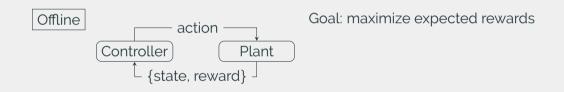
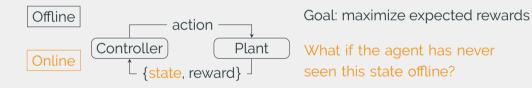
Controller Synthesis and its Magical Futures

Anna Lukina March 8, 2021

(a) Synthesis of Models and Systems Seminar


Institute of Science and Technology


Controller Design

Controller Design via Deep RL

Controller Design via Deep RL

Key Contributions

Current research focus: reliable design of learned systems via combination of formal methods and machine learning

(FMCAD-20) Formal Methods with a Touch of Magic. Alizadeh Alamdari, Avni, Henzinger, **Lukina**.

(ECAI-20) Outside the Box: Abstraction-Based Monitoring of Neural Networks. Henzinger, **Lukina**, Schilling.

- (ATVA-17) Attacking the V: on the Resiliency of Adaptive-Horizon MPC. Smolka, Tiwari, Esterle, **Lukina**, Yang, Grosu.
- (TACAS-17) ARES: Adaptive Receding-Horizon Synthesis of Optimal Plans. **Lukina**, Esterle, Hirsch, Bartocci, Yang, Tiwari, Smolka, Grosu.

A Touch of Magic 🎢

Reactive Synthesis

Given a specification φ , finds a controller that ensures the plant satisfies φ

Deep RL Optimizes performance

Reactive Synthesis

Given a specification φ , finds a controller that ensures the plant satisfies φ

No performance guarantee

Deep RL Optimizes performance

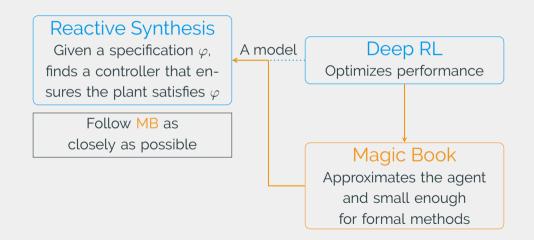
No correctness guarantee

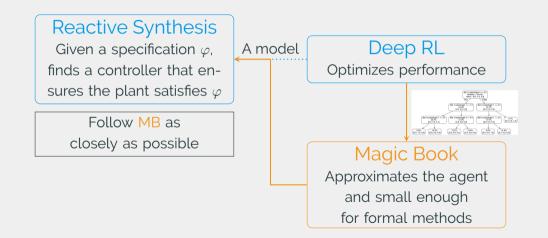
Reactive Synthesis

Given a specification φ , finds a controller that ensures the plant satisfies φ

Follow advice as closely as possible

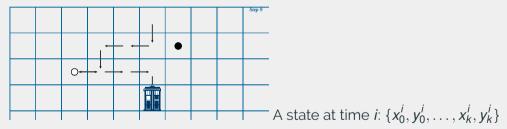
Deep RL Optimizes performance

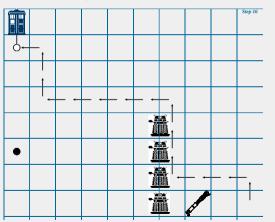

Reactive Synthesis


Given a specification φ , finds a controller that ensures the plant satisfies φ A model

Deep RL Optimizes performance

Follow advice as closely as possible


Neural networks are large and uninterpretable



Verification of the Magic Book [FMCAD 2020]

 φ : "the taxi never enters a loop in which no passenger is collected"

Control Synthesis by the Magic Book IFMCAD 2020]

 φ : "reach a gas station every *t* time steps"

Performance and Explainability IFMCAD 2020]

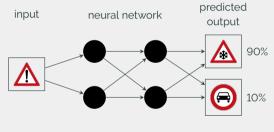
Num. of collected passengers	RF(5,6)	Wizard
Avg. performance	154	159
Max. performance	194	200
Synthesis avg. performance	96	-

Performance and Explainability IFMCAD 2020]

Num. of collected passengers	RF(5,6)	Wizard
Avg. performance	154	159
Max. performance	194	200
Synthesis avg. performance	96	-

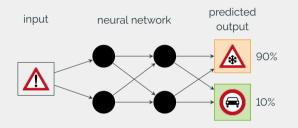
"Passenger 2 is collected first": $\bigwedge_{1 \le i \le \ell} (x_j^i = x_j^0 \land y_j^i = y_j^0) \ \forall \ j = 1, 3$

