

Dual lattice attacks for closest vector problems (with preprocessing)

Thijs Laarhoven, Michael Walter

mail@thijs.com
https://www.thijs.com/

Simons Reunion, virtual (June 15, 2021)

Lattices

Basics

.

.

0

.

.

•

b₁

.

•

•

•

 b_2

•

.

.

.

.

•

•

•

.

•

•

•

.

.

•

•

•

.

.

.

.

.

.

.

.

•

•

.

Lattices

Closest Vector Problem (CVP)

.

.

.

.

.

b

•

.

.

.

.

•

•

.

•

 b_2

.

.

.

.

.

.

.

.

t*

.

.

•

.

•

.

.

•

•

.

•

Lattices

Closest Vector Problem (CVP)

.

.

.

.

.

D

•

a

.

.

.

•

•

.

•

 D_2

.

.

.

.

.

.

.

.

 $t\star$

.

.

.

•

.

.

•

•

.

Lattices

۰

•

.

.

.

.

.

.

.

•

.

•

.

•

•

CVP with Preprocessing (CVPP)

.

.

.

.

.

.

.

.

D

•

.

.

.

.

•

•

.

•

 b_2

.

.

Lattices

CVP with Preprocessing (CVPP)

.

.

.

.

.

.

.

.

.

•

•

.

•

D

.

.

.

•

.

-

.

-

.

.

.

.

.

.

.

•

.

•

Lattices

۰

•

.

.

.

.

.

.

.

.

•

.

•

.

•

•

CVP with Preprocessing (CVPP)

.

.

.

.

.

.

•

•

.

•

.

r۹

.

.

.

•

•

.

•

.

.

.

Lattices

.

.

•

.

•

•

.

•

.

.

.

.

۰

•

.

.

.

-

.

.

.

.

.

•

.

•

•

CVP with Preprocessing (CVPP)

.

.

•

•

.

a

•

.

-

•

•

.

.

•

Lattices

CVP with Preprocessing (CVPP)

.

•

•

.

.

Lattices

CVP with Preprocessing (CVPP)

.

.

.

.

•

•

•

.

•

• • •

• • • •

.

.

.

.

.

•

.

-

•

•

.

.

•

Lattices

CVP with Preprocessing (CVPP)

• • •

.

.

Primal Attacks

Voronoi cells [MV10]

•

•

.

.

•

.

.

.

•

•

.

•

•

•

.

•

•

•

•

.

.

.

.

•

.

.

•

•

•

.

•

•

Primal Attacks

Voronoi cells [MV10]

 r_2

 r_5

 \tilde{r}_6

.

.

.

.

.

.

 r_3

 r_4

.

.

.

.

•

•

.

a

.

Primal Attacks

Iterative slicer [SFS09]

•

.

.

.

.

.

•

•

.

*

•

.

.

•

.

.

•

.

.

•

.

•

.

.

•

Primal Attacks

Iterative slicer [SFS09]

•

.

.

.

.

•

•

•

.

•

.

.

•

.

.

.

.

.

•

.

•

.

.

•

Primal Attacks

Iterative slicer [SFS09]

.

.

.

.

.

•

•

•

.

.

.

.

.

•

.

.

.

•

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

.

.

.

.

.

.

.

•

•

.

•

.

•

.

.

.

•

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

-

.

.

.

.

•

•

.

.

•

.

•

.

.

.

•

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

•

.

.

.

.

•

.

.

•

.

.

.

.

.

.

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

.

.

.

•

.

.

•

.

.

.

.

.

.

.

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

.

.

.

•

.

.

•

.

.

.

.

.

.

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

.

.

.

•

.

.

•

.

•

.

.

.

.

.

•

.

•

Primal Attacks

Iterative slicer [SFS09]

•

.

.

•

.

•

•

•

.

•

.

.

•

.

.

.

.

.

•

.

•

.

.

•

Primal Attacks

Approximate Voronoi cells [DLdW19,Laa19,DLvW20]

 r_2

 r_5

 \tilde{r}_6

.

a

.

 r_3

 r_4

.

