Electrical Flows, Optimization, and New Approaches to the Maximum Flow Problem

Aleksander Mądry

Spectral graph theory: Understanding graphs via eigenvalues and eigenvectors of associated matrices

Central object: Laplacian matrix

"Linear-algebraic" graph theory: Understanding graphs via examining associated linear-algebraic objects

Central object: Electrical flows

Our goal: Incorporate this approach into algorithmic graph theory toolkit

Our focus: Maximum Flow problem

(+ random spanning tree generation)

Underlying theme: Merging combinatorial and continuous methods

Linear-algebraic tools

(eigenvalues, electrical flows, linear systems,...)

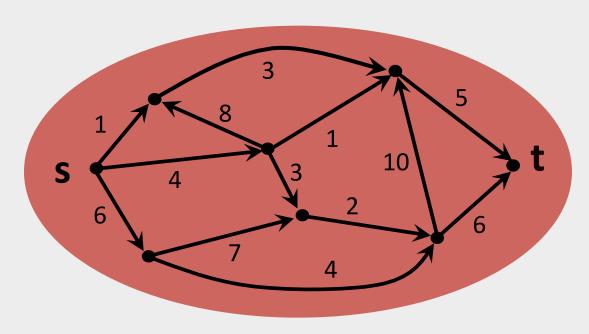
Convex opt. primitives

(gradient-descent, interiorpoint methods,...)

This is a part of a broader agenda

Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t



Think: arcs = roads capacities = # of lanes s/t = origin/destination

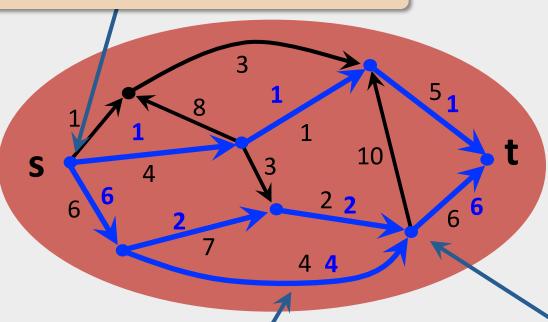
Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Maximum flow problem

value = net flow out of s

Input: Directed graph G, integer capacities u_e, source s and sink t



Think: arcs = roads capacities = # of lanes s/t = origin/destination

Max flow value F*=10

no overflow on arcs: $0 \le f(e) \le u(e)$

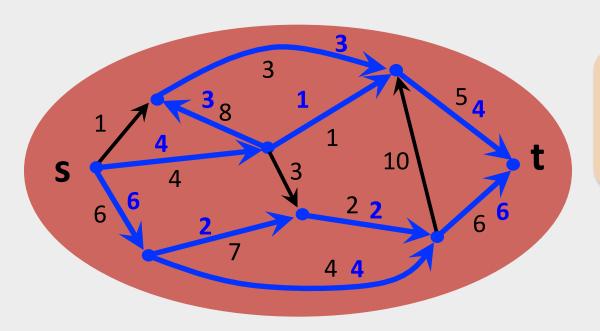
no leaks at all v≠s,t

Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t



Think: arcs = roads capacities = # of lanes s/t = origin/destination

Max flow value F*=10

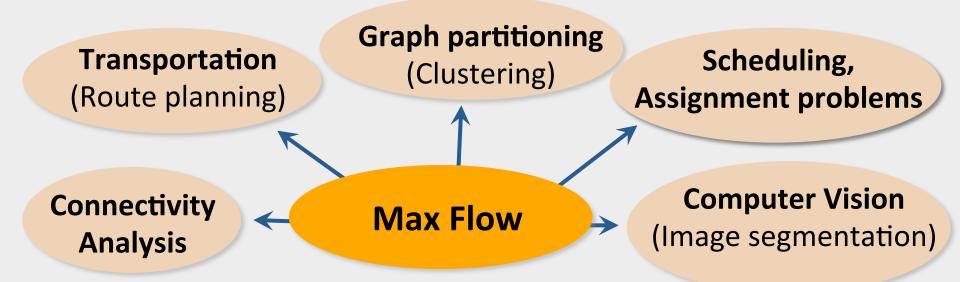
Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

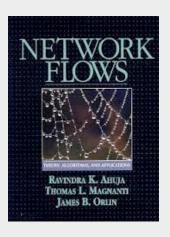
Why is this a good problem to study?

