Fiat-Shamir via List-Recoverable Codes

Alex Lombardi MIT

Joint work with Justin Holmgren (NTT Research) and Ron Rothblum (Technion)

- We soundly instantiate the Fiat-Shamir heuristic for a broad class of protocols
 - E.g. parallel repetitions of all "commit-and-open" protocols

- Leverage a new connection to list-recoverable codes.
 - □ New kind of derandomized parallel repetition

Zero Knowledge for NP [GMW86]

- Soundness Error $1 \frac{1}{|E|}$
- Improve soundness error (to negligible) via sequential repetition, preserving ZK

How about Parallel Repetition?

• Soundness is amplified!

This Work: No (for a natural Com in

• Open problem: is this ZK?

the CRS model), assuming LWE

The Fiat-Shamir Transform [FS86]

(Each β_i uniformly random)

Heuristically (and in practice), soundness is preserved.

Is Fiat-Shamir secure?

Steps P,V2.1.x (WI universal argument): Prover proves to verifier using a WI universal argument that either $x \in L$ or $\tau \in \Lambda$. All prover's messages here are short.

 $\begin{matrix} w & x, \tau \\ \downarrow & \downarrow \\ \hline WI\text{-}UARG \end{matrix}$

 $x \in L$

or $\tau \in \Lambda$

0/1

Is Fiat-Shamir secure?

Our Goal: Establish a stronger theoretical basis for this transformation

[KRR16, CCRR18, HL18, CCHLRRW19, PS19, LVW19, GJJM19, BFJKS19, LNPT19, LV20a, BKM20, JKKZ20, CLMQ20, LNPY20, LV20b, <u>HLR21</u>, ...]

Our Results

 Under the LWE assumption, Fiat-Shamir can be instantiated for (the parallel repetition of) any commit-and-open protocol (e.g. GMW 3-coloring)

• Every such protocol is **not ZK** [DNRS99]

2) (Informal) FS for any protocol with ``efficiently recognizable bad challenges." Prior work needed "efficiently enumerable bad challenges," which is much more restrictive.

Main Takeaways

1) Much more widely applicable FS instantiation.

- 2) Resolve 35 year old intro crypto problem.
- 3) Cool new connection to coding theory/derandomization!

Correlation Intractability [CGH04]

A hash family *H* is correlation intractable for a (sparse) relation *R* if:

$$\forall \mathsf{PPT} A, \\ \Pr_{\substack{h \leftarrow H \\ x \leftarrow A(h)}} \left[\left(x, h(x) \right) \in R \right] = \mathsf{negl}$$

Theorem [CCHLRRW19, PS19]: under standard assumptions, there exists a hash family H that is CI for all <u>functions</u> computable in time T.

- $h \in H$ can be evaluated in time $T \cdot \text{poly}(\lambda)$

Suppose that for all $x \notin L$ and all α , \exists at most one β s.t. V accepts $(x, \alpha, \beta, \gamma)$ Let $f(x, \alpha) = \beta^*$ be the bad-challenge function for Π If \mathcal{H} is CI for f, then Π_{FS} is sound! If f is efficiently computable, \exists such \mathcal{H} !

What if there are many bad challenges?

Suppose that for all $x \notin L$ and all α , \exists at most *B* bad choices of β Let $f_i(x, \alpha) = \beta_i^*$ be the *i*th bad-challenge function for Π If \mathcal{H} is CI for a random f_i , then Π_{FS} is sound! Security loss: $\frac{1}{R}$

The Problem

Can we handle protocols that have **many bad challenges?**

Can we construct hash functions that are CI for relations that are not functions?

The Solution

Can we handle protocols that have **many bad challenges?**

Can we construct hash functions that are CI for relations that are not functions?

(when the relations have nice structure)

Product Relations

$$R = \{(x, (y_1, \dots, y_t))\} \subset \{0, 1\}^n \times (\{0, 1\}^m)^t$$

Definition: *R* is a **product relation** if for all inputs *x*,

$$R_x = S_1 \times S_2 \times \cdots \times S_t$$

for some sets $S_1, \ldots, S_t \subset \{0,1\}^m$

Product relations may have **many bad points**, but they have **combinatorial structure**.

Product Relations

Definition: *R* is a product relation if for all inputs *x*,

$$R_x = S_1 \times S_2 \times \cdots \times S_t$$

for some sets $S_1, \ldots, S_t \subset \{0,1\}^m$

Main Theorem: Under LWE, there exist CI hash functions for product relations*

*The "repetition parameter" t needs to be large enough, depending on the density of the S_i *We need membership in S_i to be efficiently decidable

CI for Product Relations

Main Theorem: Under LWE, there exist CI hash functions for product relations*

- Reduce the number of bad points
 - For every x, there may be many bad z, but hopefully few bad y (and

so few bad z in the image of the hash function.

• Use the [PS19] hash function for h_{in}

Definition:

- Enc describes a **list-recoverable code** if there are only polynomially many codewords in each product set $S_1 \times S_2 \times \cdots \times S_t$.
- The code is "algorithmic" if given S₁, S₂, ..., S_t, the corresponding messages can be efficiently found.

Encode: $\{0,1\}^n \rightarrow [q]^t$

Alternatively: derandomized parallel repetition [BGG90] preserving polynomial number of (efficiently computable) bad challenges

block-length	number of repetitions (dimension)
alphabet size	challenge space size for base protocol
	# of bad challenges for base protocol
"output list" size	# of bad challenge codewords

 (t, ℓ, q, L) list-recoverable code

Theorem: Under the LWE assumption, there exist CI hash functions for product relations (-> FS for commit-and-open protocols).

Proof Sketch:

Encode is a $(\lambda q, q - 1, q)$ list-recoverable code (key lemma)

 h_{in} is a [PS19] hash function

Key Lemma: Concatenation of a carefully chosen Parvaresh-Vardy code [PV05] with a poly-size random code has the desired properties.

Extension to Multi-Round Protocols

Theorem: Under the **LWE*** assumption, Fiat-Shamir can be instantiated

for any (sufficiently parallel repeated) protocol with:

- Round-by-round soundness [CCHLRRW19], and
- ``efficiently* recognizable bad challenges"

Corollary: FS for parallel repeated Sumcheck or GKR over *small fields* (polynomial or polylogarithmic). [JKKZ20] use exponentially large fields (and don't need parallel repetition).

Open Problems

- FS for protocols **without efficiently verifiable bad challenges**
 - Graph Isomorphism
 - Commit-and-Open protocols that use Naor/Blum commitments
- Better results for **multi-round protocols**
 - Avoid subexponential assumptions (as in [LV20, JKKZ20, HLR21])
 - Adaptive soundness without leveraging

- Fiat-Shamir for arguments? [CJJ21a, CJJ21b, LVZ21]
 - Ingredient: PCPs with polynomial amount of bad randomness (follows from our codes)

Thank you!

X