Bound	Passenger 2		
Bound	runtime	succ. ratio	
6	0.25 s	85 %	
7	0.30 s	87.2 %	
8	0.36 s	89.9 %	
9	0.47 s	82.2 %	

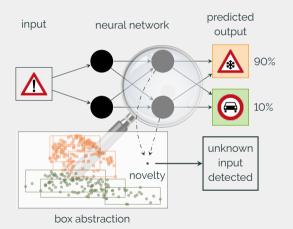

$\neg (x_2^{\ell} = x_2^0 \land y_2^{\ell} = y_2^0)$	$\neg(x_2^\ell)$	$= x_2^0$	$\wedge y_2^\ell$	$= y_2^0$)
--	------------------	-----------	-------------------	-------------

Reaction to Novel Input Classes

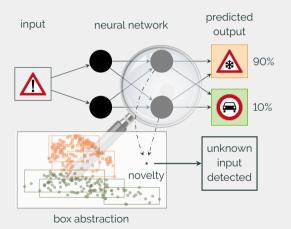
neural network


March 8, 2021

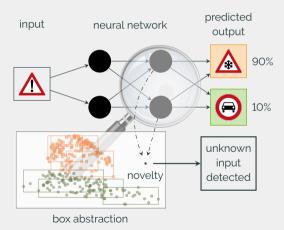
Reaction to Novel Input Classes



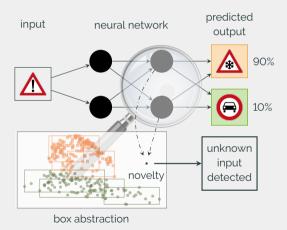
Must output "do not know"


Outside the Box 📦

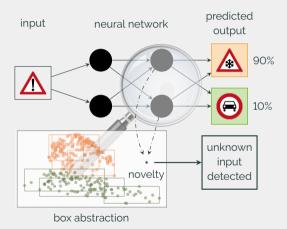
[ECAI 2020]

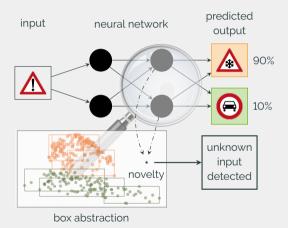


[ECAI 2020]



1. Computationally cheap


[ECAI 2020]


- 1. Computationally cheap
- 2. Effective in detecting novelties

- 1. Computationally cheap
- 2. Effective in detecting novelties
- 3. Data and model independent

- 1. Computationally cheap
- 2. Effective in detecting novelties
- 3. Data and model independent
- 4. Easy to integrate

- 1. Computationally cheap
- 2. Effective in detecting novelties
- 3. Data and model independent
- 4. Easy to integrate
- 5. Flexible to user configuration

Real-time object detection with neural networks¹:

¹https://pjreddie.com/darknet/yolo/

Real-time object detection with neural networks¹:

• Trained on cats, dogs, and cars.

¹https://pjreddie.com/darknet/yolo/

Real-time object detection with neural networks¹:

- Trained on cats, dogs, and cars.
- Their food is frequently disappearing.

¹https://pjreddie.com/darknet/yolo/

Real-time object detection with neural networks¹:

- Trained on cats, dogs, and cars.
- Their food is frequently disappearing.

¹https://pjreddie.com/darknet/yolo/

Real-time object detection with neural networks¹:

- Trained on cats, dogs, and cars.
- Their food is frequently disappearing.

¹https://pjreddie.com/darknet/yolo/ ²https://rpubs.com/dgolicher/yolo March 8, 2021

Open Problems 🔅

Verification $\boldsymbol{\mathcal{C}}$ Learning

Scalability:

- · Dimensionality of the input for controllers.
- · Control synthesis for POMDPs.

Verification $\boldsymbol{\mathcal{C}}$ Learning

Scalability:

- Dimensionality of the input for controllers.
- · Control synthesis for POMDPs.
- Run-time performance vs. guarantees:
 - · Real-time performance in self driving.
 - Assumptions about open world in control synthesis.

Verification $\boldsymbol{\mathcal{C}}$ Learning

Scalability:

- Dimensionality of the input for controllers.
- · Control synthesis for POMDPs.
- Run-time performance vs. guarantees:
 - · Real-time performance in self driving.
 - Assumptions about open world in control synthesis.
- How to make model checkers generate good-for-learning counterexamples?
 - Y How to use statistical model checking for learned controllers?

