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Optimization
Problem: f:R" =R, minf(x)

Core topic in math, theoretical computer science, operations research, etc.

Provable guarantee for solving an optimization problem?

Convex optimization can be solved in polynomial time.
Methods: ellipsoid method, interior point method, etc.

Cost: poly(n, log1/e), state-of-the-art: O(n?) query and O(n?) time
[Lee, Sidford, and Vempala]

Quantum: Assume the quantum evaluation oracle O¢|x)|0) = |x)|f(x)),
O(n) query and O(n?) time [Chakrabarti et al., van Apeldoorn et al.]



End of the story?

Unique local
minimum is
the global one

Two concerns about this result in the practice of ML:

» Loss functions of ML models are typically nonconvex. o

» Many common cases have large n while can also

tolerate reasonably large . So many local

minima...

Speaking of provable guarantee, maybe we want to pursue algorithms with cost

poly(n,log 1/¢) = poly(logn,1/e)

Such algorithms are called (almost) dimension-free methods.



Nonconvex optimization

The most common method for nonconvex optimization: gradient descent (GD)

Xer1 = X — 1) - VI (Xp).

If f is -smooth: ||Vf(wy) — Vf(ws)|| < l|lwy —wsa|| Vwi,wy € R,
t = 0((/2) = | Vf(x)|| < e

This is an e-approx. first-order stationary point.

Question: Is this good enough?



Nonconvex optimization

local minima

saddle points



Nonconvex optimization

Common facts about many learning problems:

» Local optima are nearly as good as the global minima (“landscape” results in theory);
» Saddle points (and local maxima) can give highly suboptimal solutions;
» Saddle points are ubiquitous;

» Finding the global minima is NP-hard.

Conclusion: We would want to escape from saddle points, but
are satisfied with reaching an e-approx. local minimum x.:

IV <& Amin(Vf(x)) > —/PE.
Here f is p-Hessian Lipschitz: ||V2f(wy) — V2f(wa2)]| < p|lwy — wa|| Vwy,ws € R".



Escaping from saddle points

Reference Queries Oracle

Nesterov and Polyak 2006; Curtis et al. 2017 O(1/e'?) Hessian

Agarwa}/et al. 2017; Carmon et al. 2018 O(logn/e'"™)  Hessian-vector product

/ Jin et al. 2017, 2019 O(log* n/e?) Gradient

/ Jin et al. 2018 O(log® n /e ™) Gradient
L v
Folklore with the Hessian oracle. Issue: Main consideration: Use simpler and simpler

n-by-n matrix, too costly in practice oracle, while keeping poly-log in n

Our result: Using the quantum evaluations O¢|x)|0) = |x)|f(x)),

this work O(log®n/e"™)  Quantum evaluation

» Cubic quantum speedup in terms of n;

» Using lower order (zeroth-order) information than the classical algorithms.

[Zhang, Leng, L., contributed talk at QIP 2021] arXiv:2007.10253



gradient is small

Escaping from saddle points shake when the

The main idea: perturbed gradient descent

Main thoughts:

» Radius of perturbation: If it is too large, then we
may backtrack too much. If it is too small, we
may need many iterations to leave the saddle.

» Way of perturbation: What’s the most efficient approach?

» Gradient descent: Faster versions?



Classical state-of-the-art (simplified)

» Throughout the algorithm, use Nesterov’s accelerated gradient descent (AGD):

Vi < X¢ + (1 — O)ve, Xer1 < Ye — VF(VE), Vsl < Xer1 — Xe

» If |[Vf(x¢)|| < eand no perturbation happened in O(log n) steps:
Perturb by the uniform distribution in the ball of radius r = ©(¢/ log® n).

Fact: Perturbed AGD takes O(log n) steps to decrease the the Hamiltonian
fxe) + llvell*/2n
by ©(1/ log® n), convergence rate O(1/e"7°). Total cost: O (log® n/e! ™).



Quantum speedup?

Perturbation plays a crucial role, but the classical radius is too bad. Can we give a
quantum speedup for this step? Near saddle points: escape from landscapes.

classical physics:
climbing the hill

Quantum tunneling?

quantum physics:
“tunnelling”

LU 00 8

We make the idea algorithmic using quantum
simulation of the Schrodinger equation:

o,

’_

ot

I I
D= |-V +f(x)}<1>.



Schrodinger equation
Near a saddle point, the function is well-approximated by a quadratic function.

