Moments of the distance between independent random vectors (based on a joint work with Assaf Naor)

Krzysztof Oleszkiewicz

University of Warsaw

Concentration of measure phenomena Simons Institute, Berkeley (on-line)
 October 22, 2020

A. Naor and K. Oleszkiewicz, Moments of the distance between independent random vectors, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 2017-2019, Volume II, editors: Bo'az Klartag and Emanuel Milman, Lect. Notes in Math. 2266, Springer Nature Switzerland AG 2020, pages 229-256.

Starting point

Let F be a separable Banach space and let X and Y be independent F-valued random vectors.

If $\mathbb{E}\|X\|_{F}, \mathbb{E}\|Y\|_{F}<\infty$, then the pointwise triangle inequality

$$
\|X-Y\|_{F} \leq\|X-z\|_{F}+\|Y-z\|_{F}
$$

true for every $z \in F$, implies

To what extent can this type of bound be reversed?
Independence of X and Y excludes $X \equiv Y$ (unless constant a.s.).

Starting point

Let F be a separable Banach space and let X and Y be independent F-valued random vectors.

If $\mathbb{E}\|X\|_{F}, \mathbb{E}\|Y\|_{F}<\infty$, then the pointwise triangle inequality

$$
\|X-Y\|_{F} \leq\|X-z\|_{F}+\|Y-z\|_{F}
$$

true for every $z \in F$, implies

$$
\mathbb{E}\|X-Y\|_{F} \leq \inf _{z \in F} \mathbb{E}\left(\|X-z\|_{F}+\|Y-z\|_{F}\right)
$$

To what extent can this type of bound be reversed?
Independence of X and Y excludes $X \equiv Y$ (unless constant a.s.).

Starting point

Let F be a separable Banach space and let X and Y be independent F-valued random vectors.

If $\mathbb{E}\|X\|_{F}, \mathbb{E}\|Y\|_{F}<\infty$, then the pointwise triangle inequality

$$
\|X-Y\|_{F} \leq\|X-z\|_{F}+\|Y-z\|_{F}
$$

true for every $z \in F$, implies

$$
\mathbb{E}\|X-Y\|_{F} \leq \inf _{z \in F} \mathbb{E}\left(\|X-z\|_{F}+\|Y-z\|_{F}\right)
$$

To what extent can this type of bound be reversed?
Independence of X and Y excludes $X \equiv Y$ (unless constant a.s.).

Starting point

Let F be a separable Banach space and let X and Y be independent F-valued random vectors.

If $\mathbb{E}\|X\|_{F}, \mathbb{E}\|Y\|_{F}<\infty$, then the pointwise triangle inequality

$$
\|X-Y\|_{F} \leq\|X-z\|_{F}+\|Y-z\|_{F}
$$

true for every $z \in F$, implies

$$
\mathbb{E}\|X-Y\|_{F} \leq \inf _{z \in F} \mathbb{E}\left(\|X-z\|_{F}+\|Y-z\|_{F}\right)
$$

To what extent can this type of bound be reversed?
Independence of X and Y excludes $X \equiv Y$ (unless constant a.s.).

Concentration

Let Z be an F-valued random vector with distribution defined by

$$
\mathcal{L}(Z)=\frac{1}{2} \mathcal{L}(X)+\frac{1}{2} \mathcal{L}(Y)
$$

so that

$$
\mathbb{P}(Z \in A)=(\mathbb{P}(X \in A)+\mathbb{P}(Y \in A)) / 2
$$

for every Borel subet A of F.
Then $\mathbb{E}\|X-z\|_{F}+\mathbb{E}\|Y-z\|_{F}=2 \mathbb{E}\|Z-z\|_{F}$, i.e.,
the expression

is a measure of concentration of the mixture Z of X and Y.

Concentration

Let Z be an F-valued random vector with distribution defined by

$$
\mathcal{L}(Z)=\frac{1}{2} \mathcal{L}(X)+\frac{1}{2} \mathcal{L}(Y)
$$

so that

$$
\mathbb{P}(Z \in A)=(\mathbb{P}(X \in A)+\mathbb{P}(Y \in A)) / 2
$$

for every Borel subet A of F.
Then $\mathbb{E}\|X-z\|_{F}+\mathbb{E}\|Y-z\|_{F}=2 \mathbb{E}\|Z-z\|_{F}$, i.e., the expression

$$
\inf _{z \in F}\left(\mathbb{E}\|X-z\|_{F}+\mathbb{E}\|Y-z\|_{F}\right)=2 \inf _{z \in F} \mathbb{E}\|Z-z\|_{F}
$$

is a measure of concentration of the mixture Z of X and Y.

