Transparent Time- and Space-Efficient Arguments From Groups of Unknown Order

Justin Holmgren NTT Research

Alex Block Purdue Alon Rosen IDC Herzliya Ron Rothblum Technion

Pratik Soni CMU

Pre-Quantum Cryptography with Lattices

Justin Holmgren NTT Research

Alex Block Purdue Alon Rosen IDC Herzliya Ron Rothblum Technion

Pratik Soni CMU Please make me "Post-".

Pre-Quantum Cryptography with Lattices

Justin Holmgren NTT Research

Alex Block Purdue Alon Rosen IDC Herzliya Ron Rothblum Technion

Pratik Soni CMU

for an NP relation R with corresponding language L

for an NP relation R with corresponding language L

Completeness:

For any $(x, w) \in R$,

for an NP relation R with corresponding language L

Completeness:

For any $(x, w) \in R$,

for an NP relation R with corresponding language L

Completeness:

for an NP relation R with corresponding language L

for an NP relation R with corresponding language L

Completeness:

Soundness:

For any $x \notin L$, poly-size adversary \mathscr{A} ,

for an NP relation R with corresponding language L

Completeness:

Soundness:

For any $x \notin L$, poly-size adversary \mathscr{A} ,

Public-Coin Verification:

Public-Coin Verification:

• Uniformly random verifier messages

Public-Coin Verification:

- Uniformly random verifier messages
- Acceptance depends deterministically on transcript

Public-Coin Verification:

• Uniformly random verifier messages

Necessary for decentralized verification (e.g. in blockchains)

• Acceptance depends deterministically on transcript

Public-Coin Verification:

• Uniformly random verifier messages

Necessary for decentralized verification (e.g. in blockchains)

Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

Public-Coin Verification:

• Uniformly random verifier messages

Necessary for decentralized verification (e.g. in blockchains)

Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

• If $(x; w) \stackrel{?}{\in} R$ is decidable in time *T* and space *S*, then prover runs in time $\approx T$ and space $\approx S$

Public-Coin Verification:

• Uniformly random verifier messages

Necessary for decentralized verification (e.g. in blockchains)

• Acceptance depends deterministically on transcript

Time- and Space-Efficient Prover:

- If $(x; w) \stackrel{?}{\in} R$ is decidable in time *T* and space *S*, then prover runs in time $\approx T$ and space $\approx S$
- Space can be as much of a bottleneck as time, but is often overlooked

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

• Large concrete overheads due to non-black-box crypto (or if brave: algebraic hash functions [BGH19, BCMS20, COS20])

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

- Large concrete overheads due to non-black-box crypto (or if brave: algebraic hash functions [BGH19, BCMS20, COS20])
- Soundness relies on exotic computational assumptions

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

- Large concrete overheads due to non-black-box crypto (or if brave: algebraic hash functions [BGH19, BCMS20, COS20])
- Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

- Large concrete overheads due to non-black-box crypto (or if brave: algebraic hash functions [BGH19, BCMS20, COS20])
- Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

 Until now: space-preserving compilers produced privatecoin arguments [Bitansky-Chiesa '12, BHRRS '20]

Approach 1: Recursive Composition [Valiant '08, BCCT '12]

- Large concrete overheads due to non-black-box crypto (or if brave: algebraic hash functions [BGH19, BCMS20, COS20])
- Soundness relies on exotic computational assumptions

Approach 2: Compiling IOPs with space-efficient provers

- Until now: space-preserving compilers produced privatecoin arguments [Bitansky-Chiesa '12, BHRRS '20]
- This work: public-coin arguments, based on a simple & falsifiable "hidden order" assumption

IOP:

Important Question:

Which IOP prover cost is most relevant to argument prover?

- A. enumerate all of π
- **B.** compute π_i given i
- C. other?

Important Question:

Which IOP prover cost is most relevant to argument prover?

- A. enumerate all of π
- **B.** compute π_i given i
- C. other?

Non-answer:

Depends on how "*commit*" and "*proof*" are instantiated...

