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Definition. 𝐻 = (𝑉, 𝐹, 𝑢) is a 𝜅 −approximation of 𝐺 =
𝑉, 𝐸, 𝑤 if:

Theorem. Every 𝐺 has a 1 + 𝜖 −approximation 𝐻
with 𝑂(𝑛 log  𝑛 𝜖2) edges. There is a nearly linear time 
algorithm which finds it.

Previous Lecture

𝐿𝐻 ≼ 𝐿𝐺 ≼ 𝜅 ⋅ 𝐿𝐻



|EH| = O(dn)

There is no log(n) here…

G=Kn H = random d-regular x (n/d)

|EG| = O(n2)



Proof: Approximating the Identity



Tool: The Matrix Chernoff Bound

Suppose 𝑋1, … , 𝑋𝑘 are i.i.d. random 𝑛 × 𝑛 matrices with

0 ≼ 𝑋𝑖 ≼ 𝑀 ⋅ 𝐼 and 𝔼𝑋𝑖 = 𝐼.

Then

ℙ
1

𝑘
 

𝑖

𝑋𝑖 − 𝐼 ≥ 𝜖 ≤ 2𝒏 exp −
𝑘𝜖2

4𝑀

Shows 𝑂
𝑛 log 𝑛

𝜖2
samples suffice in 𝑹𝑛.
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Tool: The Matrix Chernoff Bound

Suppose 𝑋1, … , 𝑋𝑘 are i.i.d. random 𝑛 × 𝑛 matrices with

0 ≼ 𝑋𝑖 ≼ 𝑛 ⋅ 𝐼 and 𝔼𝑋𝑖 = 𝐼.

then 𝑂
𝑛 log 𝑛

𝜖2
samples suffice in 𝑹𝑛.

Tight example:

Simple greedy algorithm gets 𝑂(𝑛): 
place next ball in emptiest bin



This Lecture [Batson-Spielman-S’09]

Spectral Sparsification Theorem:

uses greedy approach.



This is the goal



Plan: Choose vectors one at a time
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Plan: Choose vectors one at a time

…..



Plan: Choose vectors one at a time

…..

𝜆 ∈ [1, 𝜅]



𝜆 ∈ [1, 𝜅]

Plan: Choose vectors one at a time

…..

Basic Question: What does a rank one update 
do to the eigenvalues?



What happens when you add a vector?



Interlacing (Cauchy, 1800s)



The Characteristic Polynomial

Characteristic Polynomial:

where 𝜆1, … , 𝜆𝑛 = eigs(A).

𝑝𝐴 𝑥 = 

𝑖

(𝑥 − 𝜆𝑖)



Proof of Interlacing I



Proof of Interlacing II



Proof of Interlacing III



The Characteristic Polynomial

Characteristic Polynomial:

Matrix-Determinant Lemma:



The Characteristic Polynomial

Characteristic Polynomial:

Matrix-Determinant Lemma:are zeros of this.



Physical model of interlacing

i = positive unit charges

resting at barriers on a slope



Physical model of interlacing

<v,ui>
2 =charges added

to barriers



Physical model of interlacing

Barriers repel eigs.



Physical model of interlacing

Barriers repel eigs.

gravity

Inverse law  of 
repulsion



Physical model of interlacing

Barriers repel eigs.



Examples



Ex1: All weight on u1



Ex1: All weight on u1



Ex1: All weight on u1

Pushed up against next 
barrier

resting due to gravity



Ex2: Equal weight on u1 ,u2



Ex2: Equal weight on u1 ,u2



Ex2: Equal weight on u1 ,u2



Ex3: Equal weight on all u1, u2 , …un



Ex3: Equal weight on all u1, u2 , …un



Adding a balanced vector



Consider a random vector

If 

thus a random vector has the same expected 
projection in every direction i :



The Expected Characteristic Poly.

𝐴(0) = 0

𝑝(0) = 𝑥𝑛



The Expected Characteristic Poly.

𝐴(0) = 0

𝑝(0) = 𝑥𝑛



The Expected Characteristic Poly.

𝐴(1) = 𝑣𝑣𝑇

𝔼𝑝(1) = 𝑝(0) −
1

𝑚

𝜕

𝜕𝑥
𝑝 0



The Expected Characteristic Poly.

𝐴(1) = 𝑣𝑣𝑇

𝔼𝑝(1) = 𝑝(0) −
1

𝑚

𝜕

𝜕𝑥
𝑝 0 = 𝑥𝑛 −

𝑛

𝑚
𝑥𝑛−1



The Expected Characteristic Poly.

𝐴(2) = 𝐴(1) + 𝑣𝑣𝑇

𝔼𝑝(2) = 1 −
1

𝑚

𝜕

𝜕𝑥
𝑝 1 = 1 −

1

𝑚

𝜕

𝜕𝑥

2

𝑥𝑛



The Expected Characteristic Poly.

𝐴(3) = 𝐴(2) + 𝑣𝑣𝑇

𝔼𝑝(3) = 1 −
1

𝑚

𝜕

𝜕𝑥

3

𝑥𝑛



Ideal proof

𝑟𝑜𝑜𝑡𝑠(𝔼𝑝 𝑘 )

𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛
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Ideal proof

𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛

𝑝(𝑘)= Laguerre poly ℒ𝑘



𝑝(𝑘)= Laguerre poly ℒ𝑘

Ideal proof

𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛

after 4𝑛/𝜖2 steps.



