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Distorted geometry or broken metrics



Metric failures

(a)

(b) (c)

Figure: (a) 2000 data points in the Swissroll. For (b) and (c) we took
the pairwise distance matrix and added 2N (0,1) noise to 5% of the
distances. We then constructed the 30-nearest-neighbor graph G
from these distances, where roughly 8.5% of the edge weights of G
were perturbed. For (b) we used the true distances on G as the input
to ISOMAP. For (c) we used the perturbed distances.



Motivation

Performance of many ML algorithms depends on the
quality of metric representation of data.
Metric should capture salient features of data.
Trade-offs in capturing features and exploiting specific
geometry of space in which we represent data.



Representative problems in metric learning

Metric nearness: given a set of distances, find the closest
(in `p norm, 1 ≤ p ≤ ∞) metric to distances

Correlation clustering: partition nodes in graph
according to their similarity

Metric learning: learn a metric that is consistent with
(dis)similarity information about the data



Definitions

d = distance function X → R
D = matrix of pairwise distances
G = (V ,E ,w) = graph induced by data set X
METn = metric polytope
METn(G) = projection of METn onto coordinates given by
edges E of G

Observation: x ∈ METn(G) iff ∀e ∈ E , x(e) ≥ 0 and for every
cycle C in G and all e′ ∈ C,

x(e) ≤
∑

e′∈C,e′ 6=e

x(e′);

i.e., METn(G) is the intersection of (exponentially many) half
spaces.



Specific problem formulations

Correlation clustering
Given graph G and (dis)similarity measures on each edge
e, w+(e) and w−(e), partition nodes into clusters a la

min
∑
e∈E

w+(e)xe + w−(e)(1− xe) where xe ∈ {0,1}, or

min
∑
e∈E

w+(e)xe+w−(e)(1−xe) s.t. xij ≤ xik + xkj , xij ∈ [0,1].

Metric nearness
Given D, n × n matrix of distances, find closest metric

M̂ = arg min ‖D −M‖p s.t. M ∈ METn.

Tree and δ−hyperbolic metrics

T̂ = arg min ‖D − T‖2 s.t. T is a tree.



Specific problem formulations, cont’d

General metric learning
Given S = {(xi , xj)} similar pairs and D = {(xk , xl)}
dissimilar pairs, we seek a metric M̂ that has small
distances between pairs in S and large between those in D

M̂ = arg minλ
∑

(x ,x ′)∈S

M(x , x ′)− (1− λ)
∑

(x ,x ′)∈D

M(x , x ′)

s.t. M ∈ METn.



General problem formulation:
metric constrained problems

Given a strictly convex function f , a graph G, and a finite family
of half-spaces H = {Hi}, Hi = {x | 〈ai , x〉 ≤ bi}, we seek the
unique point x∗ ∈ ⋂i Hi

⋂
METn(G) that minimizes f

x∗ = arg min f (x) s.t. Ax ≤ b, x ∈ METn(G).

Note: A encodes additional constraints such as xij ∈ [0,1] for
correlation clustering, e.g.



Optimization techniques: existing methods

Constrained optimization problems with many constraints:
O(n3) for simple triangle inequality constraints, possibly
exponentially many for graph cycle constraints.

Existing methods don’t scale
too many constraints
stochastic sampling constraints: too many iterations
Lagrangian formulations don’t help with scaling or
convergence problems



Project and Forget

Iterative algorithm for convex optimization subject to metric
constraints (possibly exponentially many)

Project: Bregman projection based algorithm that does not
need to look at the constraints cyclically
Forget: constraints for which we haven’t done any updates

Algorithm converges to the global optimal solution,
optimality error decays exponentially asymptotically

When algorithm terminates, the set of constraints are
exactly the active constraints

Stochastic variant



Project and Forget



Metric violations: Separation oracle

Constraints may be so numerous, writing them down is
computationally infeasible. Access them only through a
separation oracle.

Property 1: Q is a deterministic separation oracle for a
family of half spaces H if there exists a positive,
non-decreasing, continuous function ϕ (with ϕ(0) = 0)
such that on input x ∈ Rd , Q either certifies x ∈ C or
returns a list L ⊂ H such that

max
C′∈L

dist(x ,C′) ≥ ϕ
(
dist(x ,C)

)
.