Important Question:

Which IOP prover cost is most relevant to argument prover?

- A. enumerate all of π
- **B.** compute π_i given i
- C. other?

Non-answer:

Depends on how "*commit*" and "*proof*" are instantiated...

Why does this matter?

We know IOPs with time- & space-efficient provers in the sense of (B) but not (A).

A. Merkle commitments

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]
 - Prover's work: \approx computing π_i for a given *i*.

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]
 - Prover's work: \approx computing π_i for a given *i*.
 - Private coin proofs

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]
 - Prover's work: \approx computing π_i for a given *i*.
 - Private coin proofs
- C. For a "polynomial IOP" ($\pi : \mathbb{F}_q^n \to \mathbb{F}_q$ is truth table of a multilinear polynomial), can use a polynomial commitment [BFS19]

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]
 - Prover's work: \approx computing π_i for a given *i*.
 - Private coin proofs
- C. For a "polynomial IOP" ($\pi : \mathbb{F}_q^n \to \mathbb{F}_q$ is truth table of a multilinear polynomial), can use a polynomial commitment [BFS19]
 - Polynomial commitments can be **public-coin**

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]
 - Prover's work: \approx computing π_i for a given *i*.
 - Private coin proofs
- C. For a "polynomial IOP" ($\pi : \mathbb{F}_q^n \to \mathbb{F}_q$ is truth table of a multilinear polynomial), can use a polynomial commitment [BFS19]
 - Polynomial commitments can be public-coin
 - This work: Prover's work \approx enumerating description of π (not the whole truth table);

- A. Merkle commitments
 - Prover's work: \approx enumerating all of π
- B. Function commitments [BC '12]
 - Prover's work: \approx computing π_i for a given *i*.
 - Private coin proofs
- C. For a "polynomial IOP" ($\pi : \mathbb{F}_q^n \to \mathbb{F}_q$ is truth table of a multilinear polynomial), can use a polynomial commitment [BFS19]
 - Polynomial commitments can be public-coin
 - This work: Prover's work ≈ enumerating description of π (not the whole truth table);
 (time- and space-) efficient for known IOPs (e.g. Clover [BTVW14])

Informal Theorem 1: Assume a group of "unknown order". Then there is a polynomial commitment scheme with publiccoin commit and prove protocols.

Informal Theorem 1: Assume a group of "unknown order". Then there is a polynomial commitment scheme with publiccoin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input p is efficient given streaming access to $(p(x))_{x \in \{0,1\}^n}$.

Informal Theorem 1: Assume a group of "unknown order". Then there is a polynomial commitment scheme with publiccoin commit and prove protocols.

Moreover, the committer/prover on (multi-linear) input p is efficient given streaming access to $(p(x))_{x \in \{0,1\}^n}$.

Informal Theorem 2: There are polynomial IOPs where the prover can compute relevant streams above (as well as all other IOP messages) with time- and space-efficiency.

No More Talking About (Fine-Grained) Efficiency

Informal Theorem 1: Assume a group of "unknown order". Then there is a polynomial commitment scheme with publiccoin commit and prove protocols.

More the committer/prover on input p is efficient "both time and eace) given multi-pass stream access to values of p on $\{0,1\}$

Informal Theorem Chare are polynamic UOPs where the prover can explare relevant streams above an well as all other commensages) with time- and space-efficience.

Polynomial Commitment Blueprint / Sketch

Polynomial Comm [BFS19]: Basic framework, buggy instantiation. **Blueprint / Ske**

They independently discovered bug

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

Prove("I know a degree-*d* poly *p* s.t. Commit(p) = cand p(x) = z"

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

Prove("I know a degree-d poly p s.t. abstractly: f(p) = (c, z), where f is a homomorphism

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

Prove("I know a degree-*d* poly *p* s.t. abstractly: f(p) = (c, z), where *f* is a homomorphism

1. Split claim into similar sub-claims of smaller size

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

Prove("I know a degree-*d* poly *p* s.t. abstractly: f(p) = (c, z), where *f* is a homomorphism

- 1. Split claim into similar sub-claims of smaller size
- 2. Combine sub-claims to reduce number

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

Prove("I know a degree-*d* poly *p* s.t. abstractly: f(p) = (c, z), where *f* is a homomorphism

- 1. Split claim into similar sub-claims of smaller size
- 2. Combine sub-claims to reduce number
- 3. Recurse

[BFS19]: Basic framework, buggy instantiation.