This is not real

𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛

Problem: 𝑟𝑜𝑜𝑡𝑠 𝔼𝑝(𝑘) ≠ 𝔼𝑟𝑜𝑜𝑡𝑠(𝑝(𝑘))



𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛 4𝑛/𝜖
2



𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛 4𝑛/𝜖
2

Theorem. If we allow arbitrary scalings of the vectors, then 

there is a greedy algorithm which matches what happens in 
the above dream.

…..



𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛 4𝑛/𝜖
2

Theorem. If we allow arbitrary scalings of the vectors, then 

there is a greedy algorithm which matches what happens in 
the above dream.

…..

Keep track of 
total repulsion



End Result [Batson-Spielman-S’09]

Spectral Sparsification Theorem:



Actual Proof
(for 6n vectors, 13-approx)



Steady progress by moving barriers

0 n-n



Step 1

0 n-n



Step 1

0 n-n

0 n-n



Step 1

0 n-n

0

+1/3 +2

-n+1/3 n+2



Step 1

0 n-n

0

+1/3 +2

-n+1/3 n+2

tighter 
constraint

looser constraint



Step i+1

0
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Step i+1

0



Step i+1
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+1/3 +2



Step i+1

0



Step i+1

0
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Step i+1

0



Step 6n

0 … 13nn



Step 6n

0 … n

13-approximation with 6n vectors.

13n



Problem

need to show that an appropriate

always exists.



Problem

need to show that an appropriate

always exists.

Hope: vectors are well-spread: there must be 

one which is well-behaved.



Bad: Accumulation of Eigenvalues
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Bad: Accumulation of Eigenvalues



Bad: Accumulation of Eigenvalues

is not strong enough to 
do the induction.



Bad: Accumulation of Eigenvalues

is not strong enough to 
do the induction.

need a better way to measure

quality of eigenvalues.



The Upper Barrier



The Upper Barrier



No i within dist. 1
No 2 i within dist. 2
No 3 i within dist. 3

.

.
No k i within dist. k

The Upper Barrier



No i within dist. 1
No 2 i within dist. 2
No 3 i within dist. 3

.

.
No k i within dist. k

The Upper Barrier
‘Total repulsion’ in 

physical model



The Lower Barrier



The Beginning

0 n-n



The Beginning

0 n-n



Step i+1

0



Step i+1

0

+1/3 +2

Lemma. 

can always choose       

so that potentials do not increase



Step i+1

0



Step i+1

0



Step i+1

0



Step i+1

0



Step 6n

0 … 13nn



Step 6n

0 … n

13-approximation with 6n vectors.

13n



Goal

+1/3 +2

Lemma. 

can always choose                           so

that both potentials do not increase.



The Right Question

“Which vector should we add?”



The Right Question

“Which vector should we add?”

“Given a vector, how much of it can we 
add?”



Upper Barrier Update

Add & set

+2



Upper Barrier Update

Add & set

+2



Upper Barrier Update

Add & set

Sherman-Morrisson

+2



Upper Barrier Update

Add & set

+2



Upper Barrier Update

Add & set

+2



Upper feasibility condition

Rearranging:



Rearranging:

Upper feasibility condition



Rearranging:

s=0 always feasible

Upper feasibility condition



Lower Feasibility

Similarly:



Goal

Show that we can always add some vector while 
respecting both barriers.

+1/3 +2



There is always a vector with

Both Barriers
Goal



There is always a vector with

Both Barrierscan add must add



There is always a vector with

Both Barriers

Then, can squeeze scaling factor in between:

can add must add



Average over all ve
Goal



Average over all ve
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Average over all ve
Goal



Bounding Tr(UA)



Bounding Tr(UA)



Bounding Tr(UA)



Bounding Tr(UA)

induction



Bounding Tr(UA)

induction



Bounding Tr(UA)

induction

convexity



Bounding Tr(UA)

induction

convexity



Taking Averages
Goal



Taking Averages



Taking Averages

=3/2
2



Taking Averages

=3/2

2

2

1/3



Taking Averages

=3/2

2

2

1/3





Step i+1

0

+1/3 +2

Lemma. 

can always choose       

so that potentials do not increase.


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Step 6n

0 … n

13-approximation with 6n vectors.

13n



Done!

Spectral Sparsification Theorem: 



Fixing           steps and tightening parameters 
gives

(zeros of Laguerre polynomials).

This is within a factor of 2 of the optimal

Ramanujan Bound [LPS, Alon-Boppana].

Nearly Optimal bound



Why does this work?

Efficiently 
bounds



Why does this work?

Efficiently 
bounds



guarantees good vector 

Why does this work?

Efficiently 
bounds



guarantees good vector 

Why does this work?

Efficiently 
bounds



Major Themes

• Electrical model of interlacing is useful

• Can use barrier potential to iteratively
construct matrices with desired spectra

• Analysis of progress is greedy / local

• Requires fractional weights on vectors

Instead of directly reasoning about 𝜆𝑖(𝐴), 
reason about 𝑧𝐼 − 𝐴 −1.



Open Questions

Fast algorithm currently O(n^4)

Optimization  proof?

More applications



|EH| = O(dn)

There are no weights here…

G=Kn H = random d-regular x (n/d)

|EG| = O(n2)



|EH| = O(dn)

And off by a factor of 2

G=Kn H = random d-regular x (n/d)

|EG| = O(n2)

We get 4𝑛/𝜖2



Tomorrow

2/𝜖2 degree unweighted approximations for 𝐾𝑛
“Ramanujan Graphs”



Tomorrow

2/𝜖2 degree unweighted approximations for 𝐾𝑛
“Ramanujan Graphs”

𝔼𝑝 𝑘 = 1 −
1

𝑚

𝜕

𝜕𝑥

𝑘

𝑥𝑛 4𝑛/𝜖
2

This is not a dream.