Lemma
A

Suppose a quantum particle is in a one-dimensional potential field f(x) = §x2 with initial
state ®(0,x) = ()% exp(—x2/4) (i.e., its initial position follows A/(0, 1)). The time
evolution of this particle is governed by the Schrodinger equation.

Then forany t > 0, the position of the quantum particle still follows normal distribution
N (0,0%(t; \)), where the variance o*(t; \) is given by

r1+*§2 2 (A =0),
0'2(1'; /\) — (14+4a )—(;;240( ) cos 2at (/\ >0,a= \/X),
(1—e21)2 4402 (1 4e201)? (A < 0,0 = vV=N).

\ T6aZe2ot

Fact: Exp. dispersion rate for A\ < 0, quadratic for A = 0, and at most constant for A > 0.



Escaping from saddle points by quantum simulation

Lemma 2.3. We have:

(logn)® )),

P(AfL = Ve/p?) <exp (- O

where A f| stands for the function value increase in the eigen-directions other than the most negative
one due to the perturbation from the quantum simulation for time 7' = O(llogn/\/pe). Specifically,

AfL = flxo—Ax)) — f(x),

where &x” stands for the component of xg — X along the most negative eigen-direction.
If we are near a saddle, then at least one eigenvalue is < —,/pe.
Because the dispersion is so large, even all the other directions

go backward (i.e., have positive eigenvalue), with high probability
the function value still decreases much.

This is only the perturbation step. How does that combine with GD?



Escaping from saddle points by quantum simulation

Proposition 2.1. Suppose f: R" — R is £-smooth and p-Hessian Lipschitz. We take

1

o

N
|

v = O(log(nl(f(xo) — f*)/(ped))), T

For a saddle point X satisfying ||V f(X)|| =0 and Anin (V2 f(X)) < —\/pe€, Algorithm 2 satisfies:
P(f(xr) — FR) < —F) 215,

where X7/ is the T'"™ GD iteration starting from xq, if Algorithm 1 was called at t = 0 in Line 4.

Algorithm 1: QuantumSimulation(x, ro, t.). Algorithm 2: PGD with Quantum Simulation.
1 Put a Gaussian wave packet into the potential field f, with its initial state being: 1 therturb = 0;
L \n/d 1 | 2 fort =0,1,....,T do
do(x) = (%) 7 exp(—(x — x)?/4r); 3 | if |Vf(x)]| <€ andt — tperiury > 7' then
o 4 Xt — X¢ — &,

. " f .
Simulate its evolution in potential field f with the Schrodinger equation for time ¢.; where £ ~QuantumSimulation(x¢, ro, 7);

2 Measure the position of the wave packet and output the measurement outcome. 5 tperturb = 13

6 Xi+1 & Xt — NV f(x¢):




Query complexity of simulating the Schrodinger equation

Remain question 1: what’s the cost of the quantum simulation?

We follow closely to the quantum PDE solver of Childs et al. (arXiv:2002.07868)

If we discretize the space into grids with side-length a (Childs et al.: a can be taken as poly(n,log1/€)),
—%?2 reduces to —Z—égL where L is the Laplacian matrix of the graph of the grids:

1 Pj—1 — 2¢; + Qj+1
el = 9 Pj T Pitl
{LZ[ ?lj a?
0 1. d 1
‘—rb:(—— 2 )(b -'—@:(——L B)fb.
E@'t 2? + f(x) = Idt 502 + :

where B is a diagonal matrix such that the entry for the grid at x is f(x).

Very special structure: E—lgL is dominating but independent of f;
s
B depends on f but is diagonal, very easy to simulate.

Our strategy: Use quantum simulation under the interaction picture (Low and Wiebe, arXiv:1805.00675).

Overall quantum query complexity: O(tlognlog®(%)) for time ¢.



Quadratic approximation

Remain question 2: is the quadratic approximation a too strong assumption?

No, the general case can be approximated by the quadratic case with small overhead.

» Jean Bourgain’s result on the growth of Sobolev norms in linear Schrodinger equations:

For Schrodinger equations of the form i%u + V?u + V(x,t)u = 0 with periodic boundary
condition, we have absolute constants C and « such that

IVu(t)]]2 < C(log )™ [[Vu(0)]]2.