They independently discovered bug

Commit $(p : \mathbb{F}_q^n \to \mathbb{F}_q)$:

Output h(p), where h is a "homomorphic CRHF" (more later)

Prove("I know a degree-*d* poly *p* s.t. abstractly: f(p) = (c, z), where *f* is a homomorphism

Not today!

2. Combine sub-claims to reduce number

B: Recurse Not today!

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k (think of *f* as an arbitrary homomorphism)

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k (think of *f* as an arbitrary homomorphism)

Flawed Protocol:

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k (think of *f* as an arbitrary homomorphism)

Flawed Protocol:

1. Let
$$y' = \sum_{i} r_i y_i$$
, for $r_i \leftarrow [2^{\lambda}]$ sampled by verifier

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k (think of *f* as an arbitrary homomorphism)

Flawed Protocol:

1. Let
$$y' = \sum_{i} r_i y_i$$
, for $r_i \leftarrow [2^{\lambda}]$ sampled by verifier

2. Prover proves knowledge of $x' \in f^{-1}(y')$

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k (think of *f* as an arbitrary homomorphism)

Flawed Protocol:

1. Let
$$y' = \sum_{i} r_i y_i$$
, for $r_i \leftarrow [2^{\lambda}]$ sampled by verifier

2. Prover proves knowledge of $x' \in f^{-1}(y')$

Prover might know $x \in f^{-1}(2y_1)$, but not $x \in f^{-1}(y_1)$; could still win with probability 1/2.

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k (think of *f* as an arbitrary homomorphism)

Flawed Protocol:

1. Let $y' = \sum_{i} r_i y_i$, for $r_i \leftarrow [2^{\lambda}]$ sampled by verifier

2. Prover proves knowledge of $x' \in f^{-1}(y')$

Prover might know $x \in f^{-1}(2y_1)$, but not $x \in f^{-1}(y_1)$; could still win with probability 1/2.

Prover might only know $x_{\mathbf{r}} \in f^{-1}(\langle \mathbf{r}, \mathbf{y} \rangle)$ when \mathbf{r} is in a lattice $L \subseteq \mathbb{Z}^k$. Winning probability \approx density of L in \mathbb{Z}^k .
From Many Claims to Fewer Claims?

Initial Claims: Knowledge of *f*-preimages of y_1, \ldots, y_k

(think of f as an arbitrary homomorphism)

Flawed Protocol:[BFS19] show computational
soundness for a specific f.

1. Let
$$y' = \sum_{i} r_i y_i$$
, for $r_i \leftarrow [2^{\lambda}]$ sampled by verifier

2. Prover proves knowledge of $x' \in f^{-1}(y')$

Prover might know $x \in f^{-1}(2y_1)$, but not $x \in f^{-1}(y_1)$; could still win with probability 1/2.

Prover might only know $x_{\mathbf{r}} \in f^{-1}(\langle \mathbf{r}, \mathbf{y} \rangle)$ when \mathbf{r} is in a lattice $L \subseteq \mathbb{Z}^k$. Winning probability \approx density of L in \mathbb{Z}^k .

Let $f: \mathbb{G} \to \mathbb{H}$ be an arbitrary homomorphism $\mathbf{y} = (y_1, ..., y_k) \in \mathbb{H}^k$ be arbitrary.

Prover claims to know $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{G}^k$ s.t. $f(x_i) = y_i$.

Prover claims to know
$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{G}^k$$
 s.t. $f(x_i) = y_i$.