Max flow is a fundamental optimization problem

- Extensively studied since 1930s (classic 'textbook problem')
- Surprisingly diverse set of applications
- Very influential in development of (graph) algorithms



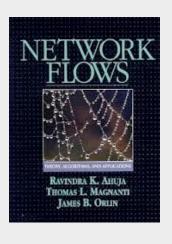
A **LOT** of previous work



A (very) rough history outline

[Dantzig '51]
[Ford Fulkerson '56]
[Dinitz '70]
[Dinitz '70] [Edmonds Karp '72]
[Dinitz '73] [Edmonds Karp '72]
[Dinitz '73] [Gabow '85]
[Goldberg Rao '98]
[Lee Sidford '14]

O(mn² U)
O(mn U)
O(mn²)
O(m²n)
O(m² log U)
O(mn log U)
Õ(m min(m^{1/2},n^{2/3}) log U)
Õ(mn^{1/2} log U)



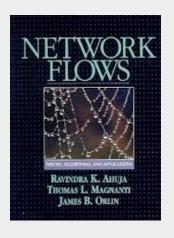
Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures interesting problems, e.g., bipartite matching

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

A (very) rough history outline

[Dantzig '51]	O(n ³)
[Ford Fulkerson '56]	O(n ²)
[Dinitz '70]	$O(n^3)$
[Dinitz '70] [Edmonds Karp '72]	O(n³)
[Dinitz '73] [Edmonds Karp '72]	Õ(n²)
[Dinitz '73] [Gabow '85]	Õ(n²)
[Goldberg Rao '98]	$\tilde{O}(n^{3/2})$
[Lee Sidford '14]	Õ(n ^{3/2})



Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures interesting problems, e.g., bipartite matching

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Emerging barrier: $O(n^{3/2})$

[Even Tarjan '75, Karzanov '73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly more general settings, but **no improvement**

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Breaking the O(n^{3/2}) barrier

Undirected graphs and approx. answers (O(n^{3/2}) barrier still holds here)

[M '10]: Crude approx. of max flow value in close to linear time

[CKMST '11]: (1- ϵ)-approx. to max flow in $\tilde{O}(n^{4/3}\epsilon^{-3})$ time

[LSK '13, S '13, KLOS '14]: (1- ϵ)-approx. in close to linear time

Lecture II

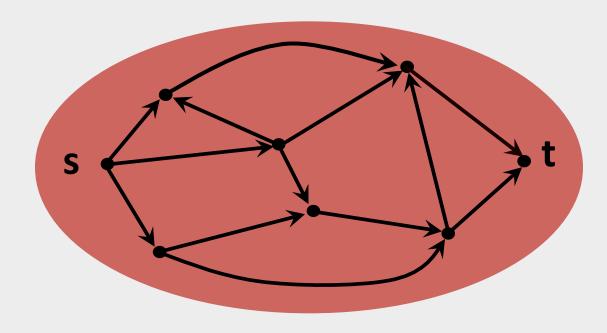
But: What about the **directed** and **exact** setting?

[M '13]: Exact $\tilde{O}(n^{10/7}) = \tilde{O}(n^{1.43})$ -time alg.

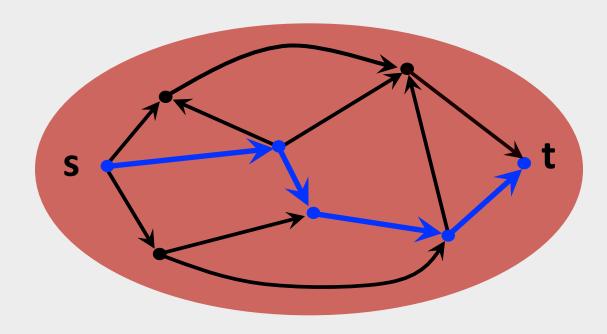
Lecture III $(n = # \text{ of vertices}, \tilde{O}())$ hides polylog factors)

Previous approach

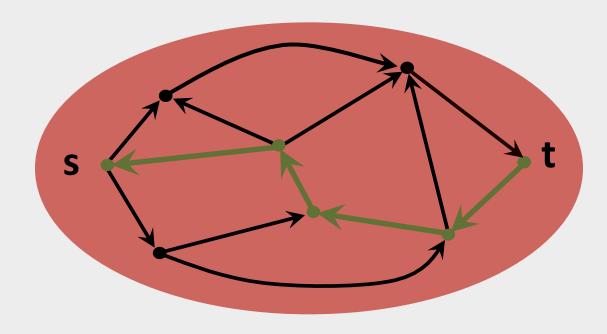
[Ford Fulkerson '56]



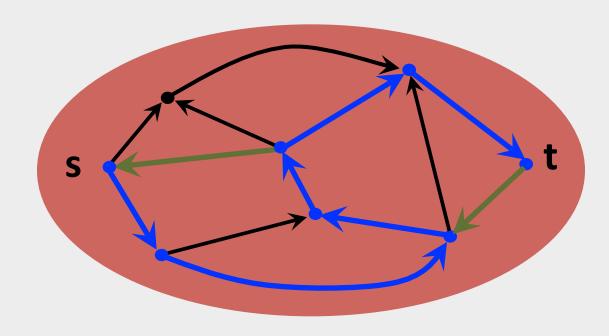
[Ford Fulkerson '56]



[Ford Fulkerson '56]



[Ford Fulkerson '56]



