
Post-Quantum
Proof of Knowledge from QLWE

Prabhanjan Ananth
UC Santa Barbara

Joint work with:
Kai-Min Chung (Academia Sinica, Taiwan),

Rolando L. La Placa (MIT → $$$)

(to appear in CRYPTO’21)

Proof of Knowledge

Any classical prover who convinces a verifier to accept x
must know a valid witness for x .

Preparing for Post-Quantum Era

Post-Quantum Proof of Knowledge (PQPoK) for NP
[Unruh’12]

Any quantum prover who convinces a verifier to accept x
must know a valid witness for x .

Difference between Classical Prover and Quantum Prover

Classical Prover: intermediate states are binary strings.

Quantum Prover: intermediate states are quantum states.

Rewinding a quantum prover is difficult!

Difference between Classical Prover and Quantum Prover

Classical Prover: intermediate states are binary strings.

Quantum Prover: intermediate states are quantum states.

Rewinding a quantum prover is difficult!

Informal Definition of PQPoK for L

∀ quantum prover P∗,∃ black-box extractor E ,

Correctness of Extraction:

Pr [P∗ convinces verifier to accept x] = ε

⇒ Pr
[
(ρE ,w)← EP∗

(x)
∧

(x ,w) ∈ R(L)
]

= ε′

P∗ can be computationally unbounded.

Informal Definition of PQPoK for L

∀ quantum prover P∗,∃ black-box extractor E ,

Correctness of Extraction:

Pr [P∗ convinces verifier to accept x] = ε

⇒ Pr
[
(ρE ,w)← EP∗

(x)
∧

(x ,w) ∈ R(L)
]

= ε′

P∗ can be computationally unbounded.

Informal Definition of PQPoK for L

∀ quantum prover P∗,∃ black-box extractor E ,

Correctness of Extraction:

Pr [P∗ convinces verifier to accept x] = ε

⇒ Pr
[
(ρE ,w)← EP∗

(x)
∧

(x ,w) ∈ R(L)
]

= ε′

P∗ can be computationally unbounded.

Informal Definition of PQPoK for L

∀ quantum prover P∗,∃ black-box extractor E ,

Correctness of Extraction:

Pr [P∗ convinces verifier to accept x] = ε

⇒ Pr
[
(ρE ,w)← EP∗

(x)
∧

(x ,w) ∈ R(L)
]

= ε′

Ideally: |ε′ − ε| = negl

Informal Definition of PQPoK for L

Another useful property:

Indistinguishability of Extraction:

TD(ρV , ρE) = δ

(TD = Trace distance)

ρV : output state of P∗ after interacting with V .
ρE : output of EP

∗
.

Ideally: δ = negl

Informal Definition of PQPoK for L

Another useful property:

Indistinguishability of Extraction:

TD(ρV , ρE) = δ

(TD = Trace distance)

ρV : output state of P∗ after interacting with V .
ρE : output of EP

∗
.

Ideally: δ = negl

Application: Secure Computation

Simulator uses the extractor to extract adversary’s inputs

Application: Secure Computation

Simulator uses the extractor to extract adversary’s inputs

Application: Proof of Quantum Knowledge for QMA
[Coladangelo-Vidick-Zhang’20]

Prover(x , |Ψ〉) Verifier(x)

X aZ b|Ψ〉

Post-Quantum PoK of (a, b)

Extractor can extract (a, b) and then recover |Ψ〉.

We use the fact here that (a, b) is classical.

Application: Proof of Quantum Knowledge for QMA
[Coladangelo-Vidick-Zhang’20]

Prover(x , |Ψ〉) Verifier(x)

X aZ b|Ψ〉

Post-Quantum PoK of (a, b)

Extractor can extract (a, b) and then recover |Ψ〉.

We use the fact here that (a, b) is classical.

Application: Proof of Quantum Knowledge for QMA
[Coladangelo-Vidick-Zhang’20]

Prover(x , |Ψ〉) Verifier(x)

X aZ b|Ψ〉

Post-Quantum PoK of (a, b)

Extractor can extract (a, b) and then recover |Ψ〉.

We use the fact here that (a, b) is classical.

First work on Post-Quantum PoK: [Unruh Eurocrypt’12]

Followups rely upon Unruh’s technique.

Drawback with Unruh

Unruh’s PQPoK does not satisfy
indistinguishability of extraction property.

Prover’s state after extraction
6≈

Prover’s state after verifier’s interaction.