Prover claims to know
$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{G}^k$$
 s.t. $f(x_i) = y_i$.

$$P(\mathbf{x}) \qquad \stackrel{A \leftarrow \{0,1\}^{k' \times k}}{\longleftarrow} \qquad V(\mathbf{y})$$

Prover claims to know
$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{G}^k$$
 s.t. $f(x_i) = y_i$.

$$P(\mathbf{x}) \qquad \stackrel{A \leftarrow \{0,1\}^{k' \times k}}{\longleftarrow} \qquad \begin{array}{c} V(\mathbf{y}) \\ \mathbf{y}' := A \cdot \mathbf{y} \end{array}$$

Prover claims to know
$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{G}^k$$
 s.t. $f(x_i) = y_i$.

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \\ \mathbf{y}' := A \cdot \mathbf{y}$$

Prover claims to know
$$\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{G}^k$$
 s.t. $f(x_i) = y_i$.

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \qquad \text{Accept if} \\ \mathbf{y}'_i = f(x'_i) \\ \text{for all } i \in [k']$$

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad \underbrace{V(\mathbf{y})}_{\mathbf{y}' := A \cdot \mathbf{y}} \qquad \underbrace{Accept \text{ if }}_{y'_i = f(x'_i)}_{for \text{ all } i \in [k']}$$

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \qquad \text{Accept if} \\ \mathbf{y}' := A \cdot \mathbf{y} \qquad \mathbf{y}' := f(\mathbf{x}'_i) \\ \text{for all } i \in [k']$$

Attempt 0:

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad \underbrace{V(\mathbf{y})}_{\mathbf{y}' := A \cdot \mathbf{y}} \qquad \underbrace{Accept \text{ if }}_{y'_i = f(x'_i)}_{for \text{ all } i \in [k']}$$

Attempt 0:

Get an accepting transcript (A, \mathbf{x}') , hope A has an integer left-inverse.

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \qquad \text{Accept if} \\ \mathbf{y}'_i := A \cdot \mathbf{y} \qquad \mathbf{y}'_i := f(x'_i) \\ \text{for all } i \in [k']$$

Attempt 0:

Get an accepting transcript (A, \mathbf{x}') , hope A has an integer left-inverse.

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad \begin{array}{c} V(\mathbf{y}) \\ \mathbf{y}' := A \cdot \mathbf{y} \end{array} \qquad \begin{array}{c} \text{Accept if} \\ \mathbf{y}'_i = f(x'_i) \\ \text{for all } i \in [A \cdot \mathbf{y}] \end{array}$$

Attempt 0:

 $i \in [k']$

Get an accepting transcript (A, \mathbf{x}') , hope A has an integer left-inverse. Compute $\mathbf{x} = A^{-1} \cdot \mathbf{x}'$. (correctness follows from homomorphism)

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \qquad \text{Accept if} \\ \mathbf{y}'_i := A \cdot \mathbf{y} \qquad \mathbf{y}'_i := f(x'_i) \\ \text{for all } i \in [k']$$

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad \begin{array}{c} V(\mathbf{y}) \\ \mathbf{y}' := A \cdot \mathbf{y} \\ \text{for all } i \in [h] \end{array}$$

Rewind until *B* accepting transcripts $\rightarrow A \in \{0,1\}^{Bk' \times k}$, $\mathbf{x}' \in \mathbb{G}^{Bk'}$.

all $i \in [k']$

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad \begin{array}{c} V(\mathbf{y}) \\ \mathbf{y}' := A \cdot \mathbf{y} \end{array} \qquad \begin{array}{c} \text{Accept if} \\ y'_i = f(x'_i) \\ \text{for all } i \in [k'] \end{array}$$

1:

Rewind until *B* accepting transcripts
$$\rightarrow A \in \{0,1\}^{Bk' \times k}$$
, $\mathbf{x}' \in \mathbb{G}^{Bk'}$.

Accept if

 $y_i' = f(x_i')$

Hope *A* has an integer left inverse.

