Electrical Flows, Optimization,
and New Approaches to the Maximum Flow
Problem

Aleksander Madry
B

Spectral graph theory: Understanding graphs via
eigenvalues and eigenvectors of associated matrices

Central object: Laplacian matrix

-

“Linear-algebraic” graph theory: Understanding graphs via
examining associated linear-algebraic objects

o

Central object: Electrical flows

Our goal: Incorporate this approach o
into algorithmic graph theory toolkit

Our focus: Maximum Flow problem
(+ random spanning tree generation)

Underlying theme: Merging
combinatorial and continuous methods

v et enson
R LINEAR | :
N - BV |inear-algebraic
\ | < \‘ 1‘4.\.: 3roEpiTion
L3 | tools
''''''' ALGORITHMS . CONVex (eigenvalues,
opt L - .
PHITIZEton (JRALEIGH electrical flows,

. . linear systems,...
Combinatorial methods | y)

(trees, paths, partitions, Convex opt. primitives
matchings, routings,...) (gradient-descent, interior-
point methods,...)

This is a part of a broader agenda

Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)

. Input: Directed graph G,
Maximum flow problem integer capacities u,,

value = net flow out of s J source s and sink t

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

Max flow value
F*=10

no overﬂow on arcs. no Ieaks at a|| V¢S,t J
0 < f(e) < u(e)

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)

Input: Directed graph G,
integer capacities u,,
source s and sink t

Maximum flow problem

Think: arcs = roads
capacities = # of lanes
s/t = origin/destination)

F*=10

Max flow value J

Task: Find a feasible s-t flow of max value J

(Think: Estimate the max possible rate of traffic from s to t)

Why is this a good problem to study?

Max flow is a fundamental
optimization problem

e Extensively studied since 1930s (classic ‘textbook problem’)
e Surprisingly diverse set of applications
e Very influential in development of (graph) algorithms

_ Graph partitioning .
Transportation (Clustering) Scheduling,

(Route planning) Assignment problems

N

Connectivity Computer Vision
Analysis < Max Flow > (Image segmentation)

What is known about Max Flow?
A LOT of previous work

NETWORK
L

What is known about Max Flow?

NETWORK
A (very) rough history outline FIOWS
[Dantzig ‘51] O(mn2U)
[Ford Fulkerson ’56] O(mn U)
[Dinitz ’70] O(mn?)
[Dinitz ‘70] [Edmonds Karp '72] O(m?n)
[Dinitz ‘73] [Edmonds Karp ’72] O(m?log U)
[Dinitz ‘73] [Gabow ’85] O(mnlog U)
[Goldberg Rao 98] O(m min(m?/2,n2/3) log U)
[Lee Sidford ’14] O(mn?/2 log U)

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
A (very) rough history outline

[Dantzig ‘51]

[Ford Fulkerson ’56]

[Dinitz ’'70]

[Dinitz ‘70] [Edmonds Karp '72]
[Dinitz ‘73] [Edmonds Karp ’72]
[Dinitz ‘73] [Gabow ’85]
[Goldberg Rao "98]

[Lee Sidford '14]

O(n3)
O(n?)
O(n3)
O(n3)
O(n2?)
O(n?)
6(n3/2)
6(n3/2)

NETWORK
FLOWS

Our focus: Sparse graph (m=0(n)) and unit-capacity (U=1) regime

- It is a good benchmark for combinatorial graph algorithms
- Already captures interesting problems, e.g., bipartite matching

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

What is known about Max Flow?
Emerging barrier: 0O(n3/2)

[Even Tarjan ’75, Karzanov ‘73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly
more general settings, but no improvement

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

(n = # of vertices, m = # of arcs, U = max capacity, O() hides polylogs)

Breaking the O(n3/2) barrier

Undirected graphs and approx. answers (O(n3/2) barrier still holds here)

[M ‘10]: Crude approx. of max flow value in close to linear time

[CKMST ‘11]: (1-€)-approx. to max flow in O(n*/3€3) time

[LSK”13, S ’13, KLOS ‘14]: (1-€)-approx. in close to linear time

Lecture Il
But: What about the directed and exact setting?

M “13]: Exact O(n1%7)=0(n*-*3)-time alg.

