Indistinguishability Obfuscation from Well-Founded Assumptions

Tutorial, Part 1

Aayush Jain UCLA

Huijia (Rachel) Lin
UW

Amit Sahai
UCLA

Today

 We will establish that iO exists, assuming sub-exponential hardness holds for all of the following assumptions:

- LPN over \mathbb{Z}_p
- LWE
- PRG in NC⁰
- SXDH

Constructing iO: Today

Random Linear Codes over \mathbb{Z}_p [Hamming, 1950]

$$\{a_i\}_{i\in[n]}, s\leftarrow \mathbb{Z}_p^{\ell}$$

$$n = \text{poly}(\ell)$$

Random Linear Codes over \mathbb{Z}_p

$$\{e_i\}_{i\in[n]}: \begin{cases} e_i \leftarrow \mathbb{Z}_p & \text{with prob. } 1/\ell^{\delta} \\ e_i = 0 & \text{otherwise} \end{cases}$$

$$A + e$$

$$\{a_i\}_{i\in[n]}, s\leftarrow \mathbb{Z}_p^{\ell}$$

$$n = \text{poly}(\ell)$$

- Random Linear Codes exhibit strong combinatorial error-correction capabilities vs. sparse error [Gilbert 1952, Varshamov 1957, ...]
- However, no efficient (sub-exponential in ℓ) decoding algorithms known despite decades of study

LPN over \mathbb{Z}_p Assumption:

$$A + e \approx_{C} u$$

$$\{e_i\}_{i\in[n]}: \begin{cases} e_i \leftarrow \mathbb{Z}_p & \text{with prob. } 1/\ell^{\delta} \\ e_i = 0 & \text{otherwise} \end{cases}$$

$$\{a_i\}_{i\in[n]}, s\leftarrow \mathbb{Z}_p^{\ell}$$

 $\{u_i\}_{i\in[n]}\leftarrow \mathbb{Z}_p$

$$n = \text{poly}(\ell)$$

- We assume there exist (arbitrary) constants ε , $\delta > 0$, such that this holds for all Time $2^{\ell^{\varepsilon}}$ adversaries.
- Follows from hardness of decoding recovering s from (A, As + e) via search-to-decision reduction [AIK 07].
- Best known attack is $2^{O(\ell^{1-\delta})}$ [EKM 17,BCGI 18]

More details: We set $p = 2^{\ell^{\varepsilon'}}$ for tiny constant $\varepsilon' < \varepsilon$

This allows for search-to-decision reduction, which runs in time polynomial in p.

If we want $\varepsilon' > \varepsilon$, (i.e. p larger than running time of LPN adversary) then that's fine, but make decisional assumption directly.

- We assume there exist (arbitrary) constants ε , $\delta > 0$, such that this holds for all Time $2^{\ell^{\varepsilon}}$ adversaries.
- Follows from hardness of decoding recovering s from (A, As + e) via search-to-decision reduction [AIK 07].
- Best known attack is $2^{O(\ell^{1-\delta})}$ [EKM 17,BCGI 18]

Slide from: **Geoffroy Couteau**

Security of LPN over Large Fields

A tremendous number of attacks on LPN has been published in the literature

Statistical Decoding Attacks

- Jabri's attack [ICCC:Jab01]
- Overbeck's variant [ACISP:Ove06]
- FKI's variant [Trans.IT:FKI06]
- Debris-Tillich variant [ISIT:DT17]

Information Set Decoding Attacks

- Prange's algorithm [Prange62]
- Stern's variant [ICIT:Stern88]
- Finiasz and Sendrier's variant [AC:FS09]
- BJMM variant [EC:BJMM12]
- May-Ozerov variant [EC:MO15]
- Both-May variant [PQC:BM18]
- MMT variant [AC:MMT11]
- Well-pooled MMT [CRYPTO:EKM17]
- BLP variant [CRYPTO:BLP11]

Classical Techniques

Low-deg approx [ITCS:ABGKR17]

Gaussian Elimination attacks

- Standard gaussian elimination
- Blum-Kalai-Wasserman [J.ACM:BKW03]
- Sample-efficient BKW [A-R:Lyu05]
- Pooled Gauss [CRYPTO:EKM17]
- Well-pooled Gauss [CRYPTO:EKM17]
- Leviel-Fouque [SCN:LF06]
- Covering codes [JC:GJL19]
- Covering codes+ [BTV15]
- Covering codes++ [BV:AC16]
- Covering codes+++ [EC:ZJW16]

Other Attacks

- Generalized birthday [CRYPTO:Wag02]
- Improved GBA [Kirchner11]
- Linearization [EC:BM97]
- Linearization 2 [INDO:Saa07]
- Low-weight parity-check [Zichron17]

LPN over \mathbb{Z}_p Assumption:

$$\{e_i\}_{i\in[n]}: \begin{cases} e_i \leftarrow \mathbb{Z}_p & \text{with prob. } 1/\ell^{\delta} \\ e_i = 0 & \text{otherwise} \end{cases}$$

- We assume there exist (arbitrary) constants ε , $\delta > 0$, such that this holds for all Time $2^{\ell^{\varepsilon}}$ adversaries.
- Follows from hardness of decoding recovering s from (A, As + e) via search-to-decision reduction [AIK 07].
- Best known attack is $2^{O(\ell^{1-\delta})}$ [EKM 17,BCGI 18]

LPN over \mathbb{Z}_p **Assumption:** $\int e_i \leftarrow \mathbb{Z}_p$ with prob. $1/\ell^{\delta}$

LPN with $\delta>0$ is not known to imply PKE. (Need $\delta>1/2$ to imply PKE [Ale 03, AAB15].)

