Electrical Flows, Optimization, and New Approaches to the Maximum Flow Problem

Aleksander Mądry

Maximum flow problem

value = net flow out of s

Input: Directed graph G, integer capacities u_e, source s and sink t

Here, value = 7

no overflow on arcs: $0 \le f(e) \le u(e)$

no leaks at all v≠s,t

Task: Find a feasible s-t flow of max value

What is known about Max Flow?

A (very) rough history outline

[Dantzig '51]	O(mn ² U)
[Ford Fulkerson '56]	O(mn U)
[Dinitz '70]	O(mn²)
[Dinitz '70] [Edmonds Karp '72]	O(m²n)
[Dinitz '73] [Edmonds Karp '72]	O(m² log U)
[Dinitz '73] [Gabow '85]	O(mn log U)
[Goldberg Rao '98]	$\tilde{O}(m \min(m^{1/2}.n^{2/3}) \log U)$
[Lee Sidford '14]	Õ(mn ^{1/2} log Ü)

Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures interesting problems, e.g., bipartite matching

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

What is known about Max Flow?

A (very) rough history outline

[Dantzig '51]	O(n ³)
[Ford Fulkerson '56]	O(n ²)
[Dinitz '70]	$O(n^3)$
[Dinitz '70] [Edmonds Karp '72]	O(n³)
[Dinitz '73] [Edmonds Karp '72]	Õ(n²)
[Dinitz '73] [Gabow '85]	Õ(n²)
[Goldberg Rao '98]	$\tilde{O}(n^{3/2})$
[Lee Sidford '14]	Õ(n ^{3/2})

Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures interesting problems, e.g., bipartite matching

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Breaking the O(n^{3/2}) barrier

Undirected graphs and approx. answers (O(n^{3/2}) barrier still holds here)

[M '10]: Crude approx. of max flow value in close to linear time

[CKMST '11]: (1- ϵ)-approx. to max flow in $\tilde{O}(n^{4/3}\epsilon^{-3})$ time

[LSR/13, S'13, KLOS'14]: (1- ϵ)-approx. in close to linear time

But: What about the directed and exact setting?

[M '13]: Exact $\tilde{O}(n^{10/7}) = \tilde{O}(n^{1.43})$ -time alg.

 $(n = # of vertices, \tilde{O}() hides polylog factors)$

Electrical flows

Input: Undirected graph **G**,

resistances r_e,

source s and sink t

Principle of least energy

Electrical flow of value F:

The unique minimizer of the energy

$$E(f) = \Sigma_e r_e f(e)^2$$

among all s-t flows f of value F

Electrical flows = ℓ_2 -minimization

Recall: We can compute it in nearly-linear time

From electrical flows to undirected max flow

Approx. undirected max flow [Christiano Kelner M. Spielman Teng '11]
via electrical flows

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)
- → To fix that: Increase resistances on the overflowing edges

 Repeat (hope: it doesn't happen too often)

Surprisingly: This approach can be made work!

But: One needs to be careful how to fill in the blanks

We will do this now

Filling in the blanks

Recall: We are dealing with undirected graphs

From now on: All capacities are **1**, **m=O(n)** and the value **F*** of max flow is known

Electrical vs. maximum flows

Fix some resistances \mathbf{r} and consider the elect. flow $\mathbf{f}_{\mathbf{E}}$ of value \mathbf{F}^*

We don't expect f_E to obey **all** capacity constraints (i.e., we can have $|f_E(e)| >> 1$ for some edge **e**)

Still, $\mathbf{f}_{\mathbf{F}}$ obeys these constraints in a certain sense...

We have:

$$\Sigma_{\rm e} r_{\rm e} |f_{\rm E}({\rm e})| \leq \Sigma_{\rm e} r_{\rm e}$$

In other words: Capacity constraints are preserved on average (weighted wrt to r_es)

Electrical vs. maximum flows

This gives rise to a **very fast** algorithm for the following task:

'Feasibility on average':

Given weights w compute a flow f of value F* s.t.

$$\Sigma_{\rm e} \, w_{\rm e} \, |f({\rm e})| \leq \Sigma_{\rm e} \, w_{\rm e}$$

Key point: We already know how to make such a crude algorithm useful to us!

Multiplicative weights update method [FS '97, PST '95, AHK '05]

'Technique for turning weak algorithms into strong ones'

In our setting:

Crude algorithm computing 'feasible on average' flows

(1-ε)-approx. max flow

[(1+ε)-approx. feasibility everywhere]

How does this method work?