Drawback with Unruh

Unruh’s PQPoK does not satisfy
indistinguishability of extraction property.

Prover’s state after extraction
6≈

Prover’s state after verifier’s interaction.

Q: is it necessary for the extractor to disturb the prover’s state in
order to learn the witness?

At first glance, could seem inherent:

Example: Prover could start with superposition of all the witnesses.
If extractor learns w then prover’s state should have collapsed to w .

Q: is it necessary for the extractor to disturb the prover’s state in
order to learn the witness?

At first glance, could seem inherent:

Example: Prover could start with superposition of all the witnesses.
If extractor learns w then prover’s state should have collapsed to w .

Q: is it necessary for the extractor to disturb the prover’s state in
order to learn the witness?

At first glance, could seem inherent:

Example: Prover could start with superposition of all the witnesses.
If extractor learns w then prover’s state should have collapsed to w .

Our Work

Theorem
Assuming LWE is hard against quantum polynomial-time
algorithms,

There exists PQPoK for NP.

Techniques

Main Idea: Extraction via Oblivious Transfer

Warmup: extraction of first bit of witness.

Main Idea: Extraction via Oblivious Transfer

Warmup: extraction of first bit of witness.

Extraction of first bit of witness

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

Prover embeds w1 (1st bit of witness) in one of the two
locations at random.

Verifier randomly guesses the location.

If the guessed location is correct, verifier gets w1, o/w gets ⊥.

Extraction of first bit of witness

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

Prover embeds w1 (1st bit of witness) in one of the two
locations at random.

Verifier randomly guesses the location.

If the guessed location is correct, verifier gets w1, o/w gets ⊥.

Extraction of first bit of witness

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

Prover embeds w1 (1st bit of witness) in one of the two
locations at random.

Verifier randomly guesses the location.

If the guessed location is correct, verifier gets w1, o/w gets ⊥.

Extraction of first bit of witness

Prover and Verifier run OT.
Prover: role of sender
Verifier: role of receiver.

Prover embeds w1 (1st bit of witness) in one of the two
locations at random.

Verifier randomly guesses the location.

If the guessed location is correct, verifier gets w1, o/w gets ⊥.

First Attempt

Prover(x ,w) Verifier(x)

. OT phase .

b
$←− {0, 1}

if b = 0, (m0,m1) = (w1,⊥)

if b = 1, (m0,m1) = (⊥,w1) b′
$←− {0, 1}

Sender’s input: (m0,m1) OT Receiver’s input : b′

Prover(x ,w) Verifier(x)

. OT phase .

b
$←− {0, 1}

if b = 0, (m0,m1) = (w1,⊥)

if b = 1, (m0,m1) = (⊥,w1) b′
$←− {0, 1}

Sender’s input: (m0,m1) OT Receiver’s input : b′

. Zero-Knowledge Phase .

Prove (x ,w) ∈ L ZK

and behaved honestly in OT

Requirement:
Post-Quantum ZK with soundness against

unbounded quantum provers.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS,

otherwise TBD.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

TBD step: Can we perform Watrous rewinding?

Watrous rewinding only works
IF the measurement outcome doesn’t disturb the prover’s state.

TBD step: Can we perform Watrous rewinding?

Watrous rewinding only works
IF the measurement outcome doesn’t disturb the prover’s state.

Input auxiliary state of P∗ is |Ψ〉 = 1√
2
|Ψ0〉|0〉A + 1√

2
|Ψ1〉|1〉A.

If the value in register A is 0 then use (⊥,⊥) in OT.
If the value in register A is 1 then use (w1,w1) in OT.

- After rewinding, prover’s state is ≈ |Ψ1〉〈Ψ1|.
- In the real world, prover’s state is ≈ 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|.

TD
(
|Ψ1〉〈Ψ1|, 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|

)
is not small.

Input auxiliary state of P∗ is |Ψ〉 = 1√
2
|Ψ0〉|0〉A + 1√

2
|Ψ1〉|1〉A.

If the value in register A is 0 then use (⊥,⊥) in OT.
If the value in register A is 1 then use (w1,w1) in OT.

- After rewinding, prover’s state is ≈ |Ψ1〉〈Ψ1|.
- In the real world, prover’s state is ≈ 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|.

TD
(
|Ψ1〉〈Ψ1|, 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|

)
is not small.

Input auxiliary state of P∗ is |Ψ〉 = 1√
2
|Ψ0〉|0〉A + 1√

2
|Ψ1〉|1〉A.

