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Distorted geometry or broken metrics
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Metric failures
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Figure: (a) 2000 data points in the Swissroll. For (b) and (c) we took
the pairwise distance matrix and added 2N (0, 1) noise to 5% of the
distances. We then constructed the 30-nearest-neighbor graph G
from these distances, where roughly 8.5% of the edge weights of G
were perturbed. For (b) we used the true distances on G as the input
to ISOMAP. For (c) we used the perturbed distances.



Motivation

Distances
Genes between cells

Entries are corrupted, values are
too low because of sparse data

Performance of many ML algorithms depends on the
quality of metric representation of data.

Metric should capture salient features of data.

Trade-offs in capturing features and exploiting specific
geometry of space in which we represent data.



Representative problems in metric learning

Metric nearness: given a set of distances, find the closest
(in £p norm, 1 < p < co) metric to distances

Correlation clustering: partition nodes in graph
according to their similarity

Metric learning: learn a metric that is consistent with
(dis)similarity information about the data



Definitions

d = distance function X — R

D = matrix of pairwise distances

G = (V, E,w) = graph induced by data set X

MET,, = metric polytope

MET,(G) = projection of MET,, onto coordinates given by
edges E of G

Observation: x € MET,(G) iff Ve € E, x(e) > 0 and for every
cycle CinGandall € € C,

x(e)< Y x(é);

e'cC,e'+#e

i.e., MET,(G) is the intersection of (exponentially many) half
spaces.



Specific problem formulations

Correlation clustering

Given graph G and (dis)similarity measures on each edge
e, wt(e) and w~(e), partition nodes into clusters a la

min > " wt(e)xe + w(e)(1 — xe) where x, € {0,1}, or
ecE

min Z wt(e)Xxetw ™ (e)(1—Xe) s.t. x;j < Xi + Xk, X; € [0, 1].
ecE

Metric nearness
Given D, n x n matrix of distances, find closest metric

M = arg min||D— M|, st MeMET,.
Tree and §—hyperbolic metrics

T=argmin||D—T|2 st Tisatree.



Specific problem formulations, cont'd

General metric learning

Given S = {(x;, x;)} similar pairs and D = {(xk, x;)}
dissimilar pairs, we seek a metric M that has small
distances between pairs in S and large between those in D

M = arg min A Z M(x,x') — (1 =) Z M(x, x")
(x,x")eS (x,x")eD
s.t. M e MET,.



General problem formulation:
metric constrained problems

Given a strictly convex function f, a graph G, and a finite family
of half-spaces H = {H;}, H; = {x | (a;, x) < b;}, we seek the
unique point x* € (; H; (Y MET(G) that minimizes f

x* =argminf(x) s.t. Ax < b, x € MET,(G).

Note: A encodes additional constraints such as x;; € [0, 1] for
correlation clustering, e.g.



Optimization techniques: existing methods

Constrained optimization problems with many constraints:
O(n®) for simple triangle inequality constraints, possibly
exponentially many for graph cycle constraints.

Existing methods don’t scale
too many constraints
stochastic sampling constraints: too many iterations
Lagrangian formulations don’t help with scaling or
convergence problems



Project and Forget

Iterative algorithm for convex optimization subject to metric
constraints (possibly exponentially many)

Project: Bregman projection based algorithm that does not
need to look at the constraints cyclically

Forget: constraints for which we haven’t done any updates

Algorithm converges to the global optimal solution,
optimality error decays exponentially asymptotically

When algorithm terminates, the set of constraints are
exactly the active constraints

Stochastic variant



Project and Forget

Algorithm 1 General Algorithm.

1: function F(f)
2 L9 =0 {9 =0 italize x¥ so that
Vi®)=o.
while Not Converged do
(L =METRIC VIOLATIONS(x"))
LV = MyLU &
(x+1) = project(x"),L(v+D) )
LYY = Forget(LY ™) )

returirx

R YA

Algorithm 2 Project and Forget algorithms.

1:( function PROJECT(x, z,L)
2: for H; = {v: {ai,y) = b;} € Ldo

3: Find x*, 6 by solving Vf(x*) — Vf(x) =
Oa; and x* € H;

4: c¢; =min (z;,0)

5: x <— such that Vf(x"+1) — V£ (x) = cia;

Zi £ Zi —Ci
return x, z
- 7:( function FORGET(x, z,L)
for H; = {x: {ai,x) = b;} € Ldo
if z; == 0 then Forget H;
return L

° ®




Metric violations: Separation oracle

Constraints may be so numerous, writing them down is
computationally infeasible. Access them only through a
separation oracle.

Property 1: Q is a deterministic separation oracle for a
family of half spaces H if there exists a positive,
non-decreasing, continuous function ¢ (with ¢(0) = 0)
such that on input x € R9, Q either certifies x € C or
returns a list L C H such that

max dist(x, C') > gp(dist(x, C)).

CelL

Stochastic variant: random separation oracle



Metric violations: shortest path

Algorithm 2 Finding Metric Violations.
1: function METRIC VIOLATIONS(()d)
2: L=
3 Let d(i, j) be the weight of shortest path between nodes ¢ and j or co if none exists.
4 for Edge e = (i,j) € E do
5: if w(i, ) > d(i,j) then
6:
7

Let P be the shortest path between 7 and j
AddC =PU{(i,j)}to L
return L

Proposition
METRIC VIOLATION js an oracle that has Property 1 that runs in
O(n? log(n) + n|E|) time.