Lecture Il (n = # of vertices, O() hides polylog factors)

Previous approach

Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ

Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ

Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ

Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ

Augmenting paths framework
[Ford Fulkerson ‘56]

Basic idea: Repeatedly find s-t paths in the residual graphJ

Advantage: Simple,
purely combinatorial
and greedy (flow is
built path-by-path)

Problem:
Very difficult to analyze

Naive impl

Unclear how to get
(Snaugme a further speed-up via this route path)

Sophisticated implementation and arguments:
0(n3/2) time [Karzanov ‘73] [Even Tarjan ‘75]

Beyond augmenting paths

New approach:
Bring linear-algebraic techniques into play

Idea: Probe the global flow structure
of the graph by solving linear systems

How to relate flow structure to linear algebra?
(And why should it even help?)

Key object: Electrical flows

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

Recipe for elec. flow:
1) Treat edges as
resistors

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Takel) resistancesf, P

source s and sink t

resistance r,

Recipe for elec. flow:
1) Treat edges as

resistors
q 2) Connect a battery
tosandt /

. Input: Undirected graph G,
Electrical flows (Take 1) " oo f P

source s and sink t

resistance r,

(Another) recipe for electrical flow (of value F):

Input: Undirected graph G,

f source s and sink t

(u,v

no leaks at all v#s,t

v

excess of F at t

(Another) recipe for electrical flow (of value F):
Find vertex potentials ¢, such that setting, for all (u,v)

(u v) ((Pv ‘-Pu)/r(u v) (Ohm’s Iaw)
gives a valid s-t flow of value F

. Input: Undirected graph G,
Electrical flows (Take II) resistances‘f, P

source s and sink t

Principle of least energy

Electrical flow of value F:
The unigue minimizer of the energy

E(f) =2, r_f(e)?

among all s-t flows f of value F

Electrical flows = {,-minimization

How to compute an electrical flow?

Solve a linear system!

How to compute an electrical flow?

Solve a Laplacian system! J

Result: Electrical flow is a nearly-linear time primitive
[ST ’04, KMP '10, KMP ’11, KOSZ '13, LS *13, CKPPR ‘14]

How to employ it?

From electrical flows to
undirected max flow

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows S

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1
-> Compute electrical flow of value F*

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

Approx. undirected max flow [christiano Kelner M. Spielman Teng ’11]
via electrical flows

Assume: F* known (via binary search)

- Treat edges as resistors of resistance 1

-> Compute electrical flow of value F*
(This flow has no leaks, but can
overflow some edges)

- To fix that: Increase resistances on the
overflowing edges
Repeat (hope: it doesn’t happen too often)

1.5

Surprisingly: This approach can be made work!

Tomorrow: Will discuss how to fill in the blanks

Generating Random Spanning Trees

Random Spanning Trees

Goal: Output an
uniformly random
spanning tree

More precisely:

T(G) = set of all spanning trees of G

Random Spanning Trees

Goal: Output an
uniformly random
spanning tree

More precisely:

T(G) = set of all spanning trees of G

Random Spanning Trees

Goal: Output an
uniformly random
spanning tree

More precisely:

T(G) = set of all spanning trees of G

Task: Output a tree T with prob. | T{G) |2

Note: | T{(G)| can be as large as n"2

Why Random Spanning Trees?

Fundamental probabilistic object in graph theory
(study dates back to 1800s [K 1847])

Applications in computer networks, statistical physics,
computational biology

Deep connections to electrical flows and graph structure:
—> Efficient sparsifiers [GRv ‘09]
- Thin trees/ Approx. of ATSP [aGm.0s ‘10]
Recreation! (Generation of random maze puzzles)

How to Generate a Random Spanning Tree?

Matrix Tree theorem [Kirchoff 1847]

Pr[e in a rand. tree] = Reff(e)

Resulting algorithm: \

e : :
S Order edges ,, €,y ffective resistance of e b e

-> For each e;:
* Compute Reff(e,) and add e, to T with that probability
* Update G by contracting e, if e in T and removing it o.w.

- Output T \

Why does it work? - .
Conditioning on our choice

How to Generate a Random Spanning Tree?

Matrix Tree theorem [Kirchoff 1847]

Pr[e in a rand. tree] = Reff(e)

Resulting algorithm:

—> Order edges e,, e,,...,e , arbitrarily and start with T being empty
-> For each e;:

* Compute Reff(e,) and add e, to T with that probability
* Update G by contracting e, if e in T and removing it o.w.
= Output T

Running time? Bottleneck: Computing Reff(e)
But: Reff(e) =x." L' X. - Need to solve a Laplacian system’(e}azt‘m)

| Resulting runtime: min(m n®, O(m?2))

How to Generate a Random Spanning Tree?