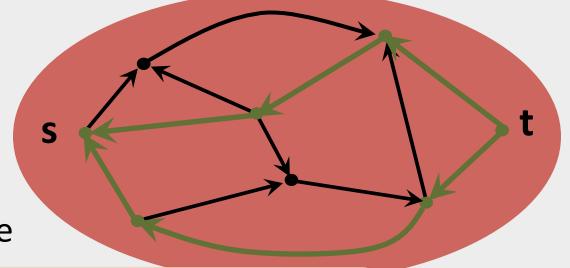
[Ford Fulkerson '56]

Basic idea: Repeatedly find s-t paths in the residual graph

Advantage: Simple, purely combinatorial and greedy (flow is built path-by-path)

Problem:

Very difficult to analyze



Naïve impl

(≤ **n** augme

Unclear how to get a further speed-up via this route path)

Sophisticated implementation and arguments:

 $O(n^{3/2})$ time [Karzanov '73] [Even Tarjan '75]

Beyond augmenting paths

New approach:

Bring linear-algebraic techniques into play

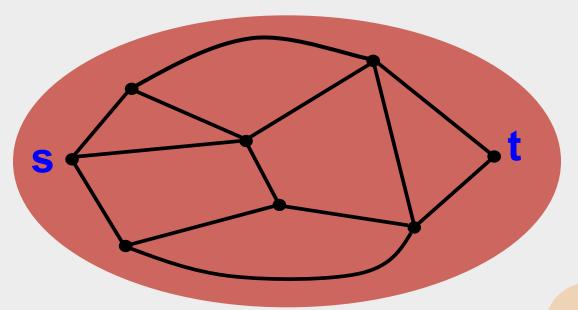
Idea: Probe the **global flow structure** of the graph by **solving linear systems**

How to relate **flow structure** to **linear algebra**? (And why should it even help?)

Key object: Electrical flows

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t



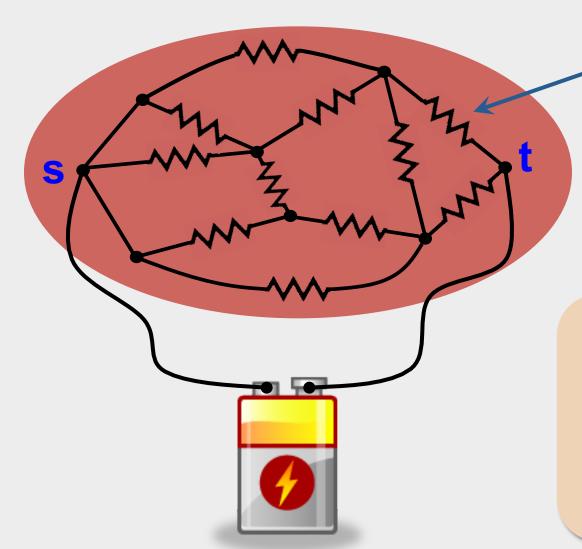
Recipe for elec. flow:

1) Treat edges as resistors

Electrical flows (Take I)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e



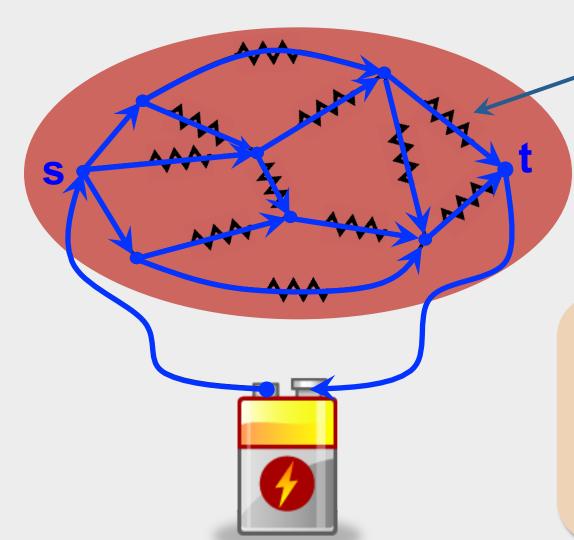
Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t

resistance r_e



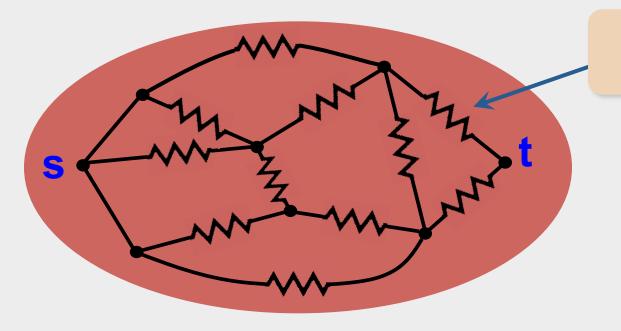
Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