B for barycenter
Given a separable Banach space $\left(F,\|\cdot\|_{F}\right)$, we define a number of geometric moduli.

To start with, given $p>0$ (usually $p \geq 1$), let $b_{p}(F)=b_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $b>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments (i.e., $\mathbb{E}\|X\|_{F}^{p}, \mathbb{E}\|Y\|_{F}^{p}<\infty$) satisfies

The use of letter "b" in this notation comes from
Riemannian /Alexandrov geometry - it refers to the geometric barycenter in the context of Hadamard spaces (complete simply connected spaces whose Alexandrov curvature is nonpositive)

Given a separable Banach space $\left(F,\|\cdot\|_{F}\right)$, we define a number of geometric moduli.

To start with, given $p>0$ (usually $p \geq 1$), let $b_{p}(F)=b_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $b>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments (i.e., $\mathbb{E}\|X\|_{F}^{p}, \mathbb{E}\|Y\|_{F}^{p}<\infty$) satisfies

$$
\inf _{z \in F} \mathbb{E}\left(\|X-z\|_{F}^{p}+\|Y-z\|_{F}^{p}\right) \leq b \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

The use of letter "b" in this notation comes from
Riemannian/Alexandrov geometry - it refers to the geometric barycenter in the context of Hadamard spaces (complete simply connected spaces whose Alexandrov curvature is nonpositive)

Given a separable Banach space $\left(F,\|\cdot\|_{F}\right)$, we define a number of geometric moduli.

To start with, given $p>0$ (usually $p \geq 1$), let $b_{p}(F)=b_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $b>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments (i.e., $\mathbb{E}\|X\|_{F}^{p}, \mathbb{E}\|Y\|_{F}^{p}<\infty$) satisfies

$$
\inf _{z \in F} \mathbb{E}\left(\|X-z\|_{F}^{p}+\|Y-z\|_{F}^{p}\right) \leq b \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

The use of letter " b " in this notation comes from Riemannian/Alexandrov geometry - it refers to the geometric barycenter in the context of Hadamard spaces (complete simply connected spaces whose Alexandrov curvature is nonpositive).

Given a separable Banach space $\left(F,\|\cdot\|_{F}\right)$, we define a number of geometric moduli.

To start with, given $p>0$ (usually $p \geq 1$), let $b_{p}(F)=b_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $b>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments (i.e., $\mathbb{E}\|X\|_{F}^{p}, \mathbb{E}\|Y\|_{F}^{p}<\infty$) satisfies

$$
\inf _{z \in F} \mathbb{E}\left(\|X-z\|_{F}^{p}+\|Y-z\|_{F}^{p}\right) \leq b \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

The use of letter " b " in this notation comes from Riemannian/Alexandrov geometry - it refers to the geometric barycenter in the context of Hadamard spaces (complete simply connected spaces whose Alexandrov curvature is nonpositive).

For every F and $p \geq 1$, there is $b_{p} \leq 2(3 / 2)^{p}$.
The bound cannot be improved in general.

Given $p \geq 1$, let $m_{p}(F)=m_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $m>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments satisfies
$\mathbb{E}\left(\left\|X-\frac{\mathbb{E} X+\mathbb{E} Y}{2}\right\|_{F}^{p}+\left\|Y-\frac{\mathbb{E} X+\mathbb{E} Y}{2}\right\|_{F}^{p}\right) \leq m \cdot \mathbb{E}\|X-Y\|_{F}^{p}$,
or, equivalently,

$$
2 \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq m \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

Obviously, $b_{p}(F) \leq m_{p}(F)$ for every F and $p \geq 1$. To see it, choose $z=\mathbb{E} Z=(\mathbb{E} X+\mathbb{E} Y) / 2$.

