Electrical Flows, Optimization,
and New Approaches to the Maximum Flow
Problem

Aleksander Madry
B

. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Here, value =7

v

no overflow on arcs: no leaks at all v#s,t
0 < f(e) < u(e)

Task: Find a feasible s-t flow of max value

4

What is known about Max Flow?
A (very) rough history outline

[Dantzig ‘51]

[Ford Fulkerson ’56]

[Dinitz ’'70]

[Dinitz ‘70] [Edmonds Karp ’72]
[Dinitz ‘73] [Edmonds Karp ’72]
[Dinitz ‘73] [Gabow ’85]

[Lee Sldford ’14]

O(mn2U)
O(mn U)
O(mn?)
O(m?2n)
O(m?2log U)
O(mn log U)

O(mn/2 Iog U)

NETWORK
FLOWS

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
A (very) rough history outline

[Dantzig ‘51]

[Ford Fulkerson ’56]

[Dinitz ’'70]

[Dinitz ‘70] [Edmonds Karp '72]
[Dinitz ‘73] [Edmonds Karp ’72]
[Dinitz ‘73] [Gabow ’85]
[Goldberg Rao "98]

[Lee Sidford '14]

O(n3)
O(n?)
O(n3)
O(n3)
O(n2?)
O(n?)
6(n3/2)
6(n3/2)

NETWORK
FLOWS

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

Breaking the O(n3/2) barrier

Undirected graphs and approx. answers (O(n3/2) barrier still holds here)

[M ‘10]: Crude approx. g value in close to linear time

[CKMST ‘11]: (1-€)-approx. to max flow in O(n*/3€3) time

3, S’13, KLOS ‘14]: (1-€)-approx. in close to linear time

But: What about the directed and exact setting?
Today

M “13): Exact O(n1%7)=0(n*-*3)-time alg.

(n = # of vertices, O() hides polylog factors)

. Input: Undirected graph G,
Electrical flows resistances r.

-l

source s and sink t

Principle of least energy

O

Electrical flow of value F:
The unique minimizer of the energy

E(f) =2, r_f(e)?
among all s-t flows f of value F

Electrical flows = {,-minimization

Recall: We can compute it in nearly-linear time

From electrical flows to
undirected max flow

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

- To fix that: Increase resistances on the
overflowing edges
Repeat (hope: it doesn’t happen too often)

Surprisingly: This approach can be made work!

But: One needs to be careful how to fill in the blanks

We will do this now

Filling in the blanks

Recall: We are dealing with undirected graphs

From now on: All capacities are 1, m=0(n)
and the value F* of max flow is known

Electrical vs. maximum flows

Fix some resistances r and consider the elect. flow f; of value F*

We don’t expect f; to obey all capacity constraints
(i.e., we can have |f(e)| >> 1 for some edge e)

Still, f; obeys these constraints in a certain sense...

We have:

2. r, |fele)] <2, r,

In other words: Capacity constraints are
preserved on average (weighted wrt to r s)

Electrical vs. maximum flows
This gives rise to a very fast algorithm for the following task:

‘Feasibility on average’:

Given weights w compute a flow f of value F* s.t.

2w, |fle)] £Z,w,

Key point: We already know how to make such a
crude algorithm useful to us!

Multiplicative weights update method
[FS ’97, PST 95, AHK ’05]

‘Technique for turning weak algorithms
into strong ones’

In our setting:
Crude algorithm computing ‘feasible on average’ flows

%

(1-€)-approx. max flow
[(1+€)-approx. feasibility everywhere]

How does this method work?