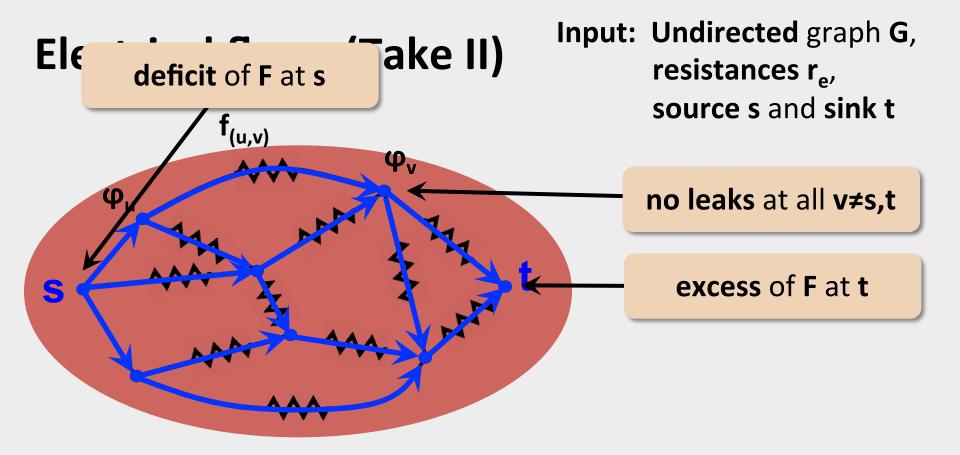
Electrical flows (Take II)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e



(Another) recipe for electrical flow (of value F):



(Another) recipe for electrical flow (of value F):

Find vertex potentials ϕ_v such that setting, for all (u,v)

$$f_{(u,v)} \leftarrow (\phi_v - \phi_u)/r_{(u,v)}$$
 (Ohm's law)

gives a valid s-t flow of value F

Electrical flows (Take III)

Input: Undirected graph G, resistances r_e, source s and sink t

Principle of least energy

Electrical flow of value F:

The unique minimizer of the energy

$$E(f) = \Sigma_e r_e f(e)^2$$

among all s-t flows f of value F

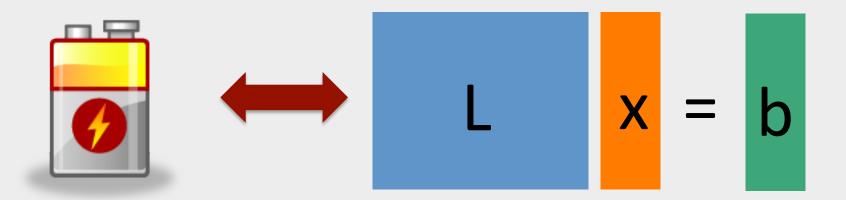
Electrical flows = ℓ_2 -minimization

How to compute an electrical flow?

Solve a linear system!

How to compute an electrical flow?

Solve a Laplacian system!



Result: Electrical flow is a nearly-linear time primitive [ST '04, KMP '10, KMP '11, KOSZ '13, LS '13, CKPPR '14]

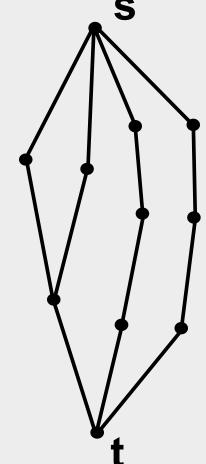
How to employ it?

From electrical flows to undirected max flow

Approx. undirected max flow [Christiano Kelner M. Spielman Teng '11]
via electrical flows

Assume: F* known (via binary search)

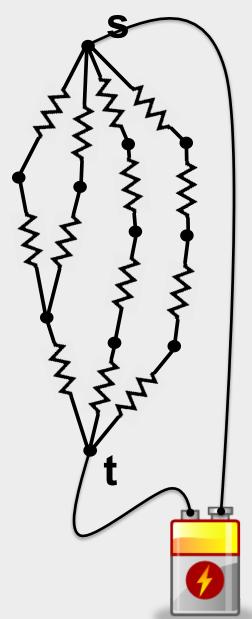
→ Treat edges as resistors of resistance 1



Approx. undirected max flow [Christiano Kelner M. Spielman Teng'11]
via electrical flows

Assume: F* known (via binary search)

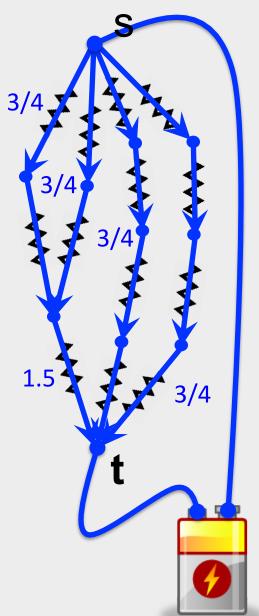
- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value **F***



Approx. undirected max flow [Christiano Kelner M. Spielman Teng '11]
via electrical flows

Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)



Approx. undirected max flow [Christiano Kelner M. Spielman Teng '11]
via electrical flows

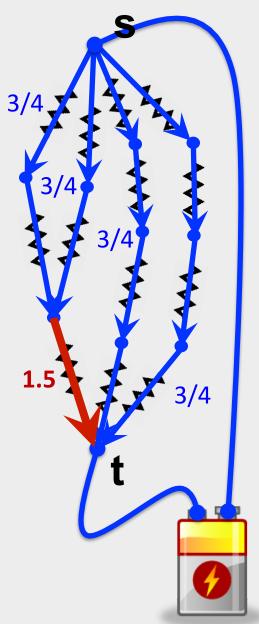
Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)
- → To fix that: Increase resistances on the overflowing edges

 Repeat (hope: it doesn't happen too often)

Surprisingly: This approach can be made work!

