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Locally Testable Codes

A linear error-correcting code is a linear subspace  

Rate = ,       Distance =  

A code C is locally testable with q queries if there is a tester T that has query access to a given word 
w, reads q randomized bits from w and accepts / rejects, such that 

• If  then Pr[T accepts]  
• If  then Pr[T rejects]  

q = the locality of the tester

C ⊆ {0,1}n

dim(C)
n

minw∈C∖{0}
|{i : wi ≠ 0} |

n

w ∈ C = 1

w ∉ C ≥ const ⋅ dist(w, C)



• LTCs were studied implicitly in early PCP works [BlumLubyRubinfeld 1990, BabaiFortnowLund 1990, ..] 
• Formally defined in works on low degree tests [Friedl-Sudan, Rubinfeld-Sudan] ~ 1995 
• Spielman in his PhD thesis (1996), writes:  

“A checker would be able to read only a constant number of bits of a received signal and then 
estimate the chance that a decoder will be able to correct the errors, then the checker can instantly 
request a retransmission of that block, before the decoder has wasted its time trying to decode the 
message. Unfortunately all known codes with local-checkers have rate approaching zero." 

• A systematic study of LTCs was initiated by Goldreich and Sudan in 2002.               
“what is the highest possible rate of an LTC?”

Historical background 



• Sequence of works (BenSasson-Sudan-Vadhan-Wigderson2003, BenSasson-Goldreich-Harsha-Sudan-Vadhan2004, Ben-Sasson-Sudan2005, 

Dinur2005) achieved rate = 1/polylog & constant locality+distance 
• “c3 LTCs” (constant rate, constant distance, constant locality) - experts doubt existence. Restricted lower 

bounds are shown [BenSasson-Harsha-Rashkhodnikova2005, Babai-Shpilka-Stefankovic2005, BenSasson-Guruswami-Kaufman-Sudan-
Viderman2010, D.-Kaufman2011] 

• Fix rate to constant, get locality : [Kopparty-Meir-RonZewi-Saraf2017, Gopi-Kopparty-OliveiraRonZewi-Saraf2018]  

(forget about PCPs, inject expanders)  
• Affine invariance [Kaufman-Sudan2007,…]: what makes properties testable?  
• High dimensional expansion: local to global features [Garland 1973, Kaufman-Kazhdan-Lubotzky 2014, Evra-Kaufman 2016, Oppenheim 

2017, D.-Kaufman 2017, D.-Harsha-Kaufman-LivniNavon-TaShma 2019, Dikstein-D.-Harsha-Kaufman-RonZewi 2019, Anari-Liu-OveisGharan-Vinzant2019]

(log n)log log n

Historical background 



We even had a summer cluster at the Simons Institute in 2019 



There exist  and  and an explicit construction of an infinite family of error-
correcting codes  with rate , distance  and locally testable with q queries. 

r, δ > 0 q ∈ ℕ
{Cn}n ≥ r ≥ δ

Main Result



1. Expander codes  
2. New: left-right Cayley complex, “a graph-with-squares” 
3. Define the code on the complex / graph-with-squares 
4. Properties of the code

Plan of talk



Expander Codes

• Gallager (1963): A random LDPC code has 
good rate & distance  

• Tanner (1981): Place a small base-code 
 on each constraint node. 

Consider various bipartite graph structures 
• Sipser & Spielman (1996):  Explicit expander-

codes: Tanner codes using edges of an 
(explicit) expander

C0 ⊆ {0,1}d

factor graph

parity constraint

bit

n m



Expander Codes [SS’96]

Given  
1. A d-regular expander graph G on n vertices 
2. A base code  with rate , distance  
Let 

λ−
C0 ⊆ {0,1}d r0 δ0

C[G, C0] = {w : E → {0,1} : ∀v, w |edges(v) ∈ C0}

 constraintsC0

Edges Vertices

bits



Expander Codes [SS’96]

• Dim( C )  #bits - #constraints = 
  rate positive if  

• Distance  
• Linear time decoding ! 
• Locally testable?

