Optimizing Average Reward MDPs with a Generative Model

Aaron Sidford

Stanford University

Departments of Management Science & Engineering and Computer Science

Contact Info:

• email: sidford@stanford.edu

• website: www.aaronsidford.com

Efficiently Solving MDPs with Stochastic Mirror Descent

joint with Yujia Jin (ICML 2020, arXiv: 2008.12776)

Towards Tight Bounds on the Sample Complexity of Average-reward MDPs

joint with Yujia Jin (ICML 2021, arXiv: 2106.07046)

Yujia Jin

Thank you for slide material!

This Talk

Part 1

Problem and Results

Part 2
Approach #1

#1 Part 3
Approach #2

[Jin**\$**20] [Jin**\$**21]

<u>Part 4</u> Lower Bound

[Jin**S**21]

- Algorithmic tools for solving MDPs!
- Open problem!

Markov Decision Process (MDPs)

<u>Setup</u>

• **States**: finite set *S*

• Actions: finite set A_s for each $s \in S$

• Transition probabilities: $p_{s,a} \in \Delta^S$ for each $s \in S$, $a \in A_S$

• Rewards: $r \in [-1,1]^A$ for $A = \bigcup_{s \in S} A_s$

Goal: compute an ϵ -optimal policy

- Randomized policy: $\pi(s) \in \Delta^{A_s}$ for all s
- Deterministic policy: $\pi(s) \in A_s$ for all s

What reward function?

- Discounted reward (DMDP): $\gamma \in (0,1)$ and $q \in \Delta^S$ $v_{\gamma,q}^{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{s_t,\pi(s_t)} \sum_t \gamma^t \, r_{s_t,\pi(s_t)} \, \text{for } s_0 \sim q$
- Average reward (AMDP): $\gamma \rightarrow 1$

$$v^{\pi} \stackrel{\text{\tiny def}}{=} \lim_{t \to \infty} \frac{1}{T} \mathbb{E}_{s_t, \pi(s_t)} \sum_{t \in [T]} r_{s_t, \pi(s_t)}$$

Won't always distinguish between the two but may mention open problems.

There are other functions, e.g. finite horizon, see next talk!

For discounted approximate policies there is a difference between whether reward is for specific q or all $q \in \Delta^S$.

Reward Functions

AMDP Optimal Policy

The Problem

<u>Setup</u>

• **States**: finite set *S*

• Rewards: $r \in [-1,1]^S$

• Actions: finite set A_s for each $s \in S$

• Transition probabilities: $p_{s,a} \in \Delta^S$ for each $s \in S$, $a \in A_s$

Goal: compute an ϵ -optimal policy

• Randomized policy: $\pi(s) \in \Delta^{A_s}$ for all s

• Deterministic policy: $\pi(s) \in A_s$ for all s

Reward Function

• Discounted: $v_{\gamma,q}^{\pi} = \mathbb{E}_{s_t,\pi(s_t)} \sum_t \gamma^t r_{s_t,\pi(s_t)}$ for $s_0 \sim q$

• Average: $v^{\pi} = \lim_{t \to \infty} \frac{1}{T} \mathbb{E}_{s_t, \pi(s_t)} \sum_{t \in [T]} r_{s_t, \pi(s_t)}$

Generative Model Sample Complexity

- States, actions, and rewards are known
- Transition probabilities unknown
- Given any s, a can *query* generative model for a sample from $p_{s,a}$
- **Question**: how many samples needed to compute an ϵ -optimal policy?

sample complexities

- States *S*
- A_{tot} total state action pairs
- Discount factor γ
- Max ratio of stationary probability au
- Largest mixing time of any policy $t_{
 m mix}$

	<u>Upper</u>	Bound	Lower Bound	
Discounted Reward (DMDP)	$\frac{A_{\rm tot}}{(1-\gamma)^3\epsilon^2}$ [AMK13, S WWYY18, W19,AKY20,LWCGC20]		$\frac{A_{\rm tot}}{(1-\gamma)^3\epsilon^2}$	
			[AMK13]	
Average Reward (AMDP)	$\frac{A_{\text{tot}}t_{\text{mix}}^2\tau^4}{\epsilon^2}$ [W17]		?	Open Problem What is the optimal sample complexity for $\epsilon = \tilde{O}(1)$?
Our AMDP Results	$rac{A_{ m tot}t_{ m mix}^2}{\epsilon^2}$ [J S 20]	$\frac{A_{\text{tot}}t_{\text{mix}}}{\epsilon^3}$ [JS21] $\uparrow \text{ oblivious}$	$\frac{A_{tot}t_{mix}}{\epsilon^2}$ [JS21] s samples	Optimal sample complexities for $\epsilon = \widetilde{\Omega}(1)!$

This Talk

Part 1
Problem and Results

Part 2
Approach #1

[Jin**\$**20]

Part 3
Approach #2

[Jin**S**21]

Part 4
Lower bound

[Jin**S**21]