.

•

-

•

•

-

Primal Attacks

Approximate Voronoi cells [DLdW19,Laa19,DLvW20]

V₁

V₄

.

.

.

V₂

• V3

.

.

•

.

•

~

Primal Attacks

Approximate Voronoi cells [DLdW19,Laa19,DLvW20]

.

-

.....

.

.

.

.

Primal Attacks

.

.

.

.

•

Approximate Voronoi cells [DLdW19,Laa19,DLvW20]

.

-

.....

 $\mathbf{\star}$

TU/e

Primal Attacks

Approximate Voronoi cells [DLdW19,Laa19,DLvW20]

.

-

.....

.

.

.

.

•

TU/e

Primal Attacks

.

.

.

.

•

Approximate Voronoi cells [DLdW19,Laa19,DLvW20]

.

-

.

TU/e

Primal Attacks

Randomized slicer [DLdW19]

.

......

.

.

 $\mathbf{\star}$

.

.

•

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

......

.....

.

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

......

.....

.

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

......

.

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

......

.

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

.

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

-

.

.

.

.

.
Primal Attacks

Randomized slicer [DLdW19]

-

.

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

......

.

.

-

.

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

......

.

.

.

.

•

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

.

.

•

.

-

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

.

.

•

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

.

.

•

.

.

.

Primal Attacks

Randomized slicer [DLdW19]

.

.

.

•

.

-

.

Primal Attacks

Randomized slicer [DLdW19]

.

.

.

•

.

-

.....

Primal Attacks

Randomized slicer [DLdW19]

.

......

.

.

-

.

.

.

.

Primal Attacks

Overview

• *Preprocessing*: Find short primal lattice vectors (2^{O(d)} time, space)

Primal Attacks Overview

- *Preprocessing*: Find short primal lattice vectors (2^{*O*(*d*)} time, space)
- *Querying*: Reduce to shortest representative in coset $t + \mathcal{L}$ (2^{*O*(*d*)} time, space)

Primal Attacks Overview

- *Preprocessing*: Find short primal lattice vectors (2^{O(d)} time, space)
- *Querying*: Reduce to shortest representative in coset $t + \mathcal{L}$ (2^{*O*(*d*)} time, space)
- Strengths: Works well for approximate CVPP

Primal Attacks Overview

- *Preprocessing*: Find short primal lattice vectors (2^{O(d)} time, space)
- *Querying*: Reduce to shortest representative in coset $t + \mathcal{L}$ (2^{*O*(*d*)} time, space)
- Strengths: Works well for approximate CVPP
- Limitations: Does not scale well for BDDP

Dual Attacks

Dual: $\mathcal{L}^* = \{ w \in \mathbb{R}^d : \langle v, w \rangle \in \mathbb{Z}, \forall v \in \mathcal{L} \}$

.

.

.

•

.

.

•

•

•

.

.

•

•

.

•

.

•

•

.

•

•

.

.

.

•

.

.

.

•

•

.

.

.

•

•

•

.

Dual Attacks

.

Dual: $\mathcal{L}^* = \{ w \in \mathbb{R}^d : \langle v, w \rangle \in \mathbb{Z}, \forall v \in \mathcal{L} \}$

Dual Attacks

Primal: $\mathcal{L} = \{ \mathbf{v} \in \mathbb{R}^d : \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z}, \forall \mathbf{w} \in \mathcal{L}^* \}$

•

•

			•			•			•			•			•			•			•			
				•						•						•						0		
		0		•			•	•		•			•	•		•			•	•		•		
						•						٠						٠						
		•		•	•			•		٠	٠			•		٠	•			•		•		
		0						٠						٠						٠				
			•			•			•						•			•			•			
				٠						٠		Ο				•								
		•		•			•	•		•			•	•		•			•	•		•		

TU/e . . **Dual Attacks Primal:** $\mathcal{L} = \{ \mathbf{v} \in \mathbb{R}^d : \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z}, \forall \mathbf{w} \in \mathcal{L}^* \}$ • . • . . . • • . . • • • • • • • • . • . . • • • • • • • • . . • • • . . . • . . • • • . • • . . . •

