Mr NISC from LWE: <u>Multiparty R</u>eusable <u>Non-Interactive Secure Computation</u>

Fabrice Benhamouda (Algorand Foundation)

Joint work with Aayush Jain (UCLA, NTT), Ilan Komargodski (Hebrew University, NTT), Rachel Lin (University of Washington)

- Correctness with dynamic parties joining
- Simulation security:
 - Semi-honest adversary, static corruptions, dishonest majority

Another View of mrNISC

<u>Round 1</u> = broadcast commitments \hat{x}_i

<u>Round 2</u> = broadcast computation encodings α_i

2-round MPC with

mrNISC

reusable first round & dynamic set of parties

Comparison with Previous Reusable 2-round MPC

		Setup	Assumptions	Reusable?	Dynamic set of parties?
Obfuscation	[GGHR14, GP15, CGP15, DKR15]	No setup	iO		
Witness Encryption	[GLS15]	No setup	Witness Encryption		
Multi-key FHE	Ananth, Jain, Jin, Malavolta (TCC 2020)	No setup	LWE		×
Homomorphic Secret Sharing	Bartusek, Garg, Masny, Mukherjee (TCC 2020)	No setup	DDH		×
Pairing	Benhamouda, Lin (TCC 2020)	No setup	SXDH		
This work	(Eurocrypt 2021)	No setup	LWE		

Our Contributions

Definition of Reusable Functional OT mrNISC with 2 parties for specific functionality

Construction Overview

Overview

- [GGHR14] Compress *L*-round MPC to 2 rounds using iO
 - Round 1: commitment of input
 - Round 2: obfuscation of

```
Input: previous messages in L-round MPC
+ ...
Output: next message + ...
```

• [GLS15] Replace iO by witness encryption + garbled circuit

Allow to compute the garbled circuit labels

Input: previous messages in *L*-round MPC

Output: message + ...

Overview of Construction from iO [GGHR14...] L-round MPC For each party P_i : Input of Party P_i Randomness of Party P_i <u>Round 1</u>: broadcast $m_i^1 = \text{Next}(x_i, r_i)$ Round 2: broadcast $m_i^2 = \text{Next}(x_i, r_i, \vec{m}^{<2})$... <u>Round L</u>: broadcast $m_i^L = \text{Next}(x_i, r_i, \vec{m}^{< L})$

<u>Output</u>: $y = \text{Output}(\vec{m})$

TCC 2020

Construction from Reusable Functional OT

Can use GSW commitments!

Ideas from [GVW15]

and [BD18]

Reusable Functional OT from LWE

- Goal: 2rNISC for
 - Alice's input = x_1 , Bob's input = x_2
 - Output: $y = (b, \ell_b)$ with $(\ell_0, \ell_1) = g_1(x_1)$ and $b = g_2(x_2)$
- Bob commits to x_2 using fully homomorphic commitment:

 $\widehat{x_{2}} = \operatorname{Com}(x_{2})$ $\widehat{x_{2}} = (A, AR + x_{2}G)$ $C_{g_{2}} = \operatorname{Com}(g_{2}(x_{2}))$ $C_{g_{2}} = AR_{g_{2}} + (1 - b)G$ $C_{g_{2}} = AR_{g_{2}} + (1 - b)G$ $\widehat{x_{1}} : \text{Alice encrypts } \ell_{\beta} \text{ for } \beta = 0.1$ $\widehat{x_{1}} : \text{Alice encrypts } \ell_{\beta} \text{ for } \beta = 0.1$ $\widehat{x_{2}} = \operatorname{Com}(\beta)^{\prime\prime}$ $\widehat{x_{2}} = \operatorname{Com}(\beta)^{\prime\prime}$ $\widehat{x_{2}} = \operatorname{Rest}(s_{\beta}) \oplus \ell_{\beta}$ $w_{\beta} = s_{\beta} \cdot [A | C_{g_{2}}] + noise$ $\operatorname{Can recover} s_{\beta}$ Short basis of lattice $\{z \mid [A|C_{g_{2}}] \cdot z = 0\}$ 14

Conclusion

Definition of Reusable Functional OT mrNISC with 2 parties for specific functionality

• For NC1, first polynomial-modulus threshold multi-key FHE