Underlying idea

A

Crude algorith
s chebnl Maintain weights w

(/(Imhally, all weights w,=1)

feasible on average

\ Update weights

W1

/ (based on f1)
f2
\ Update weights
3

W (based on f?)

e

. (Process continues for N rounds)
[

At the end: Return the average of all fis
(This is still a flow of value F*)

° o =
Updating weights : . Want this term to be

/W between 1 and 1+¢

Maximum congestion in f!
pi = maxe If'(E)l

Updating weights .
i-1 Weights w1

A

f
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

Underlying dynamics:
Edge e suffers large overflow - w_ grows rapidly
Average overflow small - Z_w_ grows slowly

\”

No edge suffers large overflow too often
-» averaging out yields (almost) no overflow

Updating weights .
e Weights w1

fi
\i Update step: For each e
(* w,' ¢ w (1+|fi(e)|/p;)
A

o
o Width p = max; p;
®

A

[AHK ’05]: It suffices to repeat this step N=O(pe2) times
to get a (1-€)-approx to max flow

Think: p measures the electrical vs. max flow discrepancy

Note: Linear dependence on p is unavoidable

Bottom line:

A — o

Electrical flow primitive gives us the crude algorithm

We can use MWU framework
to fill in our blanks!

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

-> Increase resistances on overflowing edges
Repeat

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

= Increase resistances: for each e,
r.) € r " (1+e|fi(e)]/p))

Repeat N=O(pe2) times
- At the end: Take an average of
all the flows as the final answer

Resistances r, evolve as weights w,
Convergence condition: “execute N rounds”

Our algorithm

—> Treat edges as resistors of resistance r,=1
- Compute electrical flow f of value F*

= Increase resistances: for each e,
r.) € r " (1+e|fi(e)]/p))

Repeat N=O(pe2) times
- At the end: Take an average of
all the flows as the final answer

Result: This algorithm gives us an (1-€)-approx. max flow
in O(pe2)-0(n) = O(npe2) time

Crucial question: How large the
worst-case overflow p can be?

Our question: Let f be an elect. flow of value F* wrt resist. r,
How large p = max, |f(e)] can be?

In general: p can be very large
(Think: one edge having an extremely small resistance)

Fix: Regularize the resistances with a uniform distribution
r/<r,+€|r|;/m

Can show: p is bounded by O(n”: £1) then

®

=

This gives a (1-€)-approx. O(n3/2¢3)-time algorithm

Going beyond the O(n3/2) Barrier

Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

=n” paths with =n” vertices each

Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

=n” paths with =n” vertices each

Max flow:

Speeding up our algorithm

Running time is dominated by =p elect. flow computations

Can we improve our O(n”€!) bound on p?

Not really...

Electr. flow:

DEAD ?
END

Speeding up our algorithm

Key observation: If we remove this bad edge...

- The max flow does not change much

Speeding up oyralgarithm

Key observation: If we remove this bad edge...

- The max flow does not change much

-> But the resulting electrical flow is much
better behaved!

Can we turn this observation into an
algorithmic idea?

Speeding up our algorithm

Idea: Let our electrical flow oracle self-enforce
a smaller overflow p’ << p

Modification of the oracle: If the computed electrical flow
has some edge e flow more than p’:

- Remove this edge from the graph (permanently)
- Recompute the electrical flow

Note: If this oracle always successfully terminates,
its effective overflow is p’

Speeding up our algorithm
Crucial question: What is the right setting of p’?

-> We want p’ to be as small as possible
- But if it becomes too small the edge removal
might be too aggressive and cut too many of them

Sweet spot: p’=n”*

Key reason: Removal of edges that flow a lot
-» significantly increases the energy of the electr. flow
- But perturbs the max flow only slightly

Speeding up our algorithm

Our potential: The energy E (f) of the
electrical flow f wrt current resistances r

Can show:
-> E (f) is not too small initially and cannot become too large
(as long as we remove no more than = eF* edges)

-> As fhe resistances only increase, E (f) never decreases
—7

This makes E (f) a convenient potential
Remaining piece: Removal of an overflowing
edge increases E (f) significantly

This gives the O(n%3g3)-time (1-€)-approx. algorithm

Thank you

Afternoon: Computing an exact max flow