At the end: Return the average of all fⁱs (This is still a flow of value F*)

Underlying dynamics:

Edge **e suffers large** overflow \rightarrow \mathbf{w}_{e} grows **rapidly Average** overflow **small** \rightarrow $\Sigma_{e}\mathbf{w}_{e}$ grows **slowly**

No edge suffers large overflow too often

→ averaging out yields (almost) no overflow

Think: ρ measures the electrical vs. max flow discrepancy Note: Linear dependence on ρ is unavoidable

Bottom line:

Electrical flow primitive gives us the crude algorithm

We can use MWU framework to fill in our blanks!

Our algorithm

- \rightarrow Treat edges as resistors of resistance $r_e=1$
- → Compute electrical flow **f** of value **F***
- → Increase resistances on overflowing edges Repeat

Our algorithm

- \rightarrow Treat edges as resistors of resistance $r_e=1$
- → Compute electrical flow **f** of value **F***
- → Increase resistances: for each e,

$$r_e^i \leftarrow r_e^{i-1}(1+\epsilon|f^i(e)|/\rho_i)$$

Repeat $N=\tilde{O}(\rho\epsilon^{-2})$ times

→ At the end: Take an average of all the flows as the final answer

Resistances \mathbf{r}_{e} evolve as weights \mathbf{w}_{e} Convergence condition: "execute \mathbf{N} rounds"

Our algorithm

- \rightarrow Treat edges as resistors of resistance $r_e=1$
- → Compute electrical flow **f** of value **F***
- → Increase resistances: for each e,

$$r_e^i \leftarrow r_e^{i-1}(1+\epsilon|f^i(e)|/\rho_i)$$

Repeat $N=\tilde{O}(\rho\epsilon^{-2})$ times

→ At the end: Take an average of all the flows as the final answer

Result: This algorithm gives us an $(1-\varepsilon)$ -approx. max flow in $\tilde{O}(\rho \varepsilon^{-2}) \cdot \tilde{O}(n) = \tilde{O}(n\rho \varepsilon^{-2})$ time

Crucial question: How large the worst-case overflow ρ can be?

Our question: Let f be an elect. flow of value F^* wrt resist. r_e How large $\rho = \max_e |f(e)|$ can be?

In general: ρ can be very large

(Think: one edge having an extremely small resistance)

Fix: Regularize the resistances with a uniform distribution $r_e' \leftarrow r_e + \epsilon |r|_1/m$

Can show: ρ is bounded by $O(n^{\frac{1}{2}} \epsilon^{-1})$ then

This gives a $(1-\varepsilon)$ -approx. $\tilde{O}(n^{3/2}\varepsilon^{-3})$ -time algorithm

Going beyond the Õ(n^{3/2}) Barrier

Running time is dominated by $\approx \mathbf{p}$ elect. flow computations

Can we improve our $O(n^{\frac{1}{2}} \varepsilon^{-1})$ bound on ρ ?

Not really...

≈n^{1/2} paths with ≈n^{1/2} vertices each

one edge

Running time is dominated by ≈p elect. flow computations

Can we improve our $O(n^{\frac{1}{2}} \varepsilon^{-1})$ bound on ρ ?

Not really...

Running time is dominated by ≈p elect. flow computations

Can we improve our $O(n^{\frac{1}{2}} \epsilon^{-1})$ bound on ρ ?

Not really...

Key observation: If we remove this bad edge...

→ The max flow does not change much

Key observation: If we remove this bad edge...

- → The max flow does not change much
- → But the resulting **electrical flow** is much better behaved!

Can we turn this observation into an algorithmic idea?

Idea: Let our electrical flow oracle **self-enforce** a smaller overflow $\rho' << \rho$

Modification of the oracle: If the computed electrical flow has some edge e flow more than ρ' :

- → Remove this edge from the graph (permanently)
- → **Recompute** the electrical flow

Note: If this oracle always successfully terminates, its effective overflow is ρ'

Crucial question: What is the right setting of ρ' ?

- \rightarrow We want ρ' to be as small as possible
- → But if it becomes too small the edge removal might be too aggressive and cut too many of them

Sweet spot: ρ'≈n^{1/3}

Key reason: Removal of edges that flow a lot

- → significantly increases the **energy** of the electr. flow
- → But perturbs the max flow only slightly

Our potential: The energy E_r(f) of the electrical flow f wrt current resistances r

Can show:

- \rightarrow E_r(f) is not too small initially and cannot become too large
- (as long as we remove no more than $\approx \varepsilon F^*$ edges) As the resistances only increase, $E_r(f)$ never decreases

This makes E_r(f) a convenient potential

Remaining piece: Removal of an overflowing edge increases E_r(f) significantly

This gives the $\tilde{O}(n^{4/3}\epsilon^{-3})$ -time (1- ϵ)-approx. algorithm

Thank you

Afternoon: Computing an exact max flow