Bregman projection

Generalized Bregman distance: for a convex function f
with gradient D : Sx S - R

Di(x,y) = f(x) = f(y) = (VI(y), x = y).

Bregman projection: of point y onto closed convex C with
respect to Dy is the point x*

*

x* = argmin D¢(x,y)
xeCndom(f)



Theoretical results: Summary

Theorem
If f € B(S), H; are strongly zone consistent with respect to f,

and3x° € S such that Vi(x°) = 0, then

Then any sequence x" produced by Algorithm converges
to the optimal solution of problem.

If x* is the optimal solution, f is twice differentiable at x*,
and the Hessian H := Hf(x*) is positive semidefinite, then
there exists p € (0,1) such that

* U1
[x* — x|y (0.1)

lim <
e T = x Iy

where |||, =y Hy.

The proof of Theorem 2 also establishes another important
theoretical property: If g; is an inactive constraint, then z' = 0

for the tail of the sequence.



Experiments: Weighted correlation clustering
(dense graphs)

Veldt, et al. show standard solvers (e.g., Gurobi) run out of
memory with n ~ 4000 on a 100 GB machine.

Veldt, et al. develop a method for n ~ 11000, transform
problem to

minimize W' |x —d| + %Ix —d|"W|x —d|
subjectto x € MET(K,)

We solve this version of the LP, compare on 4 graphs from
the Stanford network repository in terms of running time,
quality of the solutions, and memory usage.



Experiments: Weighted correlation clustering
(dense graphs)

Table 1: Table comparing PROJECT AND FORGET against Ruggles et al. [25] in terms of time taken,

quality of solution, and average memory usage when solving the weighted correlation clustering
problem on dense graphs.

Graph Time (s) Opt Ratio Avg. mem. / iter. (GiB)
n Ours  Rugglesetal. Ours Rugglesetal. Ours  Rugglesetal.
CAGrQc 4158 = 2098 5571 1.33 1.38 4.4 1.3
Power 4941 1393 6082 1.33 1.37 5.9 2
CAHepTh 8638 9660 35021 1.33 1.36 24 8

CAHepPh 11204 = 71071 135568 1.33 1.46 275 15




Experiments: Weighted correlation clustering
(dense graphs)

Nomosr of consrins

Heratons Horatons

(a) Number of constraints. (b) Max Violation.

Figure 1: Plots showing the number of constraints returned by the oracle, the number of constraints
after the forget step, and the maximum violation of a metric constraint when solving correlation
clustering on the Ca-HepTh graph



Experiments: Weighted correlation clustering
(sparse graphs)

Table 2: Time taken and quality of solution returned by PROJECT AND FORGET when solving the
weighted correlation clustering problem for sparse graphs. The table also displays the number of
constraints the traditional LP formulation would have.

Graph n # Constraints Time Opt Ratio  # Active Constraints ~ Iters.

Slashdot ~ 82140  5.54 x 10 46.7 hours 1.78 384227 145
Epinions 131,828 229 x 10  121.2hours 177 579926 193




Experiments: Metric nearness

Given D, n x n matrix of distances, find closest metric

A

M =arg min||[D — M|, st M e MET,.

Two types of experiments for weighted complete graphs:

1. Random binary distance matrices
2. Random gaussian distance matrices

Compare against Brickell, et al.



Experiments: Metric nearness
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(a) Type one graphs (b) Type two graphs

Figure 2: Figure showing the average time taken (averaged over 5 trials) by our algorithm and Brickell
et al. [6] when solving the metric nearness problem for type 1 and type 2 graphs.



New/different directions: trees and hyperbolic
embeddings

Finding a faithful low-dimensional hyperbolic embedding
key method to extract hierarchical information, learn more
representative (?) geometry of data

Examples: analysis of single cell genomic data, linguistics,
social network analysis, etc.

Represent data as a tree!

Embed in Euclidean space? NO! Embed in hyperbolic
space.



Metric first approach to embeddings

Even simple trees cannot be embedded faithfully in
Euclidean space (Linial, et al.)

So, ... recent methods (e.g., Nickel and Kiela, Sala, et al.)
learn hyperbolic embeddings instead and then extract
hyperbolic metric

Rather than learn a hyperbolic embedding directly, learn a
tree structure first and then embed tree in H'.

Metric first: learn an appropriate (tree) metric first and
then extract its representation (in hyperbolic space)



Tree embedding workflow
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TreeRep algorithm

Claim

Let N be the number of data points in the data set X and d the
tree metric on X. The algorithm TREE STRUCTURE runs in time
O(N?) in the worst case [conjecture: time O(N log N) on
average, appropriately defined] and produces a tree structure
that is consistent with the tree metric d.



Tree structure, examples

K8 distance metric

tree distance metric

tree structure

cycle

distance metric

tree structure,
tree distance metric, : treo structure,
loarned by ProjectForget from metric Isarned from eyore directly
By ProjectForget
tree distance metric

tree distance metric,
y Proj

tree structure,
9 i



