Irit Dinur

Weizmann Institute of Science
Breakthroughs - Locally
Testable Codes with Constant Rate, Distance, and Locality

Monday, Oct 6, 10:00-11:00 am
4:00 pm - 5:00 pm

Joint with

Shaii Evira

Ron Livne
Alexander Lubbotzky
Shahar Mozes

Locally Testable Codes

A linear error-correcting code is a linear subspace $C \subseteq\{0,1\}^{n}$
Rate $=\frac{\operatorname{dim}(C)}{n}, \quad$ Distance $=\min _{w \in C \backslash\{0\}} \frac{\left|\left\{i: w_{i} \neq 0\right\}\right|}{n}$

A code C is locally testable with q queries if there is a tester T that has query access to a given word ω, reads q randomized bits from ω and accepts / rejects, such that

- If $w \in C$ then $\operatorname{Pr}[T$ accepts $]=1$
- If $w \notin C$ then $\operatorname{Pr}[T$ rejects $] \geq$ const $\cdot \operatorname{dist}(w, C)$
$q=$ the locality of the tester

Historical background

- LTCs were studied implicitly in early PCP works [BlumLubyRubinfed 1990, BabaiFortnowLund 1990, .]
- Formally defined in works on low degree tests [Friedl-Sudan, Rubinfeld-Sudan] ~ 1995
- Spielman in his PhD thesis (1996), writes:
"A checker would be able to read only a constant number of bits of a received signal and then estimate the chance that a decoder will be able to correct the errors, then the checker can instantly request a retransmission of that block, before the decoder has wasted its time trying to decode the message. Unfortunately all known codes with local-checkers have rate approaching zero."
- A systematic study of LTCs was initiated by Goldreich and Sudan in 2002. "what is the highest possible rate of an LTC?"

Historical background

- Sequence of works (BenSasson-Sudan-Vadhan-Wigderson2003, BenSasson-Goldreich-Harsha-Sudan-Vadhan2004, Ben-Sasson-Sudan2005, Dinur2005) achieved rate $=1 /$ polylog \& constant locality+distance
- "c3 LTCs" (constant rate, constant distance, constant locality) - experts doubt existence. Restricted lower bounds are shown [BenSasson-Harsha-Rashkhodnikova2005, Babai-Shpilka-Stefankovic2005, BenSasson-Guruswami-Kaufman-SudanViderman20IO, D.-Kaufman2OII]
- Fix rate to constant, get locality $(\log n)^{\log \log n}$: [Kopparty-Meir-RonZewi-Saraf2O17, Gopi-Kopparty-OliveiraRonZewi-Saraf2018] (forget about PCPs, inject expanders)
- Affine invariance [Kaufman-Sudan2007,...]: what makes properties testable?
- High dimensional expansion: local to global features [Garland 1973, Kaurman-Kazhdan-Lubotzky 2014, Eura-Kaufman 2016, Oppenheim 2OI7, D.-Kaufman 2OI7, D.-Harsha-Kaufman-LiuniNavon-TaShma 2O19, Dikstein-D.-Harsha-Kaufman-RonZewi 2O19, Anari-Liu-OveisGharan-Vinzant2O19]

We even had a summer cluster at the Simons Institute in 2019

Main Result

There exist $r, \delta>0$ and $q \in \mathbb{N}$ and an explicit construction of an infinite family of errorcorrecting codes $\left\{C_{n}\right\}_{n}$ with rate $\geq r$, distance $\geq \delta$ and locally testable with q queries.

Plan of talk

1. Expander codes
2. New: left-right Cayley complex, "a graph-with-squares"
3. Define the code on the complex / graph-with-squares
4. Properties of the code

Expander Codes

- Gallager (1963): A random LDPC code has good rate \& distance
- Tanner (1981): Place a small base-code $C_{0} \subseteq\{0,1\}^{d}$ on each constraint node. Consider various bipartite graph structures
- Sipser \& Spielman (1996): Explicit expandercodes: Tanner codes using edges of an (explicit) expander

factor graph

$$
\begin{aligned}
& C=\left\{w \in\{0,1\}^{n}: \forall v \in[m] \quad \sum_{i v} w_{i}=0 \bmod 2\right\} \\
& c=\left\{w \in\{0,1\}^{n}:\left.\forall v \in[m] \quad w\right|_{\text {nbrs }} \in C_{0} \in\right.
\end{aligned}
$$