- Algorithmic tools for solving MDPs!
- Open problem!

sample complexities

- States *S*
- A_{tot} total state action pairs
- Discount factor γ
- Max ratio of stationary probability au
- Largest mixing time of any policy $t_{
 m mix}$

Approach #1: Convex Optimization

MDP

- state space $s \in S$

Convex formulation

Same / similar to [W17]

 $\min_{v \in t_{\text{mix}} \cdot [-1,1]^S} \max_{\mu \in \Delta^A} \mu^{\mathsf{T}} [(\mathbf{P} - \mathbf{E})v + r] \qquad \bullet \quad \text{row } a \in A_S \text{ of } \mathbf{E} \text{ is } e_a$

• row $a \in A_s$ of **P** is $p_{s,a}$

• ℓ_1 norm of each row of P - E is ≤ 2

Solver

Related to [W17,CJST19,CJST20]

Box Simplex Game! [S17,J**S**T19,C**S**T21]

- Stochastic mirror descent with careful local norm analysis
- $\tilde{O}(A_{\rm tot}t_{\rm mix}^2/\epsilon^2)$ steps and $\tilde{O}(1)$ per step
- General result about box simplex games!

Rounding

Similar observation / approach taken in [CCBG20] for DMDP

- Scale μ across each A_s so probability distribution
- Lemma: ϵ -approximate $\mu \Rightarrow O(\epsilon)$ -approximate policy
- $\Rightarrow \tilde{O}(A_{\rm tot}t_{\rm mix}^2/\epsilon^2)$ samples to solve an AMDP [J**S**20]

Discussion

Theorem [J**S**20]: Can compute ϵ -optimal policy to AMDP using $\tilde{O}\left(\frac{A_{\text{tot}}t_{\text{mix}}^2}{\epsilon^2}\right)$ queries

Properties of resulting algorithm

- Queries are dynamic, which state chosen to query depends on algorithm
- Outputs a randomized property

Generalizations

- General sublinear box-simplex solver!
- Recovers $\tilde{O}\left(\frac{A_{\rm tot}}{(1-\gamma)^4\epsilon^2}\right)$ sample bound of other convex optimization approach to solving DMDP [CCBG20] (for a fixed initial distribution on vertices)
- Generalizes to constrained MDPs!

Open Problems

 Convex approach completely matching state-of-the-art for DMDPs?

- Algorithmic tools for solving MDPs!
- Open problem!

sample complexities

- States *S*
- A_{tot} total state action pairs
- Discount factor γ
- Max ratio of stationary probability au
- Largest mixing time of any policy $t_{
 m mix}$

	<u>Upper Bound</u>	Lower Bound	
Discounted Reward	$\frac{A_{\rm tot}}{(1-\gamma)^3\epsilon^2}$	$\frac{A_{\rm tot}}{(1-\gamma)^3\epsilon^2}$	
 (DMDP)	[AMK13, \$ WWYY18, W19,AKY20,LWCGC20]	[AMK13]	
Average Reward (AMDP)	$\frac{A_{\text{tot}}t_{mix}^2\tau^4}{\epsilon^2}$ [W17]	?	$\frac{\text{Open Problem}}{\text{What is the optimal sample}}$ complexity for $\epsilon = \tilde{O}(1)$?
Our AMDP Results	$ \frac{A_{\text{tot}}t_{\text{mix}}^{2}}{\epsilon^{2}} \qquad \frac{A_{\text{tot}}t_{\text{mix}}}{\epsilon^{3}} \\ \text{[JS20]} \qquad \text{[JS21]} $	$\frac{A_{\rm tot}t_{\rm mix}}{\epsilon^2}$ [J S 21]	Optimal sample complexities for $\epsilon = \widetilde{\Omega}(1)!$

Approach #2: Reduction

MDP

- state space $s \in S$
- actions A_S for $a \in S$ and $A \stackrel{\text{def}}{=} \bigcup_{S \in S} A_S$
- transition probabilities $p_{s,a} \in \Delta$
- rewards $r_{s,a} \in [-1,1]$

<u>Problem</u>: Given an MDP, find ϵ -optimal policy given generative model access.

- Discounted reward (DMDP): $\gamma \in (0,1)$ and $q \in \Delta^S$: $v_{\gamma,q}^{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{s_t,\pi(s_t)} \sum_t \gamma^t \, r_{s_t,\pi(s_t)}$ for $s_0 \sim q$
- Average reward (AMDP): $v^{\pi} \stackrel{\text{def}}{=} \lim_{t \to \infty} \frac{1}{T} \mathbb{E}_{s_t, \pi(s_t)} \sum_{t \in [T]} r_{s_t, \pi(s_t)}$

Lemma:
$$\left|v^{\pi} - (1 - \gamma)v_{\gamma,q}^{\pi}\right| \leq 3(1 - \gamma)t_{\text{mix}}$$
 for all $\gamma \in (0,1)$