Tomorrow: Will discuss how to fill in the blanks



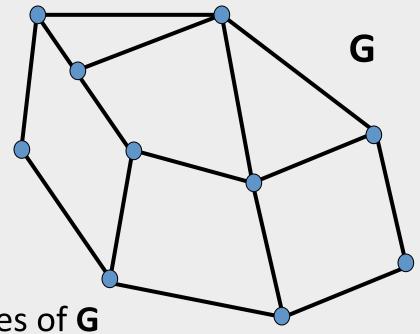
Generating Random Spanning Trees

Random Spanning Trees

Goal: Output an uniformly random spanning tree

More precisely:

T(G) = set of all spanning trees of **G**

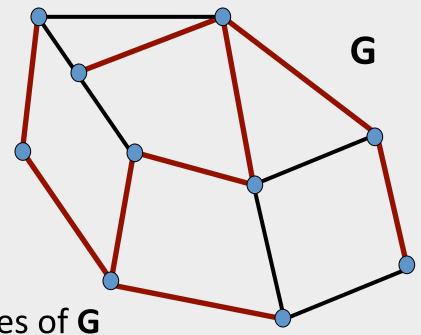


Random Spanning Trees

Goal: Output an uniformly random spanning tree

More precisely:

T(G) = set of all spanning trees of **G**



Random Spanning Trees

Goal: Output an uniformly random spanning tree

More precisely:

T(G) = set of all spanning trees of G

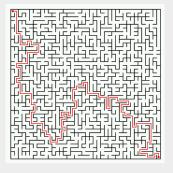
es of **G**

Task: Output a tree **T** with prob. $|T(G)|^{-1}$

Note: |T(G)| can be as large as n^{n-2}

Why Random Spanning Trees?

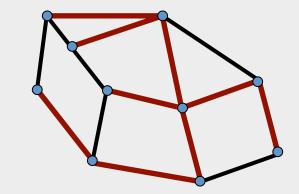
- Fundamental probabilistic object in graph theory
 (study dates back to 1800s [K 1847])
- Applications in computer networks, statistical physics, computational biology
- Deep connections to electrical flows and graph structure:
 - → Efficient sparsifiers [GRV '09]
 - → Thin trees/ Approx. of ATSP [AGM.OS '10]
- Recreation! (Generation of random maze puzzles)



How to Generate a Random Spanning Tree?

Matrix Tree theorem [Kirchoff 1847]

Pr[e in a rand. tree] = Reff(e)



Resulting algorithm:

 \rightarrow Order edges $e_1, e_2,...,$

Effective resistance of e

g empty

- \rightarrow For each e_i :
 - Compute Reff(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.
- → Output **T**

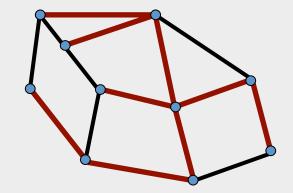
Why does it work?

Conditioning on our choice

How to Generate a Random Spanning Tree?

Matrix Tree theorem [Kirchoff 1847]

Pr[e in a rand. tree] = Reff(e)



Resulting algorithm:

- \rightarrow Order edges $e_1, e_2,...,e_m$ arbitrarily and start with **T** being empty
- \rightarrow For each e_i :
 - Compute Reff(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.
- → Output **T**

Running time?

Bottleneck: Computing Reff(e_i)

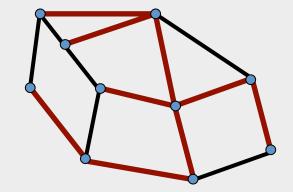
But: Reff(e) = $\chi_e^T L^{-1} \chi_e$ \rightarrow Need to solve a Laplacian system (exactly!)

Resulting runtime: $min(m n^{\omega}, \tilde{O}(m^2))$

How to Generate a Random Spanning Tree?

Matrix Tree theorem [Kirchoff 1847]

Pr[e in a rand. tree] = Reff(e)



Resulting algorithm:

- \rightarrow Order edges $e_1, e_2,...,e_m$ arbitrarily and start with **T** being empty
- \rightarrow For each e_i :
 - Compute Reff(e_i) and add e_i to T with that probability
 - Update G by contracting e_i if e in T and removing it o.w.
- → Output **T**

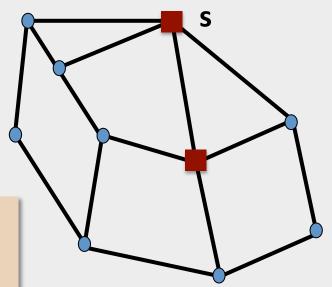
Running time?

