

On Synthesising Probabilistic Models and Programs

Joost-Pieter Katoen

joint with Milan Češka, Roman Andriushchenko, Sebastian Junges

1

How to Pick the Optimal Bias?

Seminar Synthesis of Models and Systems, Simons Institute 2021

Joost-Pieter Katoen

A distributed algorithm is self-stabilising iff:

Convergence:

Starting from an arbitrary state, it always converges to a legitimate state

Closure:

And it remains in a legitimate set of states thereafter in absence of faults

A self-stabilising algorithm:

- Works correctly for every initialisation
- Recovers from the occurrence of transient faults

A key concept in fault-tolerant distributed computing

Dijkstra 1986: Self-stabilisation in anonymous networks is impossible

Herman's escape 1990: use randomisation

Edsger W. Dijkstra

Ted Herman

Joost-Pieter Katoen

Herman's Randomised Self-Stabilisation

- ▶ *N*+1 (odd) synchronous processes 0, . . . , *N* form a directed ring
- Process i has a Boolean variable x_i ∈ {0, 1}
- Processes have access to their neighbour's variables

Joost-Pieter Katoen

Process *i* performs:
if
$$x_i = x_{i-1}$$
, then $x_i \coloneqq \begin{cases} 0 & \text{with probability } p \\ 1 & \text{with probability } 1-p \end{cases}$
if $x_i \neq x_{i-1}$ then $x_i \coloneqq x_{i-1}$

Process possesses token if x_i equals x_{i-1}

Performance metric = expected convergence time

Joost-Pieter Katoen

A Round of Herman's Protocol

Another Round

Joost-Pieter Katoen

N+1	#states	#trans	p	ECT	time(s)
7	129	2,316	[0.496, 0.504]	[4.493, 4.493]	2.68
9	513	21K	[0.452, 0.465], [0.535, 0.548]	[7.914, 7.921]	4.5
11	2,049	180K	[0.352, 0.382], [0.618, 0.648]	[12.097, 12.102]	9.1
13	8,193	1.6M	[0.322, 0.344], [0.656, 0.678]	[16.942, 16.949]	36.1
15	32,769	14.4M	[0.301, 0.319], [0.681, 0.699]	[22.445, 22.453]	310
17	131,073	129M	[0.291, 0.304], [0.696, 0.709]	[28.603, 28.610]	3480
19	524,289	1,162M	[0.279, 0.292], [0.708, 0.721]	[35.406, 35.416]	> 24h

Abstraction-refinement of parameter regions

Iterative Parameter Synthesis

Joost-Pieter Katoen

Parameter Synthesis Results

Joost-Pieter Katoen

We can automatically synthesise the parameter values that minimise the expected convergence time

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Uncountable sets of finite Markov chains

Joost-Pieter Katoen

Uncountable sets of finite Markov chains

Seminar Synthesis of Models and Systems, Simons Institute 2021

Joost-Pieter Katoen

What if we allow for topology changes?

Thus: focus on tweaking the control structure

Joost-Pieter Katoen

Joost-Pieter Katoen

Model Synthesis

Huge, finite sets of finite Markov chains

Joost-Pieter Katoen

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Joost-Pieter Katoen

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

Joost-Pieter Katoen

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

1. Find a realisation (an MC) satisfying *f*.

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

1. Find a realisation (an MC) satisfying *f*.

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

- 1. Find a realisation (an MC) satisfying *f*.
- 2. Find all realisations satisfying *f*.

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

- 1. Find a realisation (an MC) satisfying *f*.
- 2. Find all realisations satisfying *f*.

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

- 1. Find a realisation (an MC) satisfying *f*.
- 2. Find all realisations satisfying *f*.
- 3. Find the realisation with the maximal probability to reach *G*.

Inputs:

a Markov chain family + a property f eg. can G be reached with probability > p?

Synthesis goals:

- 1. Find a realisation (an MC) satisfying *f*.
- 2. Find all realisations satisfying *f*.
- 3. Find the realisation with the maximal probability to reach *G*.

Cost-based variants:

- 4. Find the cheapest realisation satisfying *f*.
- 5. Find all within-budget realisations satisfying f.

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen
Objective: Partition Parameter Space

Joost-Pieter Katoen

Fix the parameters, build the model, check

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

The "All-in-One" Approach

Joost-Pieter Katoen

The "All-in-One" Approach

Joost-Pieter Katoen

Build the union (linear blow-up), apply model checking and extract result

Exploit regularity with symbolic methods

Probabilistic model checking slow, already on moderate family sizes

Joost-Pieter Katoen

Use Abstraction

Joost-Pieter Katoen

"Forget" The Realisation We Are In

Joost-Pieter Katoen

"Forget" The Realisation We Are In

Joost-Pieter Katoen

"Forget" The Realisation We Are In

This yields a quotient MDP

Joost-Pieter Katoen

Abstraction Refinement: CEGAR

Abstraction Refinement: CEGAR

Joost-Pieter Katoen

Full Situation

Algorithm's Perspective

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Joost-Pieter Katoen

Seminar Synthesis of Models and Systems, Simons Institute 2021

Joost-Pieter Katoen

Seminar Synthesis of Models and Systems, Simons Institute 2021

Joost-Pieter Katoen

Quotient may be much larger than any family member

Joost-Pieter Katoen

Seminar Synthesis of Models and Systems, Simons Institute 2021

Joost-Pieter Katoen

Counterexample := minimal command set of a PRISM program *P* violating *f*.