If the value in register A is 0 then use (⊥,⊥) in OT.
If the value in register A is 1 then use (w1,w1) in OT.

- After rewinding, prover’s state is ≈ |Ψ1〉〈Ψ1|.
- In the real world, prover’s state is ≈ 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|.

TD
(
|Ψ1〉〈Ψ1|, 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|

)
is not small.

Input auxiliary state of P∗ is |Ψ〉 = 1√
2
|Ψ0〉|0〉A + 1√

2
|Ψ1〉|1〉A.

If the value in register A is 0 then use (⊥,⊥) in OT.
If the value in register A is 1 then use (w1,w1) in OT.

- After rewinding, prover’s state is ≈ |Ψ1〉〈Ψ1|.
- In the real world, prover’s state is ≈ 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|.

TD
(
|Ψ1〉〈Ψ1|, 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|

)
is not small.

Input auxiliary state of P∗ is |Ψ〉 = 1√
2
|Ψ0〉|0〉A + 1√

2
|Ψ1〉|1〉A.

If the value in register A is 0 then use (⊥,⊥) in OT.
If the value in register A is 1 then use (w1,w1) in OT.

- After rewinding, prover’s state is ≈ |Ψ1〉〈Ψ1|.
- In the real world, prover’s state is ≈ 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|.

TD
(
|Ψ1〉〈Ψ1|, 1

2 |Ψ0〉〈Ψ0|+ 1
2 |Ψ1〉〈Ψ1|

)
is not small.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

FIX: modify the scheme to ensure that the measurement outcome
does not affect the state.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If recovered message is a bit, store 0 in register X. Otherwise
store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

FIX: modify the scheme to ensure that the measurement outcome
does not affect the state.

Prover(x ,w) Verifier(x)

. OT phase .

b
$←− {0, 1}

if b = 0, (m0,m1) = (w1, 0)

if b = 1, (m0,m1) = (0,w1) b′
$←− {0, 1}

Sender’s input: (m0,m1) OT Receiver’s input : b′

. Reveal Phase .

Reveal b

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Pr[b = b′] ≈ 1
2 from OT security.

Since distribution of measurement outcomes is independent of aux
state
=⇒

Measurement does not disturb the state.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Pr[b = b′] ≈ 1
2 from OT security.

Since distribution of measurement outcomes is independent of aux
state
=⇒

Measurement does not disturb the state.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Pr[b = b′] ≈ 1
2 from OT security.

Since distribution of measurement outcomes is independent of aux
state

=⇒
Measurement does not disturb the state.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise TBD.

Pr[b = b′] ≈ 1
2 from OT security.

Since distribution of measurement outcomes is independent of aux
state
=⇒

Measurement does not disturb the state.

Extractor rewinds ONLY IF the guessed location is different from b.

Extraction Process

Rewinding strategy:

Run the prover P in superposition.

If b = b′, store 0 in the register X. Otherwise store 1.

Measure X.

If the outcome is 0 then declare SUCCESS, otherwise perform
Watrous Rewinding.

Why does checking b = b′ suffice?

Case 1. Prover does not cheat:
Extractor extracts the first bit of the witness.

Case 2. Prover cheats:
Extractor might have extracted garbage...
...but the prover will get caught in the ZK phase.

Why does checking b = b′ suffice?

Case 1. Prover does not cheat:
Extractor extracts the first bit of the witness.

Case 2. Prover cheats:
Extractor might have extracted garbage...
...but the prover will get caught in the ZK phase.

Why does checking b = b′ suffice?

Case 1. Prover does not cheat:
Extractor extracts the first bit of the witness.

Case 2. Prover cheats:
Extractor might have extracted garbage...

...but the prover will get caught in the ZK phase.

Why does checking b = b′ suffice?

Case 1. Prover does not cheat:
Extractor extracts the first bit of the witness.

Case 2. Prover cheats:
Extractor might have extracted garbage...
...but the prover will get caught in the ZK phase.

Protocol for extraction of 1st bit of witness

Prover(x ,w) Verifier(x)

. OT phase .

b
$←− {0, 1}

if b = 0, (m0,m1) = (w1, 0)

if b = 1, (m0,m1) = (0,w1) b′
$←− {0, 1}

Sender’s input: (m0,m1) OT Receiver’s input : b′

. Reveal Phase .

Reveal b

. Zero-Knowledge Phase .

