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Introduction



Pseudorandom States (PRSs):“Computational approx. to Haar measure”

QuestionWhere do PRSs fit in the complexitylandscape?
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• Cryptography

• Physical simulation
• AdS/CFT
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Definition (Ji, Liu, Song 2018)
{|ϕk〉}k∈{0,1}n is pseudorandom if:
I Efficient generation of |ϕk〉 given k ∈ {0, 1}n

I For all poly-time A and any T = poly(n):
Pr

k←{0,1}n

[
A
(
|ϕk〉⊗T

)
= 1

]
− Pr
|ψ〉←µHaar

[
A
(
|ψ〉⊗T

)
= 1

]
≤ negl(n)
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Theorem (Ji, Liu, Song 2018)
If quantum-secure OWFs exist, then
pseudorandom states exist.

PRSs ⇒ ???
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“QMA” protocol to break PRSs
Suppose Arthur has |ψ〉⊗T

I Merlin: send quantum circuit C
I Arthur: check that C |0n〉 ≈ |ψ〉 using swap test

PROBLEM
Not a QMA language! Input |ψ〉⊗T a quantum state,not a string in {0, 1}n.
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Results



Theorem (This work)
There exists a quantum oracle O such that:
1. BQPO = QMAO, and
2. PRSs exist relative to O.

Theorem (This work)
If BQP = PP, then PRSs do not exist.
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Shadow Tomography [Aaronson 2018]
Given:
I Binary observables O1, . . . ,OM

I Copies of n-qubit state ρ
Goal: estimate Tr(Oiρ) up to ±ε for all i ∈ [M ].

Sample efficient: poly(n, logM , ε)
Time efficient?
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Hyperefficient Shadow Tomography
Given:
I Oracle that takes i ∈ [M ] and measures Oi

I Copies of n-qubit state ρ
Goal: output C s.t. C (i) = Tr(Oiρ)± ε for all i ∈ [M ].

Impossible efficiently(in time poly(n, logM , ε))
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H.S.T. with State Preparation
Given:
I Oracle that takes i ∈ [M ] and produces |ψi〉
I Copies of n-qubit state ρ

Goal: output C s.t. C (i) = 〈ψi |ρ|ψi〉 ± ε for all i ∈ [M ].

Still impossible efficiently
Proof: otherwise, we would have a black box QMAreduction for breaking PRSs!
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Haar-random oracle:
U = {Ux ← U(2|x |)}x∈{0,1}∗

Theorem (This work)
If BQPU 6= QMAU , then BQP 6= QMA
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Proof Techniques



O = (U ,P)

I U : collection of Haar-random unitaries
I P : PSPACE-complete language

Proof idea: QMA algorithm can’t learn any nontrivialproperty of U , by concentration of Haar measure
PRSs exist relative to U by BBBV, and P doesn’t help
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Classical shadows[Huang, Kueng, Preskill 2020]
+

Postselection[Aaronson 2005]
16 / 20



Open Problems



Classical oracles?

Other evidence for PRSs?
Quantummeta-complexity?

18 / 20



Classical oracles?
Other evidence for PRSs?

Quantummeta-complexity?

18 / 20



Classical oracles?
Other evidence for PRSs?
Quantummeta-complexity?

18 / 20



William Kretschmer
https://www.cs.utexas.edu/~kretsch/

kretsch@cs.utexas.edu

19 / 20

https://www.cs.utexas.edu/~kretsch/
kretsch@cs.utexas.edu


Lemma
Suppose that f : U(N)⊕k → R is T -Lipschitz in the
Frobenius norm. Then for every x > 0:

Pr
U←µHaar

[
f (U) ≥ E

V←µHaar

[f (V )] + x

]
≤ exp

(
−(N − 2)x2

24T 2

)
.

N = 2n, where n = # qubits
f (U) = max

|ψ〉

{
Pr

[
AU(|ψ〉)

]
= 1

}
T = # queries to U
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