Expander Codes [SS'96]

Given

1. Ad-regular λ-expander graph G on n vertices
2. A base code $C_{0} \subseteq\{0,1\}^{d}$ with rate r_{0}, distance δ_{0}

Let $C\left[G, C_{0}\right]=\left\{w: E \rightarrow\{0,1\}: \forall v,\left.w\right|_{\text {edges }(v)} \in C_{0}\right\}$

Edges Vertices

Expander Codes [SS'96]

Given

1. Ad-regular λ-expander graph G on n vertices
2. A base code $C_{0} \subseteq\{0,1\}^{d}$ with rate r_{0}, distance δ_{0}

Let $C\left[G, C_{0}\right]=\left\{w: E \rightarrow\{0,1\}: \forall v,\left.w\right|_{\text {edges }(v)} \in C_{0}\right\}$

- $\operatorname{Dim}(C) \geq$ \#bits - \#constraints =

Edges Vertices
$|E|-|V| \cdot\left(1-r_{0}\right) d=|E|\left(2 r_{0}-1\right)$ rate positive if $r_{0}>1 / 2$

- Distance $\geq \delta_{0}\left(\delta_{0}-\lambda\right)$
- Linear time decoding!
- Locally testable?

> nus

Expander Codes [SS'96] are typically not locally testable

- No need to put same base code at each vertex
- Remove one constraint from the base-code of v_{0}
- New codewords are far from old code, but violate only one
 constraint

Expander Codes, one level up

Squares Edges Vertices

Expander Codes, one level up

Squares Edges Vertices

Left-right Cayley Complex

"a graph with squares"

Let G be a finite group,
Let $A \subset G$ be closed under taking inverses, i.e. such that $a \in A \rightarrow a^{-1} \in A$
Cay($G, A)$ is a graph with vertices G, and edges $E_{A}=\{\{g, a g\}: g \in G, a \in A\}$

Left-right Cayley Complex

"a graph with squares"

Let G be a finite group,
Let $A, B \subset G$ be closed under taking inverses

Left-right Cayley Complex

"a graph with squares"

Let G be a finite group,
Let $A, B \subset G$ be closed under taking inverses
Cay (G, A) is a graph with vertices G, and edges $E_{A}=\{\{g, a g\}: g \in G, a \in A\}$ (left *)
Cay (G, B) is a graph with vertices G, and edges $E_{B}=\{\{g, g b\}: g \in G, b \in B\}$ (right *)

Left-right Cayley Complex

"a graph with squares"

Let G be a finite group,
Let $A, B \subset G$ be closed under taking inverses
Cay (G, A) is a graph with vertices G, and edges $E_{A}=\{\{g, a g\}: g \in G, a \in A\}$ (left *)
Cay (G, B) is a graph with vertices G, and edges $E_{B}=\{\{g, g b\}: g \in G, b \in B\}$ (right *)

Left-right Cayley Complex

"a graph with squares"

Each triple $a \in A, g \in G, b \in B$ define a rooted square (a, g, b)
Each square can have 4 roots,
$[a, g, b]=\left\{(a, g, b), \quad\left(a^{-1}, a g, b\right), \quad\left(a^{-1}, a g b, b^{-1}\right), \quad\left(a, g b, b^{-1}\right)\right\}$

$$
\left(a^{-1}, a g b, b^{-1}\right)
$$

This square naturally contains

- The edges $\{g, a g\},\{g, g b\},\{g b, a g b\},\{a g, a g b\}$,
- The vertices $g, a g, g b, a g b$

The set of squares is $X(2)=\{[a, g, b]: g \in G, a \in A, b \in B\}=A \times G \times B / \sim$

Left-right Cayley Complex Cay²(A,G,B)

Let G be a finite group, and let $A, B \subset G$ be closed under taking inverses.
The left-right Cayley complex $\operatorname{Cay}^{2}(A, G, B)$ has