≥
|E | − |V | ⋅ (1 − r0)d = |E | (2r0 − 1) r0 > 1/2

≥ δ0(δ0 − λ)

Given  
1. A d-regular expander graph G on n vertices 
2. A base code  with rate , distance  
Let 

λ−
C0 ⊆ {0,1}d r0 δ0

C[G, C0] = {w : E → {0,1} : ∀v, w |edges(v) ∈ C0}

 constraintsC0

Edges Vertices

bits



Expander Codes [SS’96]
are typically not locally testable 

• No need to put same base code at each vertex 
• Remove one constraint from the base-code of  
• New codewords are far from old code, but violate only one 

constraint

v0



Expander Codes, one level up

factor graph

Edges VerticesSquares

 constraintsC0bits dependencies



Expander Codes, one level up

factor graph

Edges VerticesSquares

 constraintsC0bits dependencies



Left-right Cayley Complex
 “a graph with squares”

Let G be a finite group, 

Let  be closed under taking inverses, i.e. such that  

Cay(G,A) is a graph with vertices G, and edges  

A ⊂ G a ∈ A → a−1 ∈ A

EA = {{g, ag} : g ∈ G, a ∈ A}
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Left-right Cayley Complex
 “a graph with squares”

Each triple  define a rooted square  

Each square can have 4 roots, 

 

This square naturally contains  

• The edges {g,ag}, {g,gb}, {gb,agb}, {ag,agb}, 

• The vertices g,ag,gb,agb 

The set of squares is 

a ∈ A, g ∈ G, b ∈ B (a, g, b)

[a, g, b] = { (a, g, b), (a−1, ag, b), (a−1, agb, b−1), (a, gb, b−1) }

X(2) = {[a, g, b] : g ∈ G, a ∈ A, b ∈ B} = A × G × B / ∼

(a, gb, b−1)

(a−1, agb, b−1)

(a−1, ag, b)

(a, g, b)



Left-right Cayley Complex Cay2(A,G,B) 

Let G be a finite group, and let  be closed under taking inverses.  

The left-right Cayley complex Cay2(A,G,B) has 

• Vertices G 

• Edges    

• Squares A x G x B / ~ 

We say that Cay2(A,G,B) is a -expander if Cay(G,A) and Cay(G,B) are -expanders. 

Lemma: For every  there are explicit infinite families of bounded-degree left-right Cayley complexes that 
are -expanders.

A, B ⊂ G

EA ∪ EB

λ λ

λ > 0
λ

EA = {{g, ag} : g ∈ G, a ∈ A}, EB = {{g, gb} : g ∈ G, b ∈ B}



Left-right Cayley Complex
 “a graph with squares”

Squares touching the edge {g,ag}  

are naturally identified with B 

Squares touching the edge {g,gb}  

are naturally identified with A
a ↦ [a, g, b]

b ↦ [a, g, b]

A vertex g has |A| + |B| neighbors 

For each  there is one square touching g, 

so there is a natural bijection*  

* it is a bijection assuming 

a ∈ A, b ∈ B

(a, b) ↦ [a, g, b]

∀a, b, g, g−1ag ≠ b
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The Code

Let Cay2(A,G,B) be a left-right Cayley complex.  

Fix base codes   (assuming |A| = |B| = d we can take one base code  and let ) 

Define a code CODE = : 

• The codeword bits are placed on the squares 

• Each edge requires that the bits on the squares around it are in the base code  

Rate:              [ calc: #squares - #constraints ] 

Distance:     [easy propagation argument]

CA ⊆ {0,1}A, CB ⊆ {0,1}B C0 ⊆ {0,1}d CA, CB ≃ C0

C[G, A, B, CA, CB]

≥ 4r0 − 3

≥ δ2
0(δ0 − λ)

CODE = {f : Squares → {0,1} : ∀a, g, b, f([ ⋅ , g, b]) ∈ CA, f([a, g, ⋅ ]) ∈ CB}



Local views are tensor codes

Claim: Fix f CODE. For each ,    

Theorem: Assume Cay2(A,G,B) is a -expander, and  is -robustly 
testable. If , then  is locally testable.  