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \\ \mathbf{y}' := A \cdot \mathbf{y} \qquad \text{for}$$

Accept if

$$y'_i = f(x'_i)$$

for all $i \in [k']$

Attempt 1:

Rewind until *B* accepting transcripts $\rightarrow A \in \{0,1\}^{Bk' \times k}$, $\mathbf{x}' \in \mathbb{G}^{Bk'}$.

Hope A has an integer left inverse.

Compute $\mathbf{x} = A^{-1} \cdot \mathbf{x}'$.

$$P(\mathbf{x}) \qquad \underbrace{A \leftarrow \{0,1\}^{k' \times k}}_{\mathbf{x}' := A \cdot \mathbf{x}} \qquad V(\mathbf{y}) \qquad \text{Accept if} \\ \mathbf{y}'_i := A \cdot \mathbf{y} \qquad \mathbf{y}'_i = f(x'_i) \\ \text{for all } i \in [k']$$

Attempt 1:

Rewind until *B* accepting transcripts $\rightarrow A \in \{0,1\}^{Bk' \times k}$, $\mathbf{x}' \in \mathbb{G}^{Bk'}$.

Hope
$$A$$
 has an integer left inverse.

Compute $\mathbf{x} = A^{-1} \cdot \mathbf{x}'$.

:-) with all but negl(k) probability if $5k/k' \le B \le O(1)$

Bonus: can prove knowledge of "small" **x** by bounds-checking **x**'; extractor works because computed A^{-1} has "small" entries ($2^{\text{poly}(k)}$)

Bonus: can prove knowledge of "small" **x** by bounds-checking **x**'; e tractor works because computed A^{-1} has "small" entries ($2^{\text{poly}(k)}$)

actually essential & improperly addressed in [BFS19]

Bonus: can prove knowledge of "small" **x** by bounds-checking **x**'; e tractor works because computed A^{-1} has "small" entries ($2^{\text{poly}(k)}$)

actually essential & improperly addressed in [BFS19]

We want to extract CRHF pre-images, but...

• Let $\mathbb{G} = \langle g \rangle$ be a group where it is hard to find $x \neq 0$ s.t. $g^x = 1$ (any *multiple* of the order of *g*).

- Let $\mathbb{G} = \langle g \rangle$ be a group where it is hard to find $x \neq 0$ s.t. $g^x = 1$ (any *multiple* of the order of *g*).
 - Hardness holds in generic group of unknown order

- Let $\mathbb{G} = \langle g \rangle$ be a group where it is hard to find $x \neq 0$ s.t. $g^x = 1$ (any *multiple* of the order of *g*).
 - Hardness holds in generic group of unknown order
 - Concrete candidates:
 - RSA group (private-coin setup)
 - Class groups of imaginary quadratic order (publiccoin setup)

- Let $\mathbb{G} = \langle g \rangle$ be a group where it is hard to find $x \neq 0$ s.t. $g^x = 1$ (any *multiple* of the order of *g*).
 - Hardness holds in generic group of unknown order
 - Concrete candidates:
 - RSA group (private-coin setup)
 - Class groups of imaginary quadratic order (publiccoin setup)
- Then $h(x) = g^x$ is a homomorphic CRHF from \mathbb{Z} to \mathbb{G}

• We wanted an (additively) homomorphic CRHF mapping Commit : $\mathbb{Z}[x_1, ..., x_n] \to \mathbb{G}$ (& extra property I am ignoring)

- We wanted an (additively) homomorphic CRHF mapping Commit : $\mathbb{Z}[x_1, ..., x_n] \to \mathbb{G}$ (& extra property I am ignoring)
- Almost follows from a $\mathbb{Z} \to \mathbb{G}$ homomorphic CRHF:

- We wanted an (additively) homomorphic CRHF mapping Commit : $\mathbb{Z}[x_1, ..., x_n] \to \mathbb{G}$ (& extra property I am ignoring)
- Almost follows from a $\mathbb{Z} \to \mathbb{G}$ homomorphic CRHF:
 - Homomorphically "embed" $\mathbb{Z}[x_1, ..., x_n]$ into \mathbb{Z} by setting $x_i = q^i$.