Counterexample := minimal command set of a PRISM program *P* violating *f*.

Finding a minimal command set is hard: MAXSAT or greedy approaches

Counterexample := minimal command set of a PRISM program *P* violating *f*.

Finding a minimal command set is hard: MAXSAT or greedy approaches

				probabilities		edges	
model	instance	states	transitions	λ	$\Pr^+(\Diamond T)$	$ E^* $	E
coin	(2, 2)	272	492	0.30	0.56	8	14
	(4, 4)	43,136	144,352	0.30	0.54	17	28
	(6, 2)	1,258,240	6,236,736	0.30	0.59	≥ 16	42
csma	(2, 4)	7,958	10,594	0.50	> 0.99	36	38
	(2, 6)	66,718	93,072	0.50	> 0.99	36	42
	(4, 2)	761,962	1,327,068	0.40	0.78	≥ 43	72
firewire	(3)	4,093	5,585	0.50	1	24	64
	(12)	22,852	40,904	0.50	1	24	64
	(36)	212,268	481,792	0.50	1	24	64
wlan	(2, 2)	28,598	57,332	0.10	0.18	33	70
	(4, 4)	345,120	762,422	4e-4	7.9e-4	39	76
	(6, 6)	5,007,670	11,475,920	1e-7	2.2e-7	43	80

Joost-Pieter Katoen

Counterexamples

Counterexample := minimal command set of a PRISM program P violating f.

Finding a minimal command set is hard: MAXSAT or greedy approaches

				probabilities		edges	
model	instance	states	transitions	λ	$\Pr^+(\Diamond T)$	$ E^* $	E
coin	(2, 2)	272	492	0.30	0.56	8	14
	(4, 4)	43,136	144,352	0.30	0.54	17	28
	(6, 2)	1,258,240	6,236,736	0.30	0.59	≥ 16	42
csma	(2, 4)	7,958	10,594	0.50	> 0.99	36	38
	(2, 6)	66,718	93,072	0.50	> 0.99	36	42
	(4, 2)	761,962	1,327,068	0.40	0.78	≥ 43	72
firewire	(3)	4,093	5,585	0.50	1	24	64
	(12)	22,852	40,904	0.50	1	24	64
	(36)	212,268	481,792	0.50	1	24	64
wlan	(2, 2)	28,598	57,332	0.10	0.18	33	70
	(4, 4)	345,120	762,422	4e-4	7.9e-4	39	76
	(6, 6)	5,007,670	11,475,920/	1e-7	2.2e-7	43	80

Joost-Pieter Katoen
Counterexamples

Counterexample := minimal command set of a PRISM program P violating f.

Finding a minimal command set is hard: MAXSAT or greedy approaches

			\frown			and the second se	Noneson States
				prol	oabilities	edges	
model	instance	states	transitions	λ	$\Pr^+(\Diamond T)$	$ E^* $	E
	(2, 2)	272	492	0.30	0.56	8	14
coin	(4, 4)	43,136	144,352	0.30	0.54	17	28
	(6, 2)	1,258,240	6,236,736	0.30	0.59	≥ 16	42
csma	(2, 4)	7,958	10,594	0.50	> 0.99	36	38
	(2, 6)	66,718	93,072	0.50	> 0.99	36	42
	(4, 2)	761,962	1,327,068	0.40	0.78	≥ 43	72
	(3)	4,093	5,585	0.50	1	24	64
firewire	(12)	22,852	40,904	0.50	1	24	64
	(36)	212,268	481,792	0.50	1	24	64
	(2, 2)	28,598	57,332	0.10	0.18	33	70
wlan	(4, 4)	345,120	762,422	4e-4	7.9e-4	39	76
	(6, 6)	5,007,670	11,475,920/	1e-7	2.2e-7	43	80
4			$\overline{\checkmark}$			a series and a series of the s	- AND

Seminar Synthesis of Models and Systems, Simons Institute 2021

Joost-Pieter Katoen

Counterexamples

Counterexample := minimal command set of a PRISM program *P* violating *f*.