 $\underline{\textbf{Implication}} \text{: suffices to compute } \varepsilon = \Theta\left(\frac{\epsilon}{1-\gamma}\right) \text{-approximate policy to DMDP with } \gamma = 1 - \Theta\left(\frac{\epsilon}{t_{\text{mix}}}\right)$

$\frac{A_{\text{tot}}}{(1-\gamma)^3\epsilon^2} \qquad \qquad \frac{A_{\text{tot}}t_{\text{mix}}}{\epsilon^3}$ [AMK13,SWWYY18, [JS21] W19,AKY20,LWCGC20]

Discussion

 $\begin{array}{l} \underline{\textbf{Theorem}} \text{: any } \varepsilon = \Theta\left(\frac{\epsilon}{1-\gamma}\right) \text{-optimal policy} \\ \text{to DMDP with } \gamma = 1 - \Theta\left(\frac{\epsilon}{t_{\text{mix}}}\right) \text{ is an } \epsilon \text{-} \\ \text{optimal policy to the AMDP} \end{array}$

$$\Rightarrow \tilde{O}\left(\frac{A_{\mathrm{tot}}t_{\mathrm{mix}}}{\epsilon^3}\right)$$
 samples suffice

Note

- To improve on $\widetilde{O}\left(A_{\mathrm{tot}}t_{\mathrm{mix}}^2\epsilon^{-2}\right)$ need to set $\epsilon=\widetilde{\Omega}(t_{\mathrm{mix}}^{-1})=\Theta((1-\gamma)\epsilon^{-1})$
- Consequently, $\varepsilon = \Omega((1-\gamma)^{-1/2})$ and need [LWCGC20] to improve

Properties of Resulting Algorithm

- $\tilde{O}(t_{
 m mix}\epsilon^{-2})$ oblivious samples per state
- Computes deterministic policy
- Only depend on mixing time of deterministic policies

Algorithmic Implication

• Combining with [BLLLS**S**SW21] obtain $\tilde{O}(A_{\rm tot}|S|+|S|^{2.5})$ time algorithm

- Algorithmic tools for solving MDPs!
- Open problem!

sample complexities

- States *S*
- A_{tot} total state action pairs
- Discount factor γ
- Max ratio of stationary probability au
- Largest mixing time of any policy $t_{
 m mix}$

	Upper Bound	Lower Bound	
Discounted Reward	$\frac{A_{\rm tot}}{(1-\gamma)^3\epsilon^2}$	$\frac{A_{\rm tot}}{(1-\gamma)^3\epsilon^2}$	
(DMDP)	[AMK13, S WWYY18, W19,AKY20,LWCGC20	[AMK13]	
Average Reward (AMDP)	$\frac{A_{\rm tot}t_{\rm mix}^2\tau^4}{\epsilon^2}$ [W17]	?	$\frac{\text{Open Problem}}{\text{What is the optimal sample}}$ complexity for $\epsilon = \tilde{O}(1)$?
Our AMDP Results	$\frac{A_{\rm tot}t_{\rm mix}^2}{\epsilon^2} \qquad \frac{A_{\rm tot}t_{\rm mix}}{\epsilon^3}$ [JS20] [JS21]	$\frac{A_{\rm tot}t_{\rm mix}}{\epsilon^2}$ [JS21]	Optimal sample complexities for $\epsilon = \widetilde{\Omega}(1)!$

Lower Bound Approach ·

Modify the DMDP construction in [AMK13]

Note

- Essentially reducing AMDP lower bound to DMDP lower bound to best arm identification. Proved for oblivious queries. Open / TODO:
- prove for arbitrary dynamic queries.

MDP

- state space $s \in S$
- actions A_S for $\alpha \in S$ and $A \stackrel{\text{def}}{=} \bigcup_{S \in S} A_S$

Level 1: *N* states, each has *K* actions that transit to different level 2 state

Level 2: each state *s* goes uniformly to level 1 with probability $1 - \gamma$, stays with probability γp_s , and goes to level 3 with probability $\gamma(1-p_s)$

Level 3: each state goes uniformly to to level 1 with probability $1 - \gamma$ and stays with probability γ

Rewards: All 0 except at level 1

$$p(\smile) = \gamma p_{(i^1, a^1)},$$

$$p(\smile) = \gamma (1 - p_{(i^1, a^1)}),$$

$$p(\smile) = 1 - \gamma.$$

$$p(\circlearrowleft) = \gamma,$$
$$p(\circlearrowleft) = 1 - \gamma.$$

Lower bound strategy

- Each level 1 state has on action to a level 2 state with a higher γ_s
- Lower bound how many samples need to find enough higher p_s

- Algorithmic tools for solving MDPs!
- Open problem!

Thank you

Questions?

arXiv:2008.12776 arXiv:2106.07046

Yujia Jin

Contact Info:

- email: sidford@stanford.edu
- website: www.aaronsidford.com