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What is a colouring?
Colouring of G: Colour vertices so that neighbours get different colours

Chromatic number χ(G): Minimum number of colours where this is possible

Gn,p: n vertices, include each edge independently with probability p

What is the chromatic number of Gn,p?
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What can we say about χ(Gn,p)?

Value? Concentration?

Upper and lower bounds? How much does χ(Gn,p) vary?

p = 1
2

Bollobás 1987: χ(Gn, 1
2
) ∼ n

2 log2 n whp.

Improvements: McDiarmid ’90, Panagiotou & Steger ’09, Fountoulakis, Kang & McDiarmid ’10.

H. 2016:

χ
(

Gn, 1
2

)
= n

2 log2 n − 2 log2 log2 n − 2 + o
(

n
log2 n

)
whp.

Explicit interval of length o
(

n
log2 n

)
which contains χ(Gn, 1

2
) whp.
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How about concentration?
Shamir, Spencer 1987: For any function p = p(n), χ(Gn,p) is whp contained
in a sequence of intervals of length about

√
n.

Standard tool: Azuma-Hoeffding inequality + vertex exposure martingale.

p = 1− 1
10n : not concentrated on fewer than Θ(

√
n) values

p 6
1
2 : slight improvement to

√
n

log n (Alon)

Sparse random graphs:

p < n− 1
2−ε: Two point concentration

(Alon, Krivelevich 97,  Luczak 91)
p = C

n : 2 explicit values. (Achlioptas, Naor 04)
p < n−3/4−ε: 3 explicit values. (Coja-Oghlan, Panagiotou, Steger 08)
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χ(Gn,p) for different p = p(n)

Value

1
c
n

Concentration
= minimum length of a series of intervals containing χ(Gn,p )

approximate

6
√

n

2 values

n− 1
2n− 3

4

6 3 values

√
n

1
2

???
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The opposite question

Bollobás, Erdős, late 80s: Any non-concentration results?

Erdős 1992, appendix to The Probabilistic Method:
Can we show that χ(Gn, 1

2
) is not concentrated on a constant number of values?

Upper bound:
√

n
log n (Alon)

Bollobás 2004:
Any non-trivial examples of non-concentration?
“even the weakest results claiming lack of concentration would be of interest”

Theorem (H. 2019; H., Riordan 2020+):
χ(Gn, 1

2
) is not contained whp in any sequence of intervals of length n 1

2−ε for any
fixed ε > 0.
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Independent sets

Independence number α(G): Size of the largest independent vertex set (= set
without edges).

α(Gn, 1
2
) = bα0 + o(1)c whp,

where α0 = 2 log2 n − 2 log2 log2 n + 2 log2 (e/2) + 1

Xα = # independent α-sets

Xα ∼
roughly

Poiµ

7 / 19



8/19

Xα is not very sharply concentrated

Xα = # independent α-sets

Xα ∼
roughly

Poiµ

µ = nρ, 0 6 ρ(n) 6 1.
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What does this have to do with colourings?

Every colour class is an independent set, so if there are n vertices,

χ(G) > n
α(G)

We know:

χ(Gn, 1
2
) ≈ n

α0 − 3.89

Intuition: An optimal colouring of Gn, 1
2

contains all or almost all independent
α-sets as colour classes.

χ(Gn, 1
2
) should vary at least as much as Xα.
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Conjecture: χ(Gn, 1
2
) is not concentrated on fewer than nρ/2/ log n values.

Theorem(H., Riordan 20+)
Let [sn, tn] be a sequence of intervals and suppose that χ(Gn, 1

2
) ∈ [sn, tn] whp.

Then for every n with ρ(n) < 0.99, there is some n∗ ∼ n such that

tn∗ − sn∗ >
(n∗)ρ(n∗)/2

1000 log n∗ .
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First proof attempt

Compare chromatic numbers of
Gn, 1

2
with Xα = A ≈ µ

Gn, 1
2

with Xα = A + r where r = √µ = nρ/2.