Bottleneck: Computing Reff(e_i)

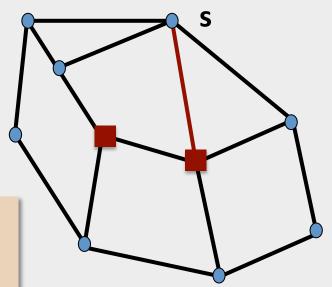
But: Reff(e) = $\chi_e^T L^{-1} \chi_e$ \rightarrow Need to solve a Laplacian system (exactly!)

Resulting runtime: $min(n^{\omega}, \tilde{O}(m^2))$ [CMN '96]

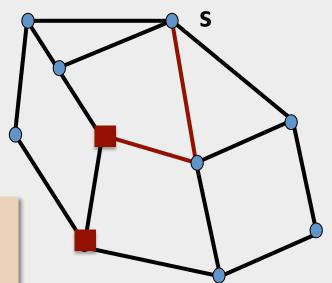
- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**



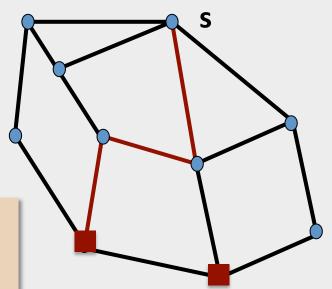
- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**



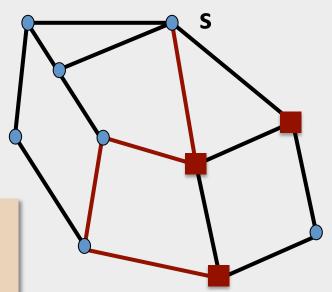
- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**



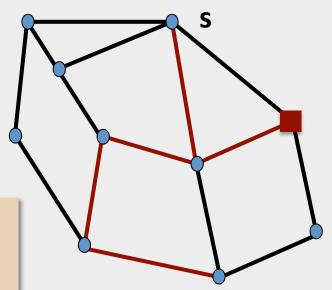
- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**



- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**



- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**



[Broder '89, Aldous '90]: Generate random spanning tree using random walks

- → Start a random walk at some vertex s
- → Whenever visiting a new vertex **v**, add to **T** the edge through which we visited
- → Output **T**

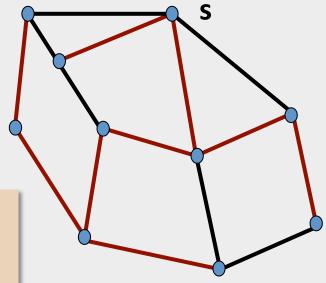
Why does it work?

Magic!

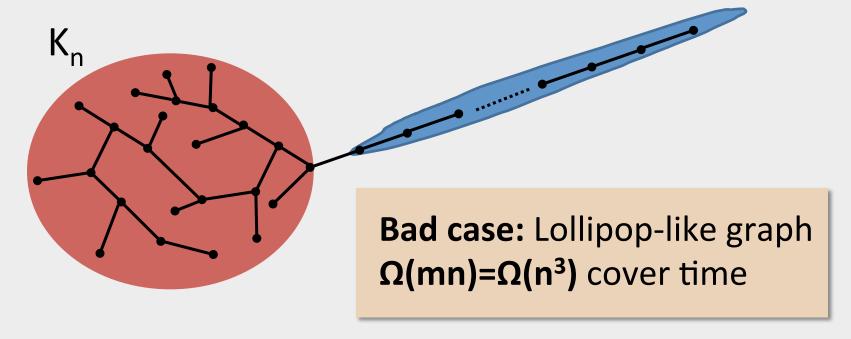
Running time?

O(cover time) = O(mn)

[W '96]: Can get O(mean hitting time) but still O(mn) in the worst case



Can we improve upon that?

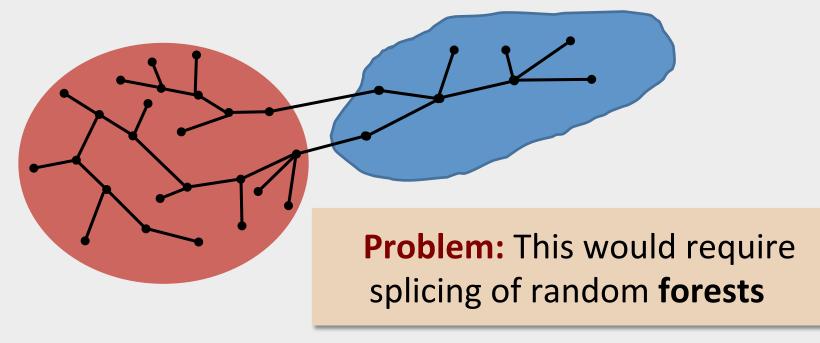


What happens: The walk resides mainly in K_n - the path-like part is covered only after a lot of attempts