Matrix Tree theorem [Kirchoff 1847]

Pr[e in a rand. tree] = Reff(e)

Resulting algorithm:

—> Order edges e,, e,,...,e , arbitrarily and start with T being empty
-> For each e;:

* Compute Reff(e,) and add e, to T with that probability
* Update G by contracting e, if e in T and removing it o.w.
= Output T

Running time? Bottleneck: Computing Reff(e)
But: Reff(e) =x.," L'l x. - Need to solve a Laplacian system (e}azt‘m)

Resulting runtime: min(n®, O(m?)) [cvN ‘g6]

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Can we do better? Q s

[Broder ’89, Aldous '90]: Generate random
spanning tree using random walks

-» Start a random walk at some vertex s
- Whenever visiting a new vertex v,

add to T the edge through which we visited
= Output T

Why does it work? Magic!

Running time?
O(cover time) = O(mn)

[W’96]: Can get O(mean hitting time) but still O(mn) in the worst case

Can we improve upon that?
K

n

Bad case: Lollipop-like graph
Q(mn)=Q(n3) cover time

What happens: The walk resides mainly in K -the path-like
part is covered only after a lot of attempts

Observe: We know how the tree looks like in K very early on

Idea: Cut the graph into pieces with good cover time
and find trees in each piece separately

Can we improve upon that?

Problem: This would require
splicing of random forests

What happens: The walk resides mainly in K -the path-like
part is covered only after a lot of attempts

Observe: We know how the tree looks like in K very early on

Idea: Cut the graph into pieces with good cover time
and find trees in each piece separately

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
= Low diameter each
= Small “interface”

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
= Low diameter each
= Small “interface”

Modification: When simulating the random walk, shortcut revisits
to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
- Low diameter each = we cover each piece relatively quickly
= Small “interface”

Modification: When simulating the random walk, shortcut revisits
to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Different Approach

[Kelner M. ‘09]

Decompose the graph into pieces with:
- Low diameter each = we cover each piece relatively quickly
- Small “interface” = we do not walk too much over that interface

Modification: When simulating the random walk, shortcut revisits
to pieces that were already explored in full

Note: We still retain enough information to output the final tree

Missing element: How to compute the shortcutting jumps? J

Different Approach

[Kelner M. 09
(

Need: P,(e,v) = prob. we exit D via edge e after entering through v J

Electrical flows/Laplacian solvers can compute that!

[Propp ‘09]: Computing good approx. to voltages suffices

Putting it all together: Generation of
a random spanning tree in O(mn*) time

Breaking the Q(n3/2* -~~~ S
[M. Straszakgl'arnawski ‘(14] =Nn* paths with =n” vertices each J

—@ @ o—
—@- @ -
)

—o-— -0 -
- o— o

=~ J/7

expanders

Breaking the Q(n3/2) barrier
[M. Straszak Tarnawski ‘14]

—@ @
= @

9

—e— - r.
o — o

W e

G, and G, are close in .
Probl , : . Iver time
effective resistance metric i+

To overcome this:

- Work with the “right” metric: effective resistance metric
(given by L) instead of the graph distance metric

Breaking the Q(n3/2) barrier
[M. Straszak Tarnawski ‘14]

—@ @
= @

9

— o r-
o— o——o—

Problem: This graph has an Q(n3/2) cover time
and there is no nice way to cut it

To overcome this:

- Work with the “right” metric: effective resistance metric
. _% . . .

Result: An O(n4/3+0(1)) time sampling algorithm

- Tie effect. resist. to graph cuts: Show that any two large
regions separated in effect. resist. metric have a good cut

Wrapping Up

1 =

We have seen two examples of electrical flows

being a key algorithmic primitive

O

(There is more and will be even more in the future)

Merging combinatorial and continuous perspective was
crucial for achieving success here

oooooooooooooo

ALGORITHMS
TR

convex

FRALEIGH
BEAUREGARD

Ooptimization

Tomorrow

Ultimate goal: Forging next generation
toolkit for graph algorithms

- Capable of making progress on some longstanding challenges
- Compatible with “approximate but quick” regime of big graphs

Thank you