As far as we know, this is a "minicrypt" assumption, unlike LWE.

$$\{a_i, \langle a_i, s \rangle + e_i\}_{i=1,...,n} \approx_C \{a_i, u_i\}_{i=1,...,n}$$

- We assume there exist (arbitrary) constants ε , $\delta > 0$, such that this holds for all Time $2^{\ell^{\varepsilon}}$ adversaries.
- Follows from hardness of decoding recovering s from (A, As + e) via search-to-decision reduction [AIK 07].
- Best known attack is $2^{O(\ell^{1-\delta})}$ [EKM 17,BCGI 18]

Constructing iO: Today

- Using LPN over \mathbb{Z}_p to build a **key pseudorandom object** is at the heart of our new work: a "structured-seed PRG" (**sPRG**).
- **sPRG** has both a "public seed" and "secret seed", following our previous work from [AJS18, LM18, AJLMS19, JLMS19, JLS19, GJLS20].
- sPRG has three main requirements:
 - (1) "Degree-2 efficiency": very roughly speaking, the output is a degree-2 polynomial in the secret seed
 - (2) Expansion: The length of the structured seed is $m^{1-\epsilon}$, where the **sPRG** outputs m bits.
 - (3) Pseudorandomness
- Talk Part 2 (Rachel) will tell us why sPRG is enough to build iO
- Talk Part 3 (Aayush) will tell us how to achieve (1) and (2)

- sPRG output has two parts, that are (unfortunately) correlated:
 - First, a part that looks like distribution from LPN over \mathbb{Z}_p :

$$\{a_i, \langle a_i, s \rangle + e_i + x_i\}_{i=1,\dots,n},$$

where each $x_i \leftarrow \{0,1\}$

Second, a correlated output:

$$PRG(x_1, ..., x_n)$$

- We want to show these are (jointly) pseudorandom, despite this correlation: x_i used in both outputs.
- Simple insight (of [JLS20] over [AJS18,LM18,...]): We separate the "error" into two components: $e_i + x_i$
- In earlier works, there was no LPN error e_i . The entire error in the first component was x_i .

• LPN over \mathbb{Z}_p allows a simple pseudo-randomness analysis:

$$\{a_i,\langle a_i,s\rangle+e_i+x_i\}_{i=1,\dots,n}$$
, $PRG(x_1,\dots,x_n)$

• By LPN over \mathbb{Z}_p , this is indistinguishable from:

$$\{a_i, u_i + x_i\}_{i=1,...,n}$$
, $PRG(x_1, ..., x_n)$
 $\approx_S \{a_i, u_i\}_{i=1,...,n}$, $PRG(x_1, ..., x_n)$

• Finally, by the pseudo-randomness of PRG, this is indistinguishable from:

$$\{a_i, u_i\}_{i=1,...,n}$$
, R

• In this simple way, LPN over \mathbb{Z}_p is used to "break up" a dependency – we can prove pseudo-randomness even though x_1, \dots, x_n is used both as input to PRG, and as "noise"

Other Well-Founded Assumptions

- We assume LWE (which is just like LPN, but with small Gaussian error e_i instead of sparse error) with sub-exponential modulusto-noise ratio.
 - Known to be true if the Shortest Vector Problem over general lattices is worst-case hard to approximate to any sub-exponential factor [Reg 05, Pei 09, BLPRS 12].
 - Search-to-decision reduction also for LWE [MM 11].
 - LWE has turned out to be a remarkably versatile assumption in cryptography, most famously used for constructing Fully Homomorphic Encryption [BV 11, BGV 11, GSW 13]

• LPN over \mathbb{Z}_p allows a simple pseudo-randomness analysis:

$$\{a_i,\langle a_i,s\rangle+e_i+x_i\}_{i=1,\ldots,n}$$
, $PRG(x_1,\ldots,x_n)$

• By LPN over \mathbb{Z}_p , this is indistinguishable from:

$$\{a_i, u_i + x_i\}_{i=1,...,n}$$
, $PRG(x_1, ..., x_n)$
 $\approx_S \{a_i, u_i\}_{i=1,...,n}$, $PRG(x_1, ..., x_n)$

Note: the analysis so far could have worked just as well using LWE, where the errors e_i are small.

The fact that LPN errors are *sparse* is crucial for suitably *computing* the sPRG.

(Stay tuned for details in Part 3!)

Other Well-Founded Assumptions

- We assume LWE (which is just like LPN, but with small Gaussian error e_i instead of sparse error) with sub-exponential modulusto-noise ratio.
 - Known to be hard if SVP is worst-case hard to approximate to any sub-exponential factor [Reg 05, Pei 09, BLPRS 12].
- We assume the existence of PRGs computable by constantdepth (NC⁰) circuits, with stretch $n^{1+\epsilon}$, for any constant $\epsilon > 0$.
 - Extensively studied [Gol 00, CM 01, MST 03, IKOS 08, ...].
 - Follows from one-way-ness conjectures [App13, AK19].
- We assume the SXDH assumption over bilinear maps.
 - Extensively studied and used since [BdGMM 05].
- All assumptions made vs. sub-exponential time adversaries.

Parts 2 and 3

Image credit: Rachel Lin