + αteS(t) ◦ [−∇J(θt) + ξt+1],

where S(t) ⊆ [d] is the (randomly chosen) set of components
to be updated at time t, eS(t) equals 1 on S(t) and 0
elsewhere, and ◦ denotes the Hadamard (componentwise)
product.

We update only |S(t)| components at time t.
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Convergence of Batch Stochastic Gradient Descent

Using the present “supermartingale” approach, the
convergence of BSGD can be established even with noisy
measurements, provided each component of θ is updated
infinitely often.

Currently available proofs assume noise-free measurements,
and don’t work with noisy measurements.

A preprint combining both applications will be up on arxiv very
soon!
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Future Work – 1: Actor-Critic Algorithms

Actor-Critic algorithms in RL correspond to two time scale SA.

The ODE method is even more intricate in this case; see e.g.,
Lakshminarayanan and Bhatnagar (2017).

Converse Lyapunov theory for two time scale systems is fairly
straight-forward.

However, “off the shelf” theory may not work; we may need
to invent new theory (as here).
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Future Work – 2: TDL with Function Approximation

For RL problems with large state space, Temporal Difference
Learning (TDL) with function approximation is a popular
approach.

Paper by Tsitsiklis and Van Roy (1997) uses “ODE-like”
methods.

An alternative approach based on converse theory for “partial
stability” may work.

Both approaches are under investigation.

M. Vidyasagar FRS A Simple Convergence Proof for Stochastic Approximation



A Shameless Plug

I am preparing a set of notes with the working title Reinforcement
Learning via Stochastic Approximation. I will keep posting drafts
on my website:

https://www.iith.ac.in/∼m vidyasagar/RL/Gen/RL-Notes.pdf

Note: Current content is badly out of date.
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Thank You!
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