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Markov Decision Process (MDPs)

Setup
e States: finite set S

* Actions: finite set A; foreachs € §

* Transition probabilities: p; , € A® for
eachs € S,a € A

 Rewards: 7 € [—1,1]4 for A =U g A

Goal: compute an e-optimal policy
 Randomized policy: w(s) € A%s forall s

 Deterministic policy: m(s) € A forall s

Won’t always distinguish between the
two but may mention open problems.

There are other functions, e.g.
finite horizon, see next talk!

What reward function?
* Discounted reward (DMDP): y € (0,1) and q € AS

TT  def t
v]/,q = Ssm(st) Zty rStJT(St) for So~ q

* Average reward (AMDP): y — 1

1
T ger T 1
v = th_)r{}o T Esem(se) Zte[T] Tsem(st)

For discounted approximate policies
there is a difference between whether
reward is for specific q or all ¢ € AS.
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The Problem

Setup
e States: finite set S

@
* Rewards:r € [-1,1]° / _——
* Actions: finite set A foreachs € § 0 /
* Transition probabilities: p; , € AS for each s € S,a € Aq \ .
@

Goal: compute an e-optimal policy
« Randomized policy: (s) € A%s forall s

* Deterministic policy: m(s) € A, forall s Generative Model Sample Complexity

* States, actions, and rewards are known
* Transition probabilities unknown

Reward Function t * Given any s, a can query generative model
* Discounted: v}y = Eg, n(s) 2tV Ts,m(sp) fOrso ~ q for a sample from ps

.1 -
* Average: v = tll_)rg} Es, n(sy) Leelr] Tspm(sy) * Question: how many samples needed to

compute an e-optimal policy?



State-of-the-art

sample complexities

Upper Bound

* States S

* A, total state action pairs

* Discount factor y

* Max ratio of stationary probability T

* Largest mixing time of any policy tix

Lower Bound

Discounted Aot Atot
Reward (1 —y)3e? (1 —y)3e?
(DMDP)
[AMK13,SWWYY18, [AMK13]
W19,AKY20,LWCGC20]
Average AporthixT? Open Problem
Reward €2 ) What is the optimal sample
(AMDP) (W17] . complexity for e = 0(1)?
Our AMDP Aportl; Acottmi Aot
u tot*mix tottmix totlmix Optimal sample
Results €2 €3 €2 . =
complexities for e = Q(1)!
[JS20] [JS21] [JS21]

Ignoring log factors, differences between |S||A| and A, the domain of r, etc.

i oblivious samples

f
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State-of-the-art

sample complexities

Upper Bound

e States S

* Ao total state action pairs

* Discount factor y

* Max ratio of stationary probability T

* Largest mixing time of any policy t,ix

Lower Bound

Discounted Atot Aiot
Reward (1 —y)3e? (1 —y)3e2
(DMDP)
[AMK13,SWWYY18, [AMK13]
W19,AKY20,LWCGC20]
Average Aport i Open Problem
Reward ? What is the optimal sample
(AMDP) - complexity for e = 0(1)?
Our AMDP Aiortmi Acortmi
:results tOt;mX —tOthIX Optimal sample
c € complexities for e = Q(1)!
[J521] [JS21]

\

Ignoring log factors, differences between |S||A| and A, the domain of r, etc.

oblivious samples

z



MDP
* statespaces €S
* actions As for a € S and A €Uy A

Approach #1: Convex Optimization = =

Convex formulation

Same / similar to [W17]

Solver

Related to [W17,CJST19,CJST20]

Rounding

|

Similar observation / approach
taken in [CCBG20] for DMDP

* rewards 1y, € [—1,1]

* rowa € A;of Pispg,
min _max u'[(P—E)v +r7] « rowa € A;of Eis e,
VELmix [-11]° peA * £, normofeachrowof P—Eis< 2

Box Simplex Game!
[S17,J8T19,CST21]

* Stochastic mirror descent with careful local norm analysis
« 0(Aporthix/€?) steps and O(1) per step
* General result about box simplex games!

* Scale u across each A, so probability distribution
* Lemma: e-approximate u = O(€)-approximate policy
= G(Atottrznix/ez) samples to solve an AMDP [JS20]



Discussion

Theorem [JS20]: Can compute e-optimal Generalizations
~ 2 -
policy to AMDP using O (%‘) queries * General sublinear box-simplex solver!
. A5 (__Atot )
Recovers O ((1_]/)462 sample bound of

Properties of resulting algorithm other convex optimization approach to
solving DMDP [CCBG20] (for a fixed

* Queries are dynamic, which state chosen oo, o o ,
initial distribution on vertices)

to query depends on algorithm

« Outputs a randomized property * Generalizes to constrained MDPs!