· · ·

Extractor extracts the first bit of witness

ISSUE: Verifier can also recover the first bit of the witness
with probability 1

2

Extractor extracts the first bit of witness

ISSUE: Verifier can also recover the first bit of the witness
with probability 1

2

Error reduction

Error reduction

Prover additively secret shares w1 into sh1, . . . , sh`.

Prover invokes ` instantiations of OT.

It embeds shi into the i th instantiation of OT.

Error reduction

Prover additively secret shares w1 into sh1, . . . , sh`.

Prover invokes ` instantiations of OT.

It embeds shi into the i th instantiation of OT.

Error reduction

Prover additively secret shares w1 into sh1, . . . , sh`.

Prover invokes ` instantiations of OT.

It embeds shi into the i th instantiation of OT.

Error reduction

Prover additively secret shares w1 into sh1, . . . , sh`.

Prover invokes ` instantiations of OT.

It embeds shi into the i th instantiation of OT.

Prover(x ,w = w1 · · ·w`) Verifier(x)

. Amplified OT for w1

∀i , shi
$←− {0, 1} : ⊕`

i=1shi = w1

Prover(x ,w = w1 · · ·w`) Verifier(x)

. .Amplified OT for w1 .

∀i < `, shi
$←− {0, 1} : ⊕`

i=1shi = w1

b1
$←− {0, 1} b′1

$←− {0, 1}

Sender:((1− b1) · sh1, b1 · sh1) OT Receiver : b′1

Reveal b1

Prover(x ,w = w1 · · ·w`) Verifier(x)

. .Amplified OT for w1 .

∀i < `, shi
$←− {0, 1} : ⊕`

i=1shi = w1

b1
$←− {0, 1} b′1

$←− {0, 1}

Sender:((1− b1) · sh1, b1 · sh1) OT Receiver : b′1

Reveal b1

· · ·

b`
$←− {0, 1} b′`

$←− {0, 1}

Sender:((1− b`) · sh`, b` · sh`) OT Receiver : b`

Reveal b`

So far: extraction of 1 bit of witness.

Repeat this process for all the bits of the witness!

So far: extraction of 1 bit of witness.

Repeat this process for all the bits of the witness!

Prover(x ,w) Verifier(x)

. OT phase .

Amplified OT for w1

· · ·

Amplified OT for w`

.Zero-Knowledge Phase.

· · ·

Instantiation of OT

OT needs to have security against unbounded senders

Security against unbounded senders
⇒

security against unbounded P

Current known instantiations don’t satisfy security against
quantum poly-time receivers.

Instantiation of OT

OT needs to have security against unbounded senders

Security against unbounded senders
⇒

security against unbounded P

Current known instantiations don’t satisfy security against
quantum poly-time receivers.

Instantiation of OT

OT needs to have security against unbounded senders

Security against unbounded senders
⇒

security against unbounded P

Current known instantiations don’t satisfy security against
quantum poly-time receivers.

Instantiation of OT

OT needs to have security against unbounded senders

Security against unbounded senders
⇒

security against unbounded P

Current known instantiations don’t satisfy security against
quantum poly-time receivers.

Construction of Post-Quantum OT

Goal: OT satisfying the following:
Security against unbounded senders.
Post-quantum security against receivers.

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Construction from quantum hardness of LWE: [Brakerski-Döttling’18]

Construction of Post-Quantum OT

Goal: OT satisfying the following:
Security against unbounded senders.
Post-quantum security against receivers.

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Construction from quantum hardness of LWE: [Brakerski-Döttling’18]

Construction of Post-Quantum OT

Goal: OT satisfying the following:
Security against unbounded senders.
Post-quantum security against receivers.

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Construction from quantum hardness of LWE: [Brakerski-Döttling’18]

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Steps:
OT reversal [WW’06,KKS’18,GJJM’20]

Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully)
to the setting of bounded concurrent quantum ZK.

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Steps:
OT reversal [WW’06,KKS’18,GJJM’20]

Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully)
to the setting of bounded concurrent quantum ZK.

Start with OT satisfying:
Security against unbounded receivers.
Post-quantum security against senders.

Steps:
OT reversal [WW’06,KKS’18,GJJM’20]

Use a post-quantum statistical ZK: to prove correctness of OT.

This protocol can be extended (painfully)
to the setting of bounded concurrent quantum ZK.

Summary

New construction of PQ PoK

Improves upon [Unruh’12]’s PQ PoK.

Thanks!

Summary

New construction of PQ PoK

Improves upon [Unruh’12]’s PQ PoK.

Thanks!