- Vertices G
- Edges $E_{A} \cup E_{B}$

$$
E_{A}=\{\{g, a g\}: g \in G, a \in A\}, \quad E_{B}=\{\{g, g b\}: g \in G, b \in B\}
$$

- Squares $A \times G \times B / \sim$

We say that $\operatorname{Cay}^{2}(A, G, B)$ is a λ-expander if Cay (G, A) and Cay (G, B) are λ-expanders.
Lemma: For every $\lambda>0$ there are explicit infinite families of bounded-degree left-right Cayley complexes that are λ-expanders.

Left-right Cayley Complex

"a graph with squares"

Squares touching the edge $\{g, a g\}$ are naturally identified with B

$$
b \mapsto[a, g, b]
$$

Squares touching the edge $\{g, g b\}$ are naturally identified with A

$$
a \mapsto[a, g, b]
$$

A vertex g has $|A|+|B|$ neighbors
For each $a \in A, b \in B$ there is one square touching g,
so there is a natural bijection $(a, b) \mapsto[a, g, b]$

[^0]
Left-right Cayley Complex

"a graph with squares"

Squares touching the edge $\{g, a g\}$ are naturally identified with B

$$
b \mapsto[a, g, b]
$$

Squares touching the edge $\{g, g b\}$ are naturally identified with A

$$
a \mapsto[a, g, b]
$$

The Code

Let $\operatorname{Cay}^{2}(A, G, B)$ be a left-right Cayley complex.
Fix base codes $C_{A} \subseteq\{0,1\}^{A}, C_{B} \subseteq\{0,1\}^{B}$ (assuming $|A|=|B|=d$ we can take one base code $C_{0} \subseteq\{0,1\}^{d}$ and let $C_{A}, C_{B} \simeq C_{0}$)
Define a code CODE $=C\left[G, A, B, C_{A}, C_{B}\right]$:

- The codeword bits are placed on the squares
- Each edge requires that the bits on the squares around it are in the base code

$$
\text { CODE }=\left\{f: \text { Squares } \rightarrow\{0,1\}: \forall a, g, b, \quad f([\cdot, g, b]) \in C_{A}, f([a, g, \cdot]) \in C_{B}\right\}
$$

Rate: $\geq 4 r_{0}-3 \quad$ [calc: \#squares - \#constraints]
Distance: $\geq \delta_{0}^{2}\left(\delta_{0}-\lambda\right) \quad$ [easy propagation argument]

Local views are tensor codes

Claim: Fix $f \in C O D E$. For each $g \in G, f([\cdot, g, \cdot]) \in C_{A} \otimes C_{B}$
Theorem: Assume Cay ${ }^{2}(A, G, B)$ is a λ-expander, and $C_{A} \otimes C_{B}$ is ρ-robustly testable. If $\lambda<\delta_{0} \rho / 5$, then $C\left[G, A, B, C_{A}, C_{B}\right]$ is locally testable.

The tester is as follows:

1. Select a vertex g uniformly,
2. Read f on all $|A| \cdot|B|$ squares touching g, namely $f([\cdot, g, \cdot])$.
3. Accept iff this belongs to $C_{A} \otimes C_{B}$

Then $\operatorname{Pr}_{g \in G}\left[f([\cdot, g, \cdot]) \notin C_{A} \otimes C_{B}\right) \geq$ const $\cdot \operatorname{dist}\left(f, C\left[G, A, B, C_{A}, C_{B}\right]\right)$

$$
\text { CODE }=\left\{f: \text { Squares } \rightarrow\{0,1\}: \forall a, g, b, \quad f([\cdot, g, b]) \in C_{A}, f([a, g, \cdot]) \in C_{B}\right\}
$$

Robustly-testable tensor codes

Definition [Ben-Sasson-Sudan'O5]: $C_{A} \otimes C_{B}$ is ρ-robustly testable if for all $w: A \times B \rightarrow\{0,1\}, \rho \cdot \operatorname{dist}\left(w, C_{A} \otimes C_{B}\right) \leq$ row-distance + column-distance

