
On Bounded Distance Decoding with
Predicate: Breaking the "Lattice Barrier" for

the Hidden Number Problem

Martin Albrecht and Nadia Heninger

June 14, 2021



The hidden number problem
[Boneh Venkatesan 96]

Secret: Integer α. Public parameter: Integer n
Input: Pairs (ti , ai ) where ai are most significant bits of
tiα mod n.
Desired Output: α

Can formulate system of equations in unknowns r1, . . . , rm, α:

r1 − t1α + a1 ≡ 0 mod n

r2 − t2α + a2 ≡ 0 mod n

...
rm − tmα + am ≡ 0 mod n

Here the ri are small.



The hidden number problem
[Boneh Venkatesan 96]

Secret: Integer α. Public parameter: Integer n
Input: Pairs (ti , ai ) where ai are most significant bits of
tiα mod n.
Desired Output: α

Can formulate system of equations in unknowns r1, . . . , rm, α:

r1 − t1α + a1 ≡ 0 mod n

r2 − t2α + a2 ≡ 0 mod n

...
rm − tmα + am ≡ 0 mod n

Here the ri are small.



HNP Application: (EC)DSA Key Recovery
Global Parameters Group of order n with generator G .

Private Key Integer d Public Key Q = dG

Signature Generation
Message Hash: h
Per-Signature “nonce”: Integer k
Signature on h: (r , s) r = x(kG ) s = k−1(h + dr) mod n

Formulation as a HNP instance:
Attacker learns some MSBs of nonces via a side channel.
(Assume 0 wlog, so ki are “small”.)
HNP instance:

k1 − s−1
1 r1d − s−1

1 h1 ≡ 0 mod n

k2 − s−1
2 r2d − s−1

2 h2 ≡ 0 mod n

...
km − s−1

m rmd − s−1
m hm ≡ 0 mod n



HNP Application: (EC)DSA Key Recovery
Global Parameters Group of order n with generator G .

Private Key Integer d Public Key Q = dG

Signature Generation
Message Hash: h
Per-Signature “nonce”: Integer k
Signature on h: (r , s) r = x(kG ) s = k−1(h + dr) mod n

Formulation as a HNP instance:
Attacker learns some MSBs of nonces via a side channel.
(Assume 0 wlog, so ki are “small”.)
HNP instance:

k1 − s−1
1 r1d − s−1

1 h1 ≡ 0 mod n

k2 − s−1
2 r2d − s−1

2 h2 ≡ 0 mod n

...
km − s−1

m rmd − s−1
m hm ≡ 0 mod n



Solving HNP with Lattices
Usual approach: Use BKZ to find solution vector

Input:
r1 − t1α + a1 ≡ 0 mod n

...
rm − tmα + am ≡ 0 mod n

in unknowns r1, . . . , rm, α, where |ri | < R .
Construct the lattice basis (rows)

M =



n
n

. . .
n

t1 t2 . . . tm R/n
a1 a2 . . . am R


vr = (r1, r2, . . . , rm,Rα/n,R) is a short vector in this lattice.



Solving HNP with lattices

Construct the lattice

M =



n
n

. . .
n

t1 t2 . . . tm R/n
a1 a2 . . . am R


Want vector
vr = (r1, r2, . . . , rm,Rα/n,R)

We expect to find vector with a SVP solver when it is the
shortest vector.
• det Λ = R2nm−1

• |vr | ≤
√
m + 2B .

Gaussian Heuristic for length of shortest vector
• GH(Λ) ≈

√
m+2
2πe det Λ1/ dim Λ



The “lattice barrier”

“[T]here is a hard limit to what can be achieved using
lattice reduction: due to the underlying structure of the
HNP lattice, it is impossible to attack (EC)DSA using a
single-bit nonce leak with lattice reduction. In that case,
the ’hidden lattice point’ corresponding to the HNP solu-
tion will not be the closest vector even under the Gaus-
sian heuristic (see [NT12]), so that lattice techniques
cannot work.” [AFGKTZ14]

Similar points are made in [DHMP13,M17,TTA18,ANTTY20]



The “lattice barrier”

Compare the upper bound for ‖~v‖ for log(n) = 256 as we
vary the number of samples m.

50 100 150 200 250 300 350 400

252

254

256

258

Samples m

lo
g

(·)

GH(Λ) 1-bit bias, max ‖~v‖
2-bit bias, max ‖~v‖ 3-bit bias, max ‖~v‖

Crossover points estimate required number of samples (and
lattice dimension to solve SVP in).



Our work: Breaking the lattice barrier

Three observations:
1. In practical applications, there is still a unique solution.

(e.g. the attacker has a known public key and can
compare against the target vector)
Thus even if the target vector isn’t the closest vector, we
can use this extra information to search for solutions.

2. Typical lattice behavior follows expected vector length,
not upper bound. (E(v) ≈

√
m/3B ≤

√
mB)

3. To get the above to work, we must apply optimizations
that are inconsistently applied in practice. (Recentering,
variable eliminiation, etc.)



Lattice barrier behavior with expected vector length

Lattice dimensions become much more tractable.

50 100 150 200 250 300 350 400

252

254

256

258

Samples m

lo
g

(·)

GH(Λ) 1-bit bias, E‖~v‖
2-bit bias, E‖~v‖ 3-bit bias, E‖~v‖

Later: We experimentally confirm the analysis.



Bounded Distance Decoding with Predicate
Definition (Bounded Distance Decoding with predicate)
Given a lattice basis ~B , a vector ~t, a predicate f (·), and a
parameter 0 < α such that the Euclidean distance
dist(~t, ~B) < α · λ1(~B), find the lattice vector ~v ∈ Λ(~B)
satisfying f (~v − ~t) = 1 which is closest to ~t.