Lemma 3. Let H be the Hessian of f at a saddle point X, and f,(x) == f(X) + & (x — %) TH(x — x)
to be the quadratic approximation of f near xX. Denote the measurement outcome from the quantum

simulation on a hypercube with edge length M with potential field f (resp. fq,) and evolution time
te as a random variable with distribution P¢ (resp. P ). Then

20

nMt?
Vo |

2

TV (P¢,Per) < (‘/?‘0 n (log te)a)



Putting everything together

Algorithm 3: Perturbed Accelerated Gradient Descent with Quantum Simulation.

1
2
3
4

(= I =

10

Vg*i—ﬁ;

fDr t:[];]-:.---,Tdﬂ
if [|[Vf(x¢)|| <€ and no perturbation in last 7' steps then
Xt ¢+ x¢ + & & ~ QuantumSimulation(xy, ro, . 77);

if a perturbation was added in last 7" steps then
| Xppl X — nV f(x:) and vy = 0;
else

yi — Xp + (1 = 0)vy, Xp1 < yi — 0 fys), and v < X1 — Xy
if f(x¢) < f(ye) +{Vf(ye). Xt —y¢) — %”Kt — yt|| then
L (X¢+1, Vir1) < Negative-Curvature-Exploitation(x;, vy, s);

Theorem 2.3 (informal). Algorithm 3 gives an e-approximate local minimum using

oY =1 z)

(175

queries to Uy and gradients with probability at least > 1—0, where t = ©(log(nl(f(xo) — f*)/(ped))),
e,0 € (0,1), xq 1is the start point, f is {-smooth and p-Hessian Lipschitz, and f* is the global
minimum of f.



Summary

1. When the gradient is large, apply Accelerated GD;

2. When the gradient is small, run quantum simulation
with time O(log n) and measure the outcome;

3. Apply GD for O(log n) iterations, and go to Step 1 or 2
(depending on the norm of the gradient).

_ # iterations/ Function Queries in
Perturbation _ _ _ _ _ o
simulation time decrease each iteration/unit time
Classical Uniform in ball O(logn) Q(1/log” n) 1
Quantum Quantum simulation O(logn) (1) O(logn)

A comparison between classical and quantum state-of-the-arts, assuming e = ©(1).



Gradient computation by quantum evaluation oracle

Next: Can we simplify classical gradient queries?

Our contribution: Generalize the application of Jordan’s algorithm for convex optimization
to nonconvex optimization.

The state e/ |x) can be prepared by one query to the oracle Of|x)|0) = |x)|f(x)).

First-order Taylor approximation: f(x) = > ;1 7-X«;

e ~ 3 Qe )
X X
of

Applying the quantum Fourier transform on all n coordinates reveals f O B

Intuitively: Continuous version of the Bernstein-Vazirani algorithm



Gradient computation by quantum evaluation oracle

Our contribution: Generalize the application of Jordan’s algorithm for convex optimization
to nonconvex optimization.

Lemma 3.2. Let f: R™ — R be £-smooth, p-Hessian Lipschitz, and let n < 1/¢. Then the gradient
outputted by Jordan’s algorithm satisfies that for any fixed constant c, with probability at least

l — —F— '”’2 , any specific step of the gradient descent sequence {Xy : Xg11 < Xt — nVX¢} satisfies:
1 [2¢_ 4
Aq n

flxes1) = f(xe) < —n|Vf(xe)]*/2 + . (3.3)

where A, = 400n./d, and o, stands for the accuracy of the quantum evaluation oracle, i.e., it
returns a value f(z) such that |f(z) — f(z)] < Og-

Robust version of function decrease when escaping from saddle points:

Lemma 3.5. Under the setting of the above lemma, we have:

5% = n
RN < ( . /- _

800ny/d, V 7'




Final result

Theorem 3.1 (informal). Suppose that we have the quantum evaluation oracle Uy with accuracy
0 < O f;‘iz . 2_"). Then using Jordan’s algorithm for computing the gradients in descent steps,

the same query bound for giving an e-local minimum holds with probability at least 1 — 9.

Theorem 2.3 (informal). Algorithm 3 gives an e-approximate local minimum using

é((f(xo) — /) _52)

(175

queries to Uy with probability at least > 1—6, where 1 = ©(log(nl(f(xo) — f*)/(ped))),
e,0 € (0,1), xg is the start point, f is £-smooth and p-Hessian Lipschitz, and f* is the global
manimum of f.

We essentially show the robustness of escaping from saddle points by PGD,
which may be of independent interest.