- We wanted an (additively) homomorphic CRHF mapping Commit : $\mathbb{Z}[x_1, ..., x_n] \to \mathbb{G}$ (& extra property I am ignoring)
- Almost follows from a $\mathbb{Z} \to \mathbb{G}$ homomorphic CRHF:
 - Homomorphically "embed" $\mathbb{Z}[x_1, ..., x_n]$ into \mathbb{Z} by setting $x_i = q^i$.
 - Injective only on D := {small-coefficient multilinear polynomials} (each coefficient is a digit base-q).

- We wanted an (additively) homomorphic CRHF mapping Commit : $\mathbb{Z}[x_1, ..., x_n] \to \mathbb{G}$ (& extra property I am ignoring)
- Almost follows from a $\mathbb{Z} \to \mathbb{G}$ homomorphic CRHF:
 - Homomorphically "embed" $\mathbb{Z}[x_1, ..., x_n]$ into \mathbb{Z} by setting $x_i = q^i$.
 - Injective only on D := {small-coefficient multilinear polynomials} (each coefficient is a digit base-q).
 - Thus $\mathbb{Z}[x_1, \dots, x_n] \to \mathbb{G}$ composition is a CRHF only on D.
Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$ probability, A has an integer left-inverse.

5 is not tight, but unimportant today

Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$

probability, A has an integer left-inverse.

5 is not tight, but unimportant today

Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$ probability, A has an integer left-inverse.

5 is not tight, but unimportant today

Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$ probability, A has an integer left-inverse.

A taste of our proof:

• Consider sequence of lattices $\{L_i\}$, where L_i is generated by first i rows of A

5 is not tight, but unimportant today

Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$ probability, A has an integer left-inverse.

- Consider sequence of lattices $\{L_i\}$, where L_i is generated by first i rows of A
- Show that L_i rapidly approaches (and becomes) \mathbb{Z}^n

5 is not tight, but unimportant today

Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$ probability, A has an integer left-inverse.

- Consider sequence of lattices $\{L_i\}$, where L_i is generated by first i rows of A
- Show that L_i rapidly approaches (and becomes) \mathbb{Z}^n
 - Equivalently, $|\det(L_i)| \rightarrow 1$

5 is not tight, but unimportant today

Lemma: Let $A \leftarrow \{0,1\}^{5n \times n}$. With all but $2^{-\Omega(n)}$ probability, A has an integer left-inverse.

- Consider sequence of lattices $\{L_i\}$, where L_i is generated by first i rows of A
- Show that L_i rapidly approaches (and becomes) \mathbb{Z}^n
 - Equivalently, $|\det(L_i)| \rightarrow 1$
 - We analyze prime factorization of $det(L_i)$, show that each step kills enough prime powers with enough probability to deduce the lemma.

• First publicly verifiable arguments for NP that are time- and space-efficient and based on a simple complexity assumptions

- First publicly verifiable arguments for NP that are time- and space-efficient and based on a simple complexity assumptions
 - Based on groups of unknown order, but very lattice-related techniques

- First publicly verifiable arguments for NP that are time- and space-efficient and based on a simple complexity assumptions
 - Based on groups of unknown order, but very lattice-related techniques
 - **Open:** from lattice assumptions, or in random oracle model

- First publicly verifiable arguments for NP that are time- and space-efficient and based on a simple complexity assumptions
 - Based on groups of unknown order, but very lattice-related techniques
 - **Open:** from lattice assumptions, or in random oracle model
- Found and fixed bug in DARK polynomial commitment

- First publicly verifiable arguments for NP that are time- and space-efficient and based on a simple complexity assumptions
 - Based on groups of unknown order, but very lattice-related techniques
 - **Open:** from lattice assumptions, or in random oracle model
- Found and fixed bug in DARK polynomial commitment
- Techniques likely more broadly applicable: we also improve Pietrzak's proof of exponentiation protocol to achieve statistical soundness in arbitrary groups

Questions?