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Primal Attacks
Overview

• Preprocessing: Find short primal lattice vectors (2O(d) time, space)

• Querying: Reduce to shortest representative in coset t+L (2O(d) time, space)
• Strengths: Works well for approximate CVPP
• Limitations: Does not scale well for BDDP
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Dual Attacks
Asymptotics (with preprocessing)
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Dual Attacks
Experiments (d= 80)
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Figure: Complexity of distinguishing from random at radius r (p= 0.90).
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Figure: Complexity of decoding a target at distance r with probability p in dimension 80.
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Experiments (d= 80)
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Figure: Experimental complexities for distinguishing/searching and a heuristic lower bound.



Dual Attacks
Experiments (variable d)
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Figure: Complexity of distinguishing a planted target at radius 0.75 from random (p= 0.9).



Dual Attacks
Experiments (d= 80)
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Figure: Steps required to decode target at radius r using 214 vectors (p= 0.9).
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• Querying: Gradient ascent using dot products modulo 1 (2O(d) time, space)
• Strengths: Works well for BDDP, predictable
• Limitations: Does not scale well for approximate CVPP
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Summary

Primal Attacks
• Using list of short primal lattice vectors
• Works well for approximate CVP(P), not for BDD(P)

Dual Attacks
• Using list of short dual lattice vectors
• Works well for BDD(P), not for approximate CVP(P)
• Contribution: Complete heuristic average-case analysis
• Contribution: Experiments, closely matching heuristic predictions
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Open problems

Combining both approaches?
• Short primal vectors→ Efficient approximate CVPP algorithm
• Short dual vectors→ Efficient BDDP algorithm
• Short primal and dual vectors→ ???

Applications?
• Dual attack: Faster algorithm for huge BDD batches
• Sieving-enumeration hybrid [DLdW20]: not so promising
• Other applications?
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