Stochastic variant: random separation oracle



Metric violations: shortest path

Each iteration of the PROJECT AND FORGET algorithm consists of three phases. In the first phase,130

we obtain a list of violated constraints L. In the second phase, we merge L(⌫) with L to form L̃(⌫+1)131

and project onto each of the constraints in L̃(⌫+1) one at a time. Finally, in the third phase, we forget132

some constraints from L̃(⌫+1) to yield L(⌫+1).133

Algorithm 1 General Algorithm.
1: function PROJECT AND FORGET(f convex function)
2: L(0) = ;, z(0) = 0. Initialize x(0) so thatrf(x(0)) = 0.
3: while Not Converged do
4: L = METRIC VIOLATIONS(x⌫)

5: L̃(⌫+1) = L(⌫) [ L
6: x(⌫+1), z(n+1) = Project(x(⌫), z(⌫), L̃(⌫+1))
7: L(⌫+1) = Forget(z(⌫+1), L̃(⌫+1))

return x

Finding Violated Constraints. The first step of the method is to find violated constraints. In many134

applications, we could do this by searching through the list of constraints until we found a violated135

constraint. However, in our case, since METn(G) has exponentially many faces, we cannot list all of136

them, so we seek an efficient separation oracle. That is, given a point x, the oracle efficiently return137

a list L of violated constraints, such that the constraints in L satisfy some properties. This concept138

of a separation oracle applies more broadly than to metric constrained problems and can be used in139

PROJECT AND FORGET more generally.140

Property 1. Q is a deterministic separation oracle for a family of half-spaces H, if Q runs in141

polynomial time and there exists a positive, non-decreasing, continuous function �, with �(0) = 0,142

such that on input x 2 Rd, Q either certifies x 2 C or returns a list L ⇢ H such that143

max
C̃2L

dist(x, C̃) � �(dist(x, C)). (3.1)

Algorithm 2 Finding Metric Violations.
1: function METRIC VIOLATIONS(()d)
2: L = ;
3: Let d(i, j) be the weight of shortest path between nodes i and j or1 if none exists.
4: for Edge e = (i, j) 2 E do
5: if w(i, j) > d(i, j) then
6: Let P be the shortest path between i and j
7: Add C = P [ {(i, j)} to L

return L

For metric constrained problems, Algorithm 2 finds violated constraints.144

Proposition 1. METRIC VIOLATION is an oracle that has Property 1 that runs ⇥(n2 log(n)+n|E|)145

time.146

If the metric constrained problem has additional constraints (i.e Ax  b), then we augment our oracle147

accordingly.148

Project and Forget Steps. The project and forget steps for the algorithm are presented in Algorithm149

3. Let us step through the code to obtain an intuitive understanding of its behavior. Let Hi = {x :150

hai, xi  bi} be a constraint and x the current iterate. The first step is to calculate x⇤ and ✓. Here151

x⇤ is the projection of x onto the boundary of Hi and ✓ is a “measure” of how far x is from x⇤. In152

general, ✓ can be any real number and so we examine two cases: ✓ positive or negative.153

It can be easily seen that ✓ is negative if and only if the constraint is violated. In this case, we have154

c = ✓ because (as we will see in proof) the algorithm always maintains zi � 0. Then on line 5, we155

compute the projection of x onto Hi. Finally, since we corrected x for this constraint, we add |✓| to156

zi. Since each time we correct for Hi, we add to zi, we see that zi stores the total corrections made157

for Hi.158

On the other hand, if ✓ is positive, this constraint is satisfied. In this case, if we also have that zi is159

positive; i.e., we have corrected for Hi before, then we have over compensated for this constraint.160
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Proposition
METRIC VIOLATION is an oracle that has Property 1 that runs in
Θ(n2 log(n) + n|E |) time.



Bregman projection

Generalized Bregman distance: for a convex function f
with gradient Df : S × S → R

Df (x , y) = f (x)− f (y)− 〈∇f (y), x − y〉.