Dual Attacks

Primal: $\mathcal{L} = \{ \mathbf{v} \in \mathbb{R}^d : \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z}, \forall \mathbf{w} \in \mathcal{L}^* \}$

TU/e . **Dual Attacks Primal:** $\mathcal{L} = \{ \mathbf{v} \in \mathbb{R}^d : \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z}, \forall \mathbf{w} \in \mathcal{L}^* \}$. • • . • . • • . • . • • • • . . • . • . • • • • • • • . • . • . . • • • • • •

• • • • •

Dual Attacks

Primal: $\mathcal{L} = \{ \mathbf{v} \in \mathbb{R}^d : \langle \mathbf{w}, \mathbf{v} \rangle \in \mathbb{Z}, \forall \mathbf{w} \in \mathcal{L}^* \}$

Dual Attacks Distinguisher: $f(t) = \sum_{w \in \mathcal{L}^*} \cos(2\pi \langle w, t \rangle)$

Dual Attacks

Approximate distinguisher: $\hat{f}(t) = \sum_{w \in L} \cos(2\pi \langle w, t \rangle)$

Dual Attacks

Asymptotics (with preprocessing)

Dual Attacks

Experiments (d = 80)

Figure: Complexity of distinguishing from random at radius r (p = 0.90).

Dual Attacks

Experiments (d = 80)

vectors

Figure: Complexity of decoding a target at distance *r* with probability *p* in dimension 80.
Dual Attacks

Experiments (d = 80**)**

vectors

Figure: Experimental complexities for distinguishing/searching and a heuristic lower bound.

Dual Attacks

Experiments (variable d)

Figure: Complexity of distinguishing a planted target at radius 0.75 from random (p = 0.9).

Dual Attacks

Experiments (d = 80**)**

Figure: Steps required to decode target at radius *r* using 2^{14} vectors (*p* = 0.9).

Dual Attacks Overview

• *Preprocessing*: Find short dual vectors (2^{0(d)} time, space)

Dual Attacks Overview

- *Preprocessing*: Find short dual vectors (2^{0(d)} time, space)
- *Querying*: Gradient ascent using dot products modulo 1 (2^{O(d)} time, space)

Dual Attacks Overview

- *Preprocessing*: Find short dual vectors (2^{0(d)} time, space)
- *Querying*: Gradient ascent using dot products modulo 1 (2^{O(d)} time, space)
- Strengths: Works well for BDDP, predictable

Dual Attacks Overview

- *Preprocessing*: Find short dual vectors (2^{0(d)} time, space)
- *Querying*: Gradient ascent using dot products modulo 1 (2^{O(d)} time, space)
- Strengths: Works well for BDDP, predictable
- Limitations: Does not scale well for approximate CVPP

Conclusion

Summary

Primal Attacks

- Using list of short primal lattice vectors
- Works well for approximate CVP(P), not for BDD(P)

Conclusion

Summary

Primal Attacks

- Using list of short primal lattice vectors
- Works well for approximate CVP(P), not for BDD(P)

Dual Attacks

- Using list of short dual lattice vectors
- Works well for BDD(P), not for approximate CVP(P)
- Contribution: Complete heuristic average-case analysis
- Contribution: Experiments, closely matching heuristic predictions

Conclusion

Open problems

Combining both approaches?

- Short primal vectors \rightarrow Efficient approximate CVPP algorithm
- Short dual vectors \rightarrow Efficient BDDP algorithm
- Short primal *and* dual vectors \rightarrow ???

Conclusion

Open problems

Combining both approaches?

- Short primal vectors \rightarrow Efficient approximate CVPP algorithm
- Short dual vectors \rightarrow Efficient BDDP algorithm
- Short primal *and* dual vectors \rightarrow ???

Applications?

- Dual attack: Faster algorithm for huge BDD batches
- Sieving-enumeration hybrid [DLdW20]: not so promising
- Other applications?