Row-distance : average distance of each row to C_{A}
Column-distance : average distance of each column to C_{B}

Lemma [Ben-Sasson-Sudan’05, Dinur-Sudan-Wigderson2006, Ben-Sasson-Viderman2009]:
For every $r>0$ there exist base codes with rate r and constant distance whose tensors are robustly-testable. (Random LDPC codes, LTCs)

Proof of local-testability

Start with $f:$ Squares $\rightarrow\{0,1\}$ and find $f^{\prime} \in C$, $\operatorname{dist}\left(f, f^{\prime}\right) \cdot$ const $\leq \operatorname{rej}(f)$

ALG "self-correct":

1. Init: Each $g \in G$ finds $T_{g} \in C_{A} \otimes C_{B}$ closest to $f([\cdot, g, \cdot])$
[define a progress measure $\Phi=\#$ dispute edges]
2. Loop: If g can change T_{g} and reduce Φ then do it
3. End: If $\Phi=0$ let $f^{\prime}([a, g, b])=T_{g}(a, b)$ and output f^{\prime}, otherwise output "stuck"

- steps $\leq \Phi \approx$ rej(f)
- If output f^{\prime} then

$$
\left.\operatorname{dist}\left(f, f^{\prime}\right) \cdot c o n s t \leq \operatorname{rej}(f)\right)
$$

- If get stuck \rightarrow rej $(f)>0.1$ so $\operatorname{dist}\left(f, f^{\prime}\right) \cdot 0.1 \leq \operatorname{rej}(f)$

Proof of local-testability
If ALG "self-correct" is stuck then rej (f) > 0.1

- If g, g^{\prime} are in dispute, there must be many squares on $\{g, g$ '\} with further dispute edges
- Can try to propagate, but, they all might be clumped around g
- But then g's neighbors all agree, so there must have been a better choice for Tg (using the LTCness of tensor codes)
- Random walk on the edges + expansion \Rightarrow dispute set is large

Main Result

Theorem: There exist $r, \delta>0$ and $q \in \mathbb{N}$ and an explicit construction of an infinite family of error-correcting codes $\left\{C_{n}\right\}_{n}$ with rate $\geq r$, distance $\geq \delta$ and locally testable with q queries.

Proof: Take

1. Family of base codes $\left\{C_{d}\right\}_{d}$ with rate $>3 / 4$ and constant robustness ρ and distance δ
2. Set λ small enough wrt δ and ρ
3. Choose a family $\left\{\operatorname{Cay}^{2}\left(A_{n}, G_{n}, B_{n}\right)\right\}_{n}$ of λ expanding left-right Cayley complexes, with $d=\left|A_{n}\right|=\left|B_{n}\right|=O\left(1 / \lambda^{2}\right)$ 4. Output $\left\{C\left[G_{n}, A_{n}, B_{n}, C_{d}, C_{d}\right]\right\}_{n}$

High dimensional expansion

The idea of using a higher-dimensional complex instead of a graph for LTCs has been circulating a number of years.
HDXs exhibit local-to-global features: prove something locally and then use expansion to globablize
[Garland 1973, Kaufman-Kazhdan-Lubotzky2014, Evra-Kaufman2O16, Oppenheim2O17, D.-Kaufman2O17, D.-Harsha-Kaufman-LiuniNavon-TaShma2O18, Anari-Liu-OveisGharan-Vinzant2O19]

Dikstein-D.-Harsha-RonZewi2O19 proved that if one defines a code on a HDX using a base code that itself is an LTC, (and if there is an agreement-test), then the entire code is an LTC.

Recently also Kaufman-Oppenheim2O21 proved a similar "schema".
How to "instantiate" this? ...we worked on the Lubotzky-Samuels-Vishne complexes (quotients of BT buildings), and have conjectured base codes, but no proof of local LTCness

Some questions

- Can one construct LTCs on other HDX's such as LSU simplical complexes?
- Can one construct higher dimensional cubical complexes similarly?
- Can these LTCs be used for constructing PCPs?

[^0]: * it is a bijection assuming $\forall a, b, g, \quad g^{-1} a g \neq b$