Bregman projection: of point y onto closed convex C with
respect to Df is the point x∗

x∗ = arg min
x∈C∩dom(f )

Df (x , y)



Theoretical results: Summary

Theorem
If f ∈ B(S), Hi are strongly zone consistent with respect to f ,
and ∃ x0 ∈ S such that ∇f (x0) = 0, then

Then any sequence xn produced by Algorithm converges
to the optimal solution of problem.

If x∗ is the optimal solution, f is twice differentiable at x∗,
and the Hessian H := Hf (x∗) is positive semidefinite, then
there exists ρ ∈ (0,1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (0.1)

where ‖y‖2H = yT Hy.

The proof of Theorem 2 also establishes another important
theoretical property: If ai is an inactive constraint, then zνi = 0
for the tail of the sequence.



Experiments: Weighted correlation clustering
(dense graphs)

Veldt, et al. show standard solvers (e.g., Gurobi) run out of
memory with n ≈ 4000 on a 100 GB machine.

Veldt, et al. develop a method for n ≈ 11000, transform
problem to

minimize w̃T |x − d |+ 1
γ |x − d |T W |x − d |

subject to x ∈ MET(Kn)

We solve this version of the LP, compare on 4 graphs from
the Stanford network repository in terms of running time,
quality of the solutions, and memory usage.



Experiments: Weighted correlation clustering
(dense graphs)

Table 1: Table comparing PROJECT AND FORGET against Ruggles et al. [25] in terms of time taken,
quality of solution, and average memory usage when solving the weighted correlation clustering
problem on dense graphs.

Graph Time (s) Opt Ratio Avg. mem. / iter. (GiB)

n Ours Ruggles et al. Ours Ruggles et al. Ours Ruggles et al.
CAGrQc 4158 2098 5577 1.33 1.38 4.4 1.3

Power 4941 1393 6082 1.33 1.37 5.9 2
CAHepTh 8638 9660 35021 1.33 1.36 24 8
CAHepPh 11204 71071 135568 1.33 1.46 27.5 15

[26], we use the method from Wang et al. [29] to convert these graphs into instances of weighted235

correlation clustering on a complete graph. We compare our method against Ruggles et al. [25], a236

parallel version of Veldt et al. [26], in terms of running time, quality of the solutions, and memory237

usage.238

We see from Table 1 that our algorithm takes less time to obtain a better approximation ratio, but239

requires more memory per iteration. Thus, demonstrating the superiority of our method in terms of240

CPU time. Our algorithm requires more memory because the initial few iterations find a large number241

of constraints. Later, the algorithm forgets these constraints until the number of constraints stabilizes242

at a reasonable level. Hence, our initial memory usage is much larger than our later memory usage.243

To see how the number of constraints found by the oracle evolves, we plot the number of constraints244

found by the oracle and the number of constraints after the forget step in Figure 1(a). As we can see,245

after the initial few iterations, the number constraints found sharply reduces and has found the true246

set of active constraints by the 15th iteration. Figure 1(b) also shows us, as expected, the exponential247

decay of the maximum violation of a metric constraint.248

(a) Number of constraints. (b) Max Violation.

Figure 1: Plots showing the number of constraints returned by the oracle, the number of constraints
after the forget step, and the maximum violation of a metric constraint when solving correlation
clustering on the Ca-HepTh graph

Remark 2. Figure 1(a) lets us highlight the crucial difference between our method and standard249

active set methods. Standard active set methods would have to initially solve the convex optimization250

problem with 108 constraints. This is not feasible. However, using PROJECT AND FORGET, we251

only need to compute projections onto each constraint once before we can forget constraints. Thus,252

we forget constraints more frequently and much earlier when compared against standard active set253

methods.254

Table 2: Time taken and quality of solution returned by PROJECT AND FORGET when solving the
weighted correlation clustering problem for sparse graphs. The table also displays the number of
constraints the traditional LP formulation would have.

Graph n # Constraints Time Opt Ratio # Active Constraints Iters.

Slashdot 82140 5.54⇥ 1014 46.7 hours 1.78 384227 145
Epinions 131,828 2.29⇥ 1015 121.2 hours 1.77 579926 193
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Experiments: Weighted correlation clustering
(sparse graphs)
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Experiments: Metric nearness

Given D, n × n matrix of distances, find closest metric

M̂ = arg min ‖D −M‖p s.t. M ∈ METn.

