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The closest pairs problem

L
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y

Given a list L and r > 0, find almost all
x,y ∈ L such that

dist(x,y) < r.

• Cases of interest:
� L ⊂ Sd−1 – a unit sphere, r = Θ(1)

� L ⊂ {0, 1}d, r = Θ(d)

• Often |L| = exp(d) (dense setting)

• Elements in L are uniformly
distributed
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Why interesting?

L ⊂ Sd−1
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Main subroutine inside sieving
algorithms for SVP

For |L| =
(
4
3

)d/2, we can solve this

problem in T =
(
3
2

)d/2 time and

S =
(
4
3

)d/2 space.

These complexities are used to setup
concrete parameters.

All o(d) factors in the exponents are omitted



Why interesting?

L ⊂ {0, 1}d
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Main subroutine inside Information Set
Decoding algorithms, [MO15], [BM18]

Relevant to the dense error setting:
wt(e) = Θ(d)

Crypto constructions reply on sparse
error: wt(e) = o(d).



How to solve the closest pairs problem?

Use locality-sensitive hashing (LSH).

[BGJ15], [BDGL16] for Euclidean metric

[MO15] for Hamming metric

LSH is built upon a family of hash functions h such that

Pr
x,y∼Sd−1

dist(x,y)<r

[h(x) = h(y)]� Pr
x,y∼Sd−1

[h(x) = h(y)]



LSH on the unit sphere
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Bucket center x ∈ Sd−1

defines a region Bx
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Bucket center x ∈ Sd−1

defines a region Bx

Bucketing phase
∀y ∈ L :
If 〈x , y〉 ≥ α :
Put y into Bx



LSH on the unit sphere
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Bucket center x ∈ Sd−1

defines a region Bx

Bucketing phase
∀y ∈ L :
If 〈x , y〉 ≥ α :
Put y into Bx

Query phase
∀Bx s.t. yq ∈ Bx :
∀y ∈ Bx :
Find y′ ∈ Bx s.t.
dist(y′,yq) < r

The number of x’s determines the runtime

The shape of x’s determines the complexity of
finding x for y.
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Our results (informal)

Instantiating LSH with Spherical caps, i.e.,

Bx(α) := {y ∈ Sd−1 : 〈x , y〉 ≤ α},

is optimal in the Euclidean metric and almost optimal in the
Hamming metric.

Here optimal means that choosing hash regions different from
spherical caps will not asymptotically improve the performance of
LSH.

Consequences:
• Another hashing strategy will not improve the performance of
lattice sieving
• Improving only the closest pair subroutine in ISD will not
result in a noticeable gain
• Asymptotically fastest algorithm will choose x’s from a
fast-decodable spherical code (may not exist for arbitrary
dimensions).
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Proof technique: Euclidean metric

Convolution on Sd−1 :

T (f, g, h) :=

∫ ∫
Sd−1×Sd−1

f(x)g(y)h(〈x , y〉)dσ(x)dσ(y).

f, g : Sd−1 → R, h : [−1, 1]→ R, σ – normalized surface measure
on Sd−1.

For which f, g, h is T (f, g, h) maximized?

Baernstein–Taylor rearrangement inequality on Sd−1 [BT76] :

T (f, g, h) ≤ T (f?, g?, h),

for f?, g? depending only on x1 and is non-decreasing in x1,

σ({f? > λ}) = σ({f > λ}), σ({g? > λ}) = σ({g > λ}), ∀λ.
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Proof technique: Euclidean metric

Take

U,Q ⊂ Sd−1 − arbitrary sets CQ = {z ∈ Sd−1 : z1 ≥ α}
CU = {z ∈ Sd−1 : z1 ≥ α}
σ(U) = σ(CU ), σ(Q) = σ(CQ)

f = 1(U) f? = 1(CU )

g = 1(Q) g? = 1(CQ)

h(s) = 1{s > r}, r ∈ [−1, 1]

Notice that (f, g, h, f?, g?), satisfy the BT inequality.

Interpreting integrals as probabilities leads to:

Pr
x,y∼Sd−1

[x ∈ U,y ∈ Q | 〈x,y〉 ≥ r] ≤ Pr
x,y∼Sd−1

[x ∈ CU ,y ∈ CQ |〈x,y〉 ≥ r].
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Proof technique: Hamming metric

Andoni-Razenshteyn inequality [AR16]:

For every hash function h : {0, 1}d → Z and every 0 < r ≤ d/2:

Pr
x,y∼{0,1}d

E(dist(x,y))=r

[h(x) = h(y)] ≤ Pr
x,y∼{0,1}d

[h(x) = h(y)]
r

d−r .

=⇒ the lower bound on the runtime T of the closest pairs
problem over {0, 1}d:

log2 T ≥
1

1− r/d log2 |L| .

• [MO15] achieves the lower bound in the sparse setting,
• and comes close to it in the dense setting.
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Proof technique: Hamming metric

Source of the gap: for an arbitrary set A ⊂ {0, 1}d:

Pr
x,y∼{0,1}d

E(dist(x,y))=r

[x ∈ A |y ∈ A] ≤
( |A|

2d

) r
d−r

.

We need A, for which the above is tight. For spherical caps in
{0, 1}d it is not.



Interpretation of the result

• The result does not imply a lower bound on all possible sieving
algorithms. Another use of the closest pairs problem or a
completely different technique is possible.

• It implies that we have an optimal near neighbor subroutine
within sieving algorithms.

• It implies that in order to noticeably improve ISD, another
technique is needed.



Open questions

• Closing the gap for the Hamming distance.

• Nearest Neighbor for the “planted” close pair.

• Closest pairs problem in other norms like `∞.
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