Observe: We know how the tree looks like in K_n very early on

Idea: Cut the graph into pieces with good cover time and find trees in each piece separately

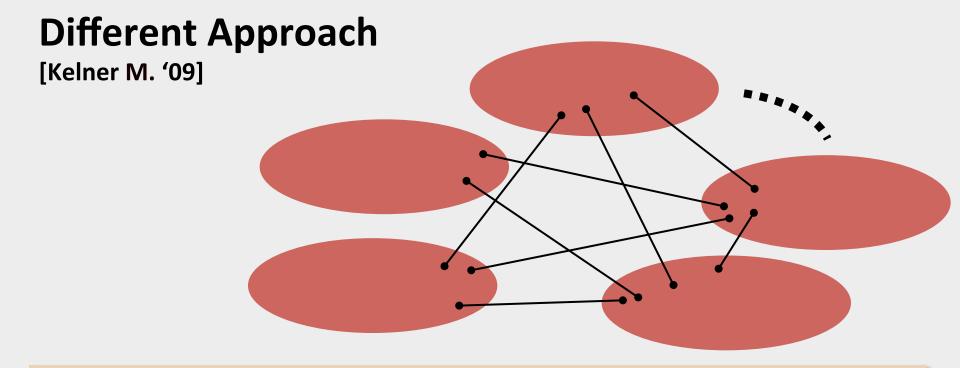
Can we improve upon that?



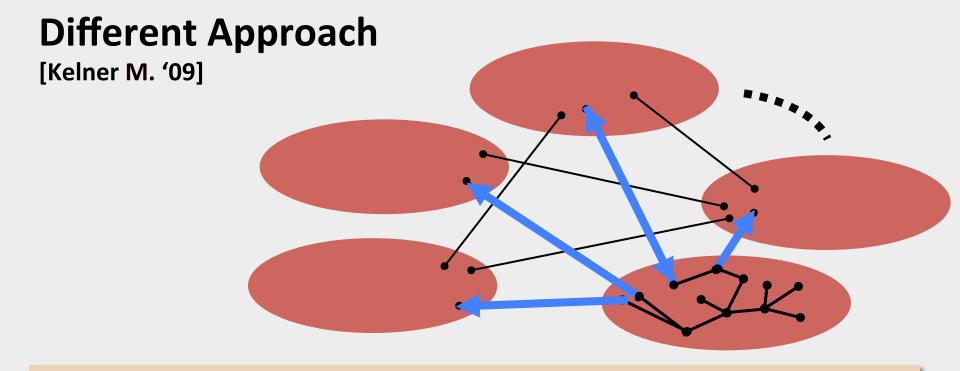
What happens: The walk resides mainly in K_n - the path-like part is covered only after a lot of attempts

Observe: We know how the tree looks like in K_n very early on

Idea: Cut the graph into pieces with good cover time and find trees in each piece separately



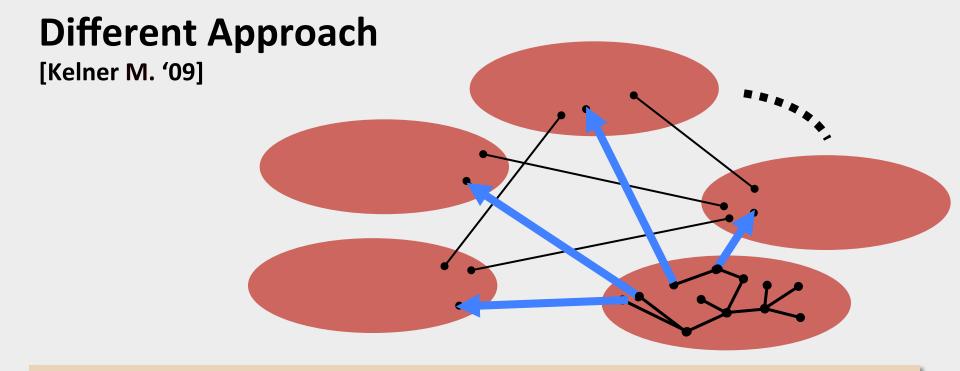
- → Low diameter each
- → Small "interface"



- → Low diameter each
- → Small "interface"

Modification: When simulating the random walk, **shortcut** revisits to pieces that were already explored in full

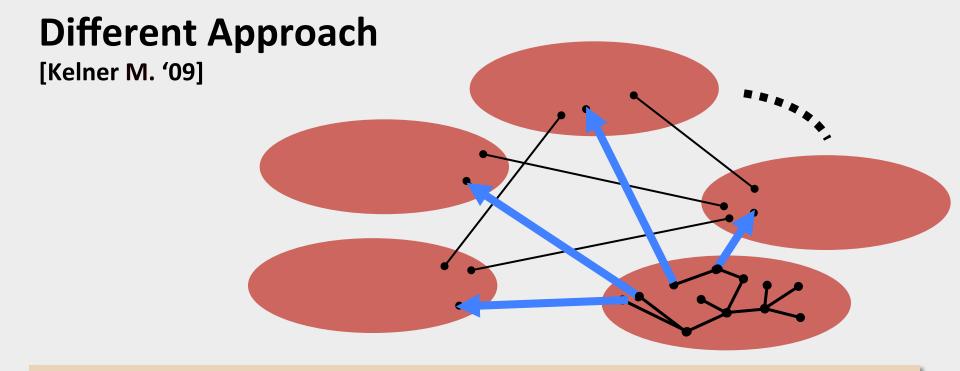
Note: We still retain enough information to output the final tree



