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What is a colouring?

Colouring of G: Colour vertices so that neighbours get different colours

Chromatic number x(G):  Minimum number of colours where this is possible

Gy p: n vertices, include each edge independently with probability p

What is the chromatic number of G, ,?



What can we say about x(G,p)?

\

Value? Concentration?
Upper and lower bounds? How much does x(G, ) vary?
1
P=3
Bollobas 1987: X(611) ~ Sio Whe

Improvements: McDiarmid '90, Panagiotou & Steger '09, Fountoulakis, Kang & McDiarmid '10.
H. 2016:

X(Gnl): ! +o0 % whp.
2 2log, n — 2log, logy, n — 2 log” n

Explicit interval of length o (I%) which contains x(G, %) whp.
og - n ’




How about concentration?

Shamir, Spencer 1987: For any function p = p(n), x(G, ) is whp contained
in a sequence of intervals of length about \/n. J

Standard tool: Azuma-Hoeffding inequality + vertex exposure martingale.

1
p=1-— ——: not concentrated on fewer than ©(y/n) values

10n
NG

1
p < =: slight improvement to (Alon)
2 log n

Sparse random graphs:

1

p < n~—2~%: Two point concentration
(Alon, Krivelevich 97, tuczak 91)

p=
p<n3*

: 2 explicit values. (Achlioptas, Naor 04)

o‘xsm

. 3 explicit values. (Coja-Oghlan, Panagiotou, Steger 08)



X(Ghp,p) for different p = p(n)
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= minimum length of a series of intervals containing X(Gn,p)



The opposite question

Bollobas, Erdds, late 80s: Any non-concentration results?

Erdés 1992, appendix to The Probabilistic Method:
Can we show that x(Gm%) is not concentrated on a constant number of values? J
Vvn

Upper bound: —— (Alon)
log n

Bollobas 2004:
Any non-trivial examples of non-concentration?
“even the weakest results claiming lack of concentration would be of interest”

Theorem (H. 2019; H., Riordan 2020+):

X(Gn7%) is not contained whp in any sequence of intervals of length n: < for any
fixed € > 0.




Independent sets

Independence number o(G): Size of the largest independent vertex set (= set
without edges).
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no edses
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s X vertices

(G, 1) = lao + o(1)] whp,
where ap = 2log, n — 2log, log, n + 2log, (e/2) + 1

©
X, = # independent a-sets G".‘%

Xo ~  Poi,
roughly




X, is not very sharply concentrated
Xo = # independent a-sets

« ~ Poi,
roughly

p=n" 0<p(n) <1
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What does this have to do with colourings?

Every colour class is an independent set, so if there are n vertices,

n

We know:

~ oo — 3.89

Intuition: An optimal colouring of G, 1 contains all or almost all independent
a-sets as colour classes.

X(G,,)%) should vary at least as much as X,.
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Conjecture: x(G, 1) is not concentrated on fewer than n”/? /log n values.

Theorem(H., Riordan 20+)

Let [sn, tn] be a sequence of intervals and suppose that x(G, 1) € [sn, ta] whp.
Then for every n with p(n) < 0.99, there is some n* ~ n such that

( )P(" )/2

1000 log n*

tn — Sp* n* /




First proof attempt

Compare chromatic numbers of
® G,1 with X, =A=p

o G,1 with X, = A+ r where r = /uu = n”/2.

N]

22

Hope: If X, goes up, x(G, 1) goes down.

r extra a-sets

Problem: Optimal colouring might not use these a-sets.



Second proof attempt

Trick: Compare G, ! for different n.

G': n' = n+ ra vertices

G: n vertices

b °
[ ]
[ J
* normal G, 1
2
[ J
° o

pIant r random a- sets

@ Inner random graph: G ~ G,

1
2
o Want to show: G’ similar to G, 1



Key Lemma

Planted model Gi’ll: Plant an independent a-set uniformly at random, and
12

1
include all other edges independently with probability 5

drv: Total variation distance

Key Lemma

1
pl \ _ il
drv (Gop. %) = 0 <ﬂ> ,
where p = E[X,].

This means: Gn,% and G;’ll can be coupled so that they agree with probability
]

-o(k)



Key Lemma

where p = E[X,].

Proof:

drv (6,1, 62, ) = %Z P (6, =6)-P (6, =6)|

X(E;,)G) G)(S)—(é’) B (;)(3)
( 3




G': n' vertices

G: n vertices

o °
[}
[
° normal G, 1
2
[
[
. .

plant r random Q- sets
Let r = o(y/i) and n' = n+ ra.

drv (G/, G,,,,%> = o(1)

So, can couple Gn’% and Gn,’% such that, whp,

X(Gn’,%) < X(Gn ) +r

1
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Proof ingredients
Ingredient 1: A coupling of G,

1
2

Suppose that x(G, 1) € [sy, t,] whp.

Sw En Sw
—
L0

Ingredient 2: A (weak) concentration result

xX(Gp, 1) = f(n) £4(n)

2

with

and Gn,v%, n’ = n+ ar, such that whp

Use known bounds: x(G,,

)
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If intervals short: Contradiction!

So there is at least one long interval.
(length = r/log n)



So what's the truth?

No colour classes of size & and o — 1: two point concentration

H., Panagiotou 20+: The (o — 2)-bounded chromatic number of G,

1 takes one
of at most 2 consecutive values whp.

Zig-zag conjecture: (Bollobas, H., Morris, Panagiotou, Riordan, Smith)
\owtr bOUN\A\ Lowes oound QfOM
Q‘NW\ N"S&\ (D(-A3- seky
A
14 . Truth \Z
e N\

%

~ >
A \\\Mﬂf\?% Yo V\wl/":vd'eQ% L‘ﬂ n



Open questions

@ Does the correct concentration interval length zigzag between n'/* and n'/??

@ The proof only finds some n™ where the chromatic number is not too
concentrated. Can we prove something for every n?

—o(1

@ Alon’s upper bound: ﬁ Our lower bound: n? ). Close the gap?

log n
Vn
log® n

Preview: Might push lower bound to

@ Other ranges of p?
1
p < n~27%: two-point concentration. How “far down” does

non-concentration go?

Thank you!
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