Open Problems

* Convex approach completely matching
state-of-the-art for DMDPs?
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* States S

* Ao total state action pairs
State-Of-the-a rt * Discount factor y
* Max ratio of stationary probability T

sample complexities o ) ,
* Largest mixing time of any policy t,ix

Upper Bound Lower Bound
Discounted Atot Atot
Reward (1 —y)3e? (1 —y)3e?
(DMDP)
[AMK13,SWWYY18, [AMK13]
W19,AKY20,LWCGC20]
Average ArorthinT® Open Problem
Reward €2 ? What is the optimal sample
(AMDP) (W17] . complexity for e = 0(1)?
Our AMDP Aot At
lI;results tOtzmlx tOthIX Optimal sample
c € complexities for e = Q(1)!
[JS20] [JS21] [JS21]

oblivious samples

Ignoring log factors, differences between |S||A| and A, the domain of r, etc.



Approach #2: Reduction

Problem: Given an MDP, find e-optimal policy given generative model access.

* Discounted reward (DMDP): y € (0,1) and g € A%: v g & Eg n(s) 2t ¥E Ts,m(sp) FOr So ~ @

o 15 1
* Average reward (AMDP): v™ &f gl_)rg) - Es, (s Ztem Vsp(se)

Lemma: [v" — (1 — y)v7,| < 3(1 — y)tmix forally € (0,1)

Implication: suffices to compute e = 0 (1—61/)-approximate policy to DMDP withy =1 —0 (t E_ )
- mix

DMDP Bound AMDP Bound
Atot - Atottmix
(1 —y)%e? e’
[AMK13 SWWYY18, [1S21]

W19,AKY20,LWCGC20]



Discussion

Theorem:any e = 0 (ﬁ/)—optimal policy

€

to DMDP with y = 1—@(
optimal policy to the AMDP

~ (Atottmi .
=0 (%) samples suffice

)is an e-

mix

Note

» To improve on O(A¢ithix€ %) need to
set € = Q(tmix) = O((1 —y)e™)

* Consequently, e = Q((1 — y)~%/?) and
need [LWCGC20] to improve

Properties of Resulting Algorithm

* O(tmix€ %) oblivious samples per state
* Computes deterministic policy

* Only depend on mixing time of
deterministic policies

Algorithmic Implication

* Combining with [BLLLSSSW21] obtain
0(AioilS| + |S]*®) time algorithm
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* States S

* Ao total state action pairs
State-Of-the-a rt * Discount factor y
* Max ratio of stationary probability T

sample complexities o ) ,
* Largest mixing time of any policy t,ix

Upper Bound Lower Bound
Discounted Atot Aiot
Reward (1 —y)3e? (1 —y)3e?
(DMDP)
[AMK13,SWWYY18, [AMK13]
W19,AKY20,LWCGC20]
Average AporthixT? Open Problem
Reward €2 ) What is the optimal sample
(AMDP) (W17] : complexity for e = 0(1)?
Our AMDP Atottrznix Atortmix .
Results T 6—3 Optimal sample~
complexities for e = Q(1)!
[JS20] [JS21]

\

Ignoring log factors, differences between |S||A| and A, the domain of r, etc.

oblivious samples



Lower Bound Approach-

Modify the DMDP construction in [AMK13]

Level 1: N states, each has K actions
that transit to different level 2 state

Level 2: each state s goes uniformly
to level 1 with probability 1 — vy,

stays with probability yp,, and goes
to level 3 with probability y (1 — ps)

Level 3: each state goes uniformly to
to level 1 with probability 1 — y and
stays with probability y

Rewards: All 0 except at level 1

Note
Essentially reducing AMDP lower bound to
DMDP lower bound to best arm identification.
Proved for oblivious queries. Open / TODO:
prove for arbitrary dynamic queries.

- = m—_—_——
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Lower bound strategy
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P(@) = YP(it,al)s
p(4) =71 = p@ran),
p(Y) =1-17.

* Each level 1 state has on action to a level 2 state with a higher y;
* Lower bound how many samples need to find enough higher pg
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Thank you
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