Hope: If Xα goes up, χ(Gn, 1
2
) goes down.

r extra α-sets

Problem: Optimal colouring might not use these α-sets.
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Second proof attempt
Trick: Compare Gn, 1

2
for different n.

G ′: n′ = n + rα vertices
G : n vertices

plant r random α-sets

normal Gn, 1
2

Inner random graph: G ∼ Gn, 1
2

Want to show: G ′ similar to Gn′, 1
2

12 / 19



13/19

Key Lemma

Planted model Gpl
n, 1

2
: Plant an independent α-set uniformly at random, and

include all other edges independently with probability 1
2 .

dTV: Total variation distance

Key Lemma

dTV

(
Gn, 1

2
,Gpl

n, 1
2

)
= O

(
1
√
µ

)
,

where µ = E[Xα].

This means: Gn, 1
2

and Gpl
n, 1

2
can be coupled so that they agree with probability

1− O
(

1
√
µ

)
.

13 / 19



14/19

Key Lemma

dTV

(
Gn, 1

2
,Gpl

n, 1
2

)
= O

(
1
√
µ

)
,

where µ = E[Xα].

Proof:

dTV

(
Gn, 1

2
,Gpl

n, 1
2

)
= 1

2
∑

G

∣∣∣P(Gpl
n, 1

2
= G

)
−P

(
Gn, 1

2
= G

)∣∣∣
= 1

2
∑

G

∣∣∣∣∣Xα(G)(n
α

) (
1
2

)(n
2)−(α2 )

−
(

1
2

)(n
2)
∣∣∣∣∣

= 1
2
∑

G

(
1
2

)(n
2)
∣∣∣∣Xα(G)−

(n
α

) ( 1
2
)(α2 )

∣∣∣∣(n
α

) ( 1
2
)(α2 )

= E

[
|Xα − µ|

µ

]
= O

(
1
√
µ

)
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G ′: n′ vertices
G : n vertices

plant r random α-sets

normal Gn, 1
2

Let r = o (√µ) and n′ = n + rα.

dTV

(
G ′,Gn′, 1

2

)
= o(1)

So, can couple Gn, 1
2

and Gn′, 1
2

such that, whp,

χ(Gn′, 1
2
) 6 χ(Gn, 1

2
) + r
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Proof ingredients
Ingredient 1: A coupling of Gn, 1

2
and Gn′, 1

2
, n′ = n + αr , such that whp

χ(Gn′, 1
2
) 6 χ(Gn, 1

2
) + r

Suppose that χ(Gn, 1
2
) ∈ [sn, tn] whp.

Ingredient 2: A (weak) concentration result

χ(Gn, 1
2
) = f (n)± δ(n)

with
df
dn >

1
α

+ ∆

Use known bounds: χ(Gn, 1
2
) = n

2 log2 n − 2 log2 log2 n − 2 + o
(

n
log2 n

)
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If intervals short: Contradiction!

So there is at least one long interval.
(length ≈ r/ log n)

17 / 19



18/19

So what’s the truth?
No colour classes of size α and α− 1: two point concentration

H., Panagiotou 20+: The (α− 2)-bounded chromatic number of Gn, 1
2

takes one
of at most 2 consecutive values whp.

Zig-zag conjecture: (Bollobás, H., Morris, Panagiotou, Riordan, Smith)

Figure: ¡

1¿First Image

Figure: ¡

2¿Second Image
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Open questions

Does the correct concentration interval length zigzag between n1/4 and n1/2?

The proof only finds some n∗ where the chromatic number is not too
concentrated. Can we prove something for every n?

Alon’s upper bound:
√

n
log n . Our lower bound: n 1

2−o(1). Close the gap?

Preview: Might push lower bound to
√

n
log5 n

.

Other ranges of p?

p < n− 1
2−ε: two-point concentration. How “far down” does

non-concentration go?

Thank you!
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