Two types of experiments for weighted complete graphs:
1. Random binary distance matrices
2. Random gaussian distance matrices

Compare against Brickell, et al.



Experiments: Metric nearness

Sparse graphs. For much real-world data, the graph G is larger than our previous experiments but255

is also sparse. Since the weighting of the edges does not affect the size of the linear program that256

needs to be solved, we tested our algorithm on sparse signed graphs to get an estimate of the running257

time for the algorithm. The two graphs used for this experiment are much bigger instances than258

our previous experiments and have 82140 nodes and 131,828 nodes, respectively. Even if we use259

Ruggles et al. [25], based on the average time it took for a single iteration for the CA-HepPh graph, it260

would take Ruggles et al. [25] an estimated two days to complete a single iteration, for a graph with261

n ⇡ 80, 000. Since most graphs require at least 100 iterations, Veldt et al. [26], Ruggles et al. [25]262

cannot be used to solve problems of this magnitude. Other methods of solving the LP are also not263

feasible as they run out of memory on much smaller instances.264

As we can see from Table 2, these instances have over 500 trillion constraints, but the number of265

active constraints is only a tiny fraction of the total number of constraints. Thus, using our approach,266

we can solve the weighted correlation clustering problem on much larger graphs than ever before.267

This is possible because the graphs are sparse. That is, our oracle finds violated cycle inequalities268

relatively quickly and, since we forget inactive constraints, we project onto a relatively small number269

of constraints in each iteration.270

(a) Type one graphs (b) Type two graphs

Figure 2: Figure showing the average time taken (averaged over 5 trials) by our algorithm and Brickell
et al. [6] when solving the metric nearness problem for type 1 and type 2 graphs.

Metric nearness. Following Brickell et al. [6], the metric nearness problem is: given a point271

x 2 R(n
2), find the closest (in some `p norm) point x⇤ 2METn to x. This problem is a form of metric272

learning; see Brickell et al. [6] for an application to clustering and see Gilbert & Sonthalia [16] for273

an application to unsupervised metric learning. To compare against Brickell et al. [6], we generate274

two types of random weighted complete graphs; one with distance matrix with binary entries, and275

one with Gaussian entries. We can see from Figure 2 that as n grows, our algorithm outperforms276

Brickell et al. [6]. We also see that our algorithm has less variability in its running time. Additionally,277

since we forget constraints, we check the number of active constraints for these problems. From our278

experiments, we see that for type one graphs, our algorithm consistently returns n2/2 constraints,279

and for type two graphs, consistently returns n2 constraints.280
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New/different directions: trees and hyperbolic
embeddings

Finding a faithful low-dimensional hyperbolic embedding
key method to extract hierarchical information, learn more
representative (?) geometry of data

Examples: analysis of single cell genomic data, linguistics,
social network analysis, etc.

Represent data as a tree!

Embed in Euclidean space? NO! Embed in hyperbolic
space.



Metric first approach to embeddings

Even simple trees cannot be embedded faithfully in
Euclidean space (Linial, et al.)
So, ... recent methods (e.g., Nickel and Kiela, Sala, et al.)
learn hyperbolic embeddings instead and then extract
hyperbolic metric

Rather than learn a hyperbolic embedding directly, learn a
tree structure first and then embed tree in Hr .

Metric first: learn an appropriate (tree) metric first and
then extract its representation (in hyperbolic space)



Tree embedding workflow



TreeRep algorithm

Claim
Let N be the number of data points in the data set X and d the
tree metric on X. The algorithm TREE STRUCTURE runs in time
O(N2) in the worst case [conjecture: time O(N log N) on
average, appropriately defined] and produces a tree structure
that is consistent with the tree metric d.



Tree structure, examples

K_8 distance metric tree structuretree distance metric

cycle distance metric tree distance metric,

learned by ProjectForget

tree structure,

from metric learned 


by ProjectForget
tree structure,


from cycle directly

tree distance metric tree distance metric,

unchanged by ProjectForget

tree structure,

unchanged by ProjectForget