Numerical experiments

Quantum simulation on non-quadratic potential fields
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Figure 2: Quantum simulation on lanscape 1: f(z,y) = Tlix‘l — %:L‘2 + %yz. Parameters: ro = 0.5, t, = 1.5.

Left: The contour of the landscape is placed on the background with labels being function values; the thick
blue contours illustrate the wave packet at t. = 1.5 (i.e., modulus square of the wave function ®(t.,z,y)).
Right: A surface plot of the same wave packet at t. = 1.5.

The wave packet has been “squeezed” along the z-axis, the negative curvature direction. Compared
to the uniform distribution in a ball used in PGD, this “squeezed” bivariant Gaussian distribution assigns
more probability mass along the z-axis, thus allowing escaping from the saddle point more efficiently.



Numerical experiments

Quantum simulation on non-quadratic potential fields

Figure 3: Quantum simulation on lanscape 2: g(z,y) = 2° — 9y — 22y + 6. Parameters: ro = 0.5, t, = 5. It
has a saddle point at (0,0) with no global minimum. This objective function has a circular “valley” along
the negative curvature direction (1,1), and a “ridge” along the positive curvature direction (1, —1). In each
subplot, a colored contour plot of the wave packet at a specific time is shown.

In the whole evolution in t € [0,5], the wave packet is confined to the valley area of the landscape
(even after bouncing back from the boundary). Nevertheless, an interference pattern can be observed near
the upper and left edges of the square, which suggests that Gaussian wave packet is able to adapt to more
complicated saddle point geometries.



Numerical experiments

Comparison between classical and quantum algorithms
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Figure 4: Left: Two typical gradient descent paths on the landscape of fo = 12:7:4 — 1224 %y illustrated

as a contour plot. Path 1 (resp. 2) starts from (—0.01,0.45) (resp. (—0.35,0.07)); both have step length
n = 0.2 and T = 20 iterations. Note that path 2 approaches the local minimum (—+/3,0), while path 1 is
still far away. Classically, path 1 and 2 will be sampled with equal probability. Quantumly, the dispersion
of the wave packet along the z-axis enables a much higher probability of sampling a path like path 2.

Right: A histogram of function values from classical and quantum algorithms. We set step length
n = 0.05, r = 0.5, M = 1000, .7, = 50, .7, = 10, t. = 1.5. Although we run five more times of iterations in
PGD, there are still over 70% of gradient descent paths arriving the neighborhood of the local minimum,
while there are less than 70% paths in PGD+QSimulation approaching the local minimum.



Numerical experiments

Dimension dependence

f(zr)

dim =10
T T 1 |
600 I QSimulation
B PGD
400
200
0 |
>-le-3 (-2e-3,-1e-3] (-3e-3,-2e-3] (-4e-3,-3e-3] (-5e-3,-4e-3]
dim = 100
I |
-, 600 B QSimulation
2 I PGD
o 400
=
o
£ 200
0 | —
>-2e-3 (-4e-3,-2e-3] (-6e-3,-4e-3] (-8e-3,-6e-3] (-le-2,-8e-3]
_ dim = 1000
1000 T I
I QSimulation
N PGD
500 +
0 | | —
>-0.1 (-0.05,-0.1] (-0.15,-0.1] (-0.2,-0.15] (-0.25,-0.2]

Figure 5: Dimension dependence of classical and
quantum algorithms. We set € = 0.01, r = 0.1,
n = 10P for p = 1, 2,3. Quantum evolution time
te = p, classical iteration number .7, = 50p°+ 50,
quantum iteration number .7, = 30p, and sam-
ple size M = 1000. The average runtime for this
simulation is 90.92 seconds.

This numerical evidence might suggest that for a
generic problem, the classical PGD method has
better dimension dependence than O(log”n).



Conclusions

~ 2
Main result: A quantum algorithm for e-approx. local minimum by O('é’f—ﬁ) gueries.

Outcome: Cubic quantum speedup in n, match the classical best-known in €.

» Achieve speedup by using quantum simulation to escape from saddle points;

» Reduce classical gradients to guantum evaluations by Jordan’s algorithm.

Open questions:

» Can we give guantum-inspired classical algorithms for escaping from saddle points?
» Can quantum algorithms achieve speedup in terms of 1/¢?

» Beyond local minima, does quantum provide advantage for approaching global minima?