Definition (unique SVP with predicate)
Given a lattice Λ and a predicate f (·) find the shortest
nonzero vector ~v ∈ Λ satisfying f (~v) = 1.

Using Kannan’s embedding and a simple transform on the
predicate we can solve the former using the latter.

Concretely: ECDSA predicate computes a curve scalar
multiplication on a candidate nonce and compares to
signature



BKZ with Predicate

Baseline algorithm: It is folklore in the literature to use BKZ
and search through the reduced basis for the presence of
the target vector.

• When ~v is expected to be shorter than any other vector
in Λ we call BKZ algorithm with the appropriate block
size β.

• When β = d this computes an HKZ reduced basis and
thus a shortest vector in the basis.

• We will consider these algorithms to have succeeded if
the target is contained in the reduced basis.



Enumeration with Predicate

Enumeration algorithms can exhaustively search within a
given radius.

We augment with predicate to search for target.

O

f()

f()
f()

f()

f()
f()

f()

f()



Enumeration with Predicate

Theorem
Let Λ ⊂ Rd be a lattice containing vectors ~v such that
‖~v‖ ≤ R = ξ · GH(Λ) and f (~v) = 1. Assuming the Gaussian
heuristic, then enumeration with predicate finds the shortest
vector ~v satisfying f (~v) = 1 in ξd · dd/(2e)+o(d) steps.
Enumeration with predicate will make ξd+o(d) calls to f (·).



Sieving with Predicate
We can similarly augment sieving algorithms with a
predicate.

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

f ()

O



Sieving with Predicate II

Assumption
When a 2-sieve algorithm terminates, it outputs a database L
containing all vectors with norm ≤

√
4/3 · GH(Λ).

Theorem
Let Λ ⊂ Rd be a lattice containing a vector ~v such that
‖~v‖ ≤ R =

√
4/3 · GH(Λ). Under our assumption sieving with

predicate is expected to find the minimal ~v satisfying f (~v) = 1 in
20.292 d+o(d) steps and (4/3)d/2+o(d) calls to f (·).



ECDSA Success Rates / Running Time for log(n) = 256

60 65 70 75 80 85 90 95 100
0

50

100

3 bits known4 bits known

m

Su
cc
es
s
pr
ob

ab
ili
ty

BKZ-Sieve
BKZ-Enum
Sieve-Pred
Enum-Pred

1.41 1.13 0.93 0.79 - 1.19 1.06 0.96 0.87γ

60 65 70 75 80 85 90 95 100

102

104

106

3 bits known4 bits known

m

CP
U
Se
co
nd

s

BKZ-Sieve
BKZ-Enum
Sieve-Pred
Enum-Pred



Comparison to previous work for log(n) = 256

log(n) bias m time alg. s/r previous work

256 4 bits 63 2122s E 41% below information-theoretic barrier
256 4 bits 65 76s S 66% BKZ-25, m ≈ 82, s/r = 90% in [Ryan18]
256 3.6 bits 73 69s S 66% BKZ-30, m = 80, s/r = 94.5% in [GB17]
256 3 bits 87 5400s S 63% enum, m = 100, s/r = 21% in [LCLi14]
256 2 bits – – – – Bleichenbacher, m ≈ 226, in [TTA18]

We can solve HNP instances with fewer samples than
reported in the literature.

Practical impact: In side-channel attacks, sample collection
can be expensive—often thousands of measurements for a
single usable sample.



Cost estimates for log(n) = 256

bits known 8 7 6 5 4 3 2 1

Sieve m/d 33/20 38/26 45/33 54/42 69/56 93/79 146/128 341/310
Sieve-Pred m/d 33/34 37/38 43/44 52/53 65/66 87/88 131/132 267/268
Sieve-Pred cost 34.9 34.1 33.6 33.9 35.7 41.5 57.6 108.6
limit m 32 37 43 52 64 86 128 256
limit −1 cost 27.2 27.4 29.8 32.3 38.7 48.2 73.7 169.7

Sieve #samples m required for solving uSVP and sieve dim.
Sieve-Pred #samples m required for and sieving dimension d = m+ 1.

Sieve-Pred cost Log of expected cost in CPU cycles
limit Information theoretic limit for m of pure lattice approach:

dlog(n)/bits knowne.
limit −1 cost Log of expected cost for in CPU cycles with

m = dlog(n)/bits knowne − 1 samples.



Earning some Bitcoin

126 128 130 132 134 136
0

50

100

Unknown nonce bits

Su
cc
es
s
pr
ob

ab
ili
ty

log(n) = 256,m = 2

BKZ
Enum-Pred
Sieve-Pred

BH19 reported using BKZ in small dimensions to find 287
Bitcoin signing keys.
• We applied sieving with predicate and were able to
compute 9 more signing keys.



Additional Benefit: Handling Errors

In side-channel applications, measurement errors are
common.

Prior works state that lattice algorithms do not deal well
with noisy data.

Natural approach to errors given our results:

1. Estimate error rate and use it to estimate length of
target vector.

2. Use estimated length of target vector to choose block
size, enumeration, or sieving parameters accordingly.

3. This works well in experiments.



Conclusions

• You can break the “lattice barrier” if you are willing to
spend more computational time.

• All our code available at
https://github.com/malb/bdd-predicate/

• Future work: 2-bit bias on a 256-bit curve with lattices.

https://github.com/malb/bdd-predicate/