The tester is as follows: 
1. Select a vertex g uniformly, 

2. Read f on all squares touching g, namely .  

3. Accept iff this belongs to  

Then

∈ g ∈ G f([ ⋅ , g, ⋅ ]) ∈ CA ⊗ CB

λ CA ⊗ CB ρ
λ < δ0ρ/5 C[G, A, B, CA, CB]

|A | ⋅ |B | f([ ⋅ , g, ⋅ ])

CA ⊗ CB

Pr
g∈G

[ f([ ⋅ , g, ⋅ ]) ∉ CA ⊗ CB) ≥ const ⋅ dist( f, C[G, A, B, CA, CB])

A

B

∈ CB

∈
C

A

CODE = {f : Squares → {0,1} : ∀a, g, b, f([ ⋅ , g, b]) ∈ CA, f([a, g, ⋅ ]) ∈ CB}



Robustly-testable tensor codes

Definition [Ben-Sasson-Sudan’05]:  is -robustly testable if for all 
, row-distance + column-distance 

Row-distance : average distance of each row to   

Column-distance : average distance of each column to  

Lemma [Ben-Sasson-Sudan’05, Dinur-Sudan-Wigderson2006, Ben-Sasson-Viderman2009]:  

For every r>0 there exist base codes with rate r and constant distance whose tensors 
are robustly-testable. (Random LDPC codes, LTCs)

CA ⊗ CB ρ
w : A × B → {0,1} ρ ⋅ dist(w, CA ⊗ CB) ≤

CA

CB

A

B

∈ CA

∈
C

B



Proof of local-testability

Start with  and find rej(f) f : Squares → {0,1} f′ ∈ C, dist( f, f′ ) ⋅ const ≤

ALG “self-correct”: 

1. Init: Each  finds  closest to 

 

[ define a progress measure  = # dispute edges ] 

2. Loop: If g can change  and reduce  then do it 

3. End: If  let  and output , 
otherwise output “stuck” 

g ∈ G Tg ∈ CA ⊗ CB
f([ ⋅ , g, ⋅ ])

Φ

Tg Φ

Φ = 0 f′ ([a, g, b]) = Tg(a, b) f′ 

• steps      rej(f) 

• If output f’then
) 

• If get stuck—> rej(f) > 0.1 so 
 

≤ Φ ≈

dist( f, f′ ) ⋅ const ≤ rej( f )

dist( f, f′ ) ⋅ 0.1 ≤ rej( f )



If ALG “self-correct” is stuck then rej ( f )  > 0.1

• If g,g’ are in dispute, there must be many squares on {g,g’} with 
further dispute edges 

• Can try to propagate, but, they all might be clumped around g 
• But then g’s neighbors all agree, so there must have been a 

better choice for Tg (using the LTCness of tensor codes) 
• Random walk on the edges + expansion ==> dispute set is large

Proof of local-testability



Theorem: There exist  and  and an explicit construction of an infinite family of error-correcting codes 
 with rate , distance  and locally testable with q queries. 

Proof: Take 
1. Family of base codes  with rate > ¾ and constant robustness  and distance  
2. Set  small enough wrt  and  
3. Choose a family  of  expanding left-right Cayley complexes, with  
4. Output 

r, δ > 0 q ∈ ℕ
{Cn}n ≥ r ≥ δ

{Cd}d ρ δ

λ δ ρ

{Cay2(An, Gn, Bn)}n λ d = |An | = |Bn | = O(1/λ2)

{C[Gn, An, Bn, Cd, Cd]}n

Main Result



High dimensional expansion

The idea of using a higher-dimensional complex instead of a graph for LTCs has been circulating a number of years. 

HDXs exhibit local-to-global features: prove something locally and then use expansion to globablize 

[Garland 1973, Kaufman-Kazhdan-Lubotzky2014, Evra-Kaufman2016, Oppenheim2017, D.-Kaufman2017, D.-
Harsha-Kaufman-LivniNavon-TaShma2018, Anari-Liu-OveisGharan-Vinzant2019] 

Dikstein-D.-Harsha-RonZewi2019 proved that if one defines a code on a HDX using a base code that itself is an LTC, 
(and if there is an agreement-test), then the entire code is an LTC.  

Recently also Kaufman-Oppenheim2021 proved a similar “schema”. 

How to“instantiate” this? …we worked on the Lubotzky-Samuels-Vishne complexes (quotients of BT buildings), and 
have conjectured base codes, but no proof of local LTCness



Some questions

• Can one consrtuct LTCs on other HDX’s such as LSV simplical complexes? 

• Can one construct higher dimensional cubical complexes similarly? 

• Can these LTCs be used for constructing PCPs?