Finding a minimal command set is hard: MAXSAT or greedy approaches

			/	prol	probabilities		es
model	instance	states	transitions	λ	$\Pr^+(\Diamond T)$	$ E^* $	E
coin	(2, 2)	272	492	0.30	0.56	8	14
	(4, 4)	43,136	144,352	0.30	0.54	17	28
	(6, 2)	1,258,240	6,236,736	0.30	0.59	≥ 16	42
csma	(2, 4)	7,958	10,594	0.50	> 0.99	36	38
	(2, 6)	66,718	93,072	0.50	> 0.99	36	42
	(4, 2)	761,962	1,327,068	0.40	0.78	≥ 43	72
firewire	(3)	4,093	5,585	0.50	1	24	64
	(12)	22,852	40,904	0.50	1	24	64
	(36)	212,268	481,792	0.50	1	24	64
wlan	(2, 2)	28,598	57,332	0.10	0.18	33	70
	(4, 4)	345,120	762,422	4e-4	7.9e-4	39	76
	(6, 6)	5,007,670	11,475,920/	1e-7	2.2e-7	43	80

Property: If a sub-MC of MC *D* refutes the safety property *f*, then *D* refutes *f* too.

The Best of Both Worlds

The Best of Both Worlds

Implemented in Python, using Z3 and the probabilistic model checker Storm

- Implementation on top of Python API of Storm
- Takes PRISM or JANI file with open integer constants

- Implementation on top of Python API of Storm
- Takes PRISM or JANI file with open integer constants

stormchecker.org CAV 2017

- Implementation on top of Python API of Storm
- Takes PRISM or JANI file with open integer constants

stormchecker.org CAV 2017

Why Storm?

- Implementation on top of Python API of Storm
- Takes PRISM or JANI file with open integer constants

stormchecker.org CAV 2017

Why Storm?

The 2019 Comparison of Tools for the Analysis of Quantitative Formal Models (QComp 2019 Competition Report)

> TACAS 2019 ISOLA 2020

Joost-Pieter Katoen

- Implementation on top of Python API of Storm
- Takes PRISM or JANI file with open integer constants

stormchecker.org

CAV 2017

Why Storm?

The 2019 Comparison of Tools for the Analysis of Quantitative Formal Models (QComp 2019 Competition Report)

> TACAS 2019 ISOLA 2020

[Benini et al, IEEE CAD 1999]

dtmc

const int H; const int K;

```
module example
    s : [0..11] init 0;
    [] s=0 -> 1: (s'=H);
    [] s=1 -> 0.5:(s'=7) + 0.5:(s'=8);
    //...
    [] s=7 -> 0.8:(s'=K) + 0.2:(s'=2);
    [] s=8 -> 1: (s'=K);
    //...
endmodule
```


Challenge

- Synthesise guards and updates in DPM control program with 9 holes
- Specification = conjunction of expected #lost reqs and energy consumption

Challenge

- Synthesise guards and updates in DPM control program with 9 holes
- Specification = conjunction of expected #lost reqs and energy consumption

Results (16 parameters)

- Family size = 43,000,000 control programs of average size of 3,600 states
- Our approach: 9 hours; baseline: > 1 month

Joost-Pieter Katoen

Joost-Pieter Katoen

Determining an optimal *positional* strategy for reachability is ETR-complete

Joost-Pieter Katoen

Determining an optimal *positional* strategy for reachability is ETR-complete

This is as hard as finding the real roots of a polynomial

Joost-Pieter Katoen

Determining an optimal *positional* strategy for reachability is ETR-complete

This is as hard as finding the real roots of a polynomial

Practice: determine randomised finite-state controllers with bounded memory

Joost-Pieter Katoen

Minimise the expected #steps to exit the maze

22 parameters

- 9,400,000 possible strategies
- 200 states average MC size

Minimise the expected #steps to exit the maze

Minimise the expected #steps to exit the maze

- 22 parameters
- 9,400,000 possible strategies
- 200 states average MC size

- baseline: about two days
- our approach: 1 hour

Can we do better? Use a single bit of memory and 25 different coin biases

Joost-Pieter Katoen

Can we do better? Use a single bit of memory and 25 different coin biases

- 7 parameters
- 3,100,000 possible strategies
- 1,100 states average MC size

Can we do better? Use a single bit of memory and 25 different coin biases

- 7 parameters
- 3,100,000 possible strategies
- 1,100 states average MC size

- baseline: about 1,5 days
- our approach: 17 minutes

Can we do better? Use a single bit of memory and 25 different coin biases

- 7 parameters
- 3,100,000 possible strategies
- 1,100 states average MC size

- baseline: about 1,5 days
- our approach: 17 minutes

Initially use most fair coins, memory 0, and later highly unfair coins, memory 1

Applications:

- ✓ Program sketching
- Controller synthesis in partially observable systems
- ✓ Software product lines
- Randomised distributed computing
- Approaches: CEGAR, CEGIS and their combination

• Further work:

- ✓ Other refinement strategies
- ✓ Other models: MDPs, POMDPs,
- ✓ Infinite families, infinite-state realisations,

• Further details:

LNCS 10500 (Festschrift Scott Smolka), TACAS 2019+21, FM 2019

PAYNT (Probabilistic progrAm sYNThesizer)

Joost-Pieter Katoen