- → Low diameter each = we cover each piece relatively quickly
- → Small "interface"

Modification: When simulating the random walk, **shortcut** revisits to pieces that were already explored in full

Note: We still retain enough information to output the final tree



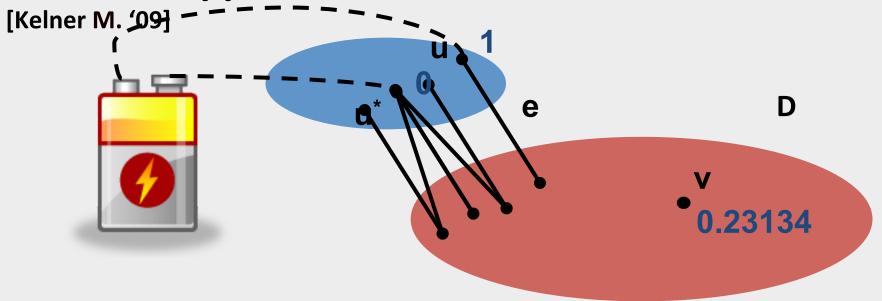
- → Low diameter each = we cover each piece relatively quickly
- → Small "interface" = we do not walk too much over that interface

Modification: When simulating the random walk, **shortcut** revisits to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Missing element: How to compute the shortcutting jumps?

Different Approach



Need: $P_D(e,v)$ = prob. we exit **D** via edge **e** after entering through **v**

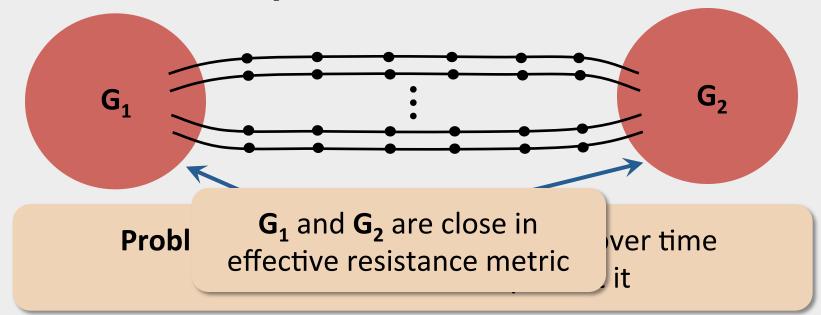
Electrical flows/Laplacian solvers can compute that! [Propp '09]: Computing good approx. to voltages suffices

Putting it all together: Generation of a random spanning tree in Õ(mn½) time

Breaking the $\Omega(n^{3/2})$ $\approx n^{1/2}$ paths with $\approx n^{1/2}$ vertices each $= G_1$ $= \exp(n^{3/2})$ expanders

Breaking the $\Omega(n^{3/2})$ barrier

[M. Straszak Tarnawski '14]

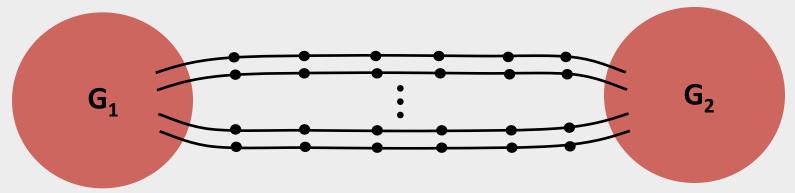


To overcome this:

→ Work with the "right" metric: effective resistance metric (given by L^{-½}) instead of the graph distance metric

Breaking the $\Omega(n^{3/2})$ barrier

[M. Straszak Tarnawski '14]



Problem: This graph has an $\Omega(n^{3/2})$ cover time and there is no nice way to cut it

To overcome this:

→ Work with the "right" metric: effective resistance metric

laivan by 1-1/2) inctood of the graph distance matric

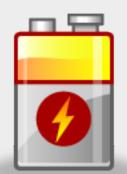
Result: An O(n^{4/3+o(1)}) time sampling algorithm

reploit with silian elect. Lesist, alainetel

→ Tie effect. resist. to graph cuts: Show that any two large regions separated in effect. resist. metric have a good cut

Wrapping Up

We have seen two examples of electrical flows being a key **algorithmic** primitive



(There is more and will be even more in the future)

Merging combinatorial and continuous perspective was crucial for achieving success here

Ultimate goal: Forging next generation toolkit for graph algorithms

- → Capable of making progress on some longstanding challenges
- → Compatible with "approximate but quick" regime of big graphs

Thank you