Given $p \geq 1$, let $m_{p}(F)=m_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $m>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments satisfies

$$
\mathbb{E}\left(\left\|X-\frac{\mathbb{E} X+\mathbb{E} Y}{2}\right\|_{F}^{p}+\left\|Y-\frac{\mathbb{E} X+\mathbb{E} Y}{2}\right\|_{F}^{p}\right) \leq m \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

or, equivalently,

$$
2 \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq m \cdot \mathbb{E}\|X-Y\|_{F}^{p} .
$$

Obviously, $b_{p}(F) \leq m_{p}(F)$ for every F and $p \geq 1$. To see it, choose $z=\mathbb{E} Z=(\mathbb{E} X+\mathbb{E} Y) / 2$.

Given $p \geq 1$, let $m_{p}(F)=m_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $m>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments satisfies

$$
\mathbb{E}\left(\left\|X-\frac{\mathbb{E} X+\mathbb{E} Y}{2}\right\|_{F}^{p}+\left\|Y-\frac{\mathbb{E} X+\mathbb{E} Y}{2}\right\|_{F}^{p}\right) \leq m \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

or, equivalently,

$$
2 \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq m \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

Obviously, $b_{p}(F) \leq m_{p}(F)$ for every F and $p \geq 1$.
To see it, choose $z=\mathbb{E} Z=(\mathbb{E} X+\mathbb{E} Y) / 2$.

Given $p>0$ (usually $p \geq 1$), let $r_{p}(F)=r_{p}\left(F,\|\cdot\|_{F}\right)$ be the infimum over those $r>0$ for which every pair of independent F-valued random vectors X, Y with finite p-th moments satisfies

$$
\mathbb{E}\left(\left\|X-X^{\prime}\right\|_{F}^{p}+\left\|Y-Y^{\prime}\right\|_{F}^{p}\right) \leq r \cdot \mathbb{E}\|X-Y\|_{F}^{p}
$$

where X^{\prime} and Y^{\prime} are independent copies of X and Y, respectively.

J for Jensen

Given $p \geq 1$, let $j_{p}(F)=j_{p}\left(F,\|\cdot\|_{F}\right)$ be the supremum over those $j>0$ for which every pair of independent and identically distributed F-valued random vectors Z, Z^{\prime} with finite p-th moments satisfies

$$
j \cdot \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq \mathbb{E}\left\|Z-Z^{\prime}\right\|_{F}^{p}
$$

Obviously, by Jensen's inequality, always $j_{p}(F) \geq 1$
For every $p \geq 1$ and every F, we have $m_{p}(F) \leq \frac{2+r_{p}(F)}{2 j_{p}(F)}$ $j_{p} \cdot\left(\mathbb{E}\|X-\mathbb{E} Z\|_{F}^{P}+\mathbb{E}\|Y-\mathbb{E} Z\|_{F}^{P}\right)=2 j_{p} \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{P} \leq 2 \mathbb{E}\left\|Z-Z^{\prime}\right\|_{F}^{p}$

Given $p \geq 1$, let $j_{p}(F)=j_{p}\left(F,\|\cdot\|_{F}\right)$ be the supremum over those $j>0$ for which every pair of independent and identically distributed F-valued random vectors Z, Z^{\prime} with finite p-th moments satisfies

$$
j \cdot \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq \mathbb{E}\left\|Z-Z^{\prime}\right\|_{F}^{p}
$$

Obviously, by Jensen's inequality, always $j_{p}(F) \geq 1$.
For every $p \geq 1$ and every F, we have $m_{p}(F) \leq \frac{2+r_{p}(F)}{2 j_{p}(F)}$ $j_{p} \cdot\left(\mathbb{E}\|X-\mathbb{E} Z\|_{F}^{P}+\mathbb{E}\|Y-\mathbb{E} Z\|_{F}^{P}\right)=2 j_{p} \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{P} \leq 2 \mathbb{E}\left\|Z-Z^{\prime}\right\|_{F}^{p}$

Given $p \geq 1$, let $j_{p}(F)=j_{p}\left(F,\|\cdot\|_{F}\right)$ be the supremum over those $j>0$ for which every pair of independent and identically distributed F-valued random vectors Z, Z^{\prime} with finite p-th moments satisfies

$$
j \cdot \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq \mathbb{E}\left\|Z-Z^{\prime}\right\|_{F}^{p}
$$

Obviously, by Jensen's inequality, always $j_{p}(F) \geq 1$.
For every $p \geq 1$ and every F, we have $m_{p}(F) \leq \frac{2+r_{p}(F)}{2 j_{p}(F)}$:
$j_{p} \cdot\left(\mathbb{E}\|X-\mathbb{E} Z\|_{F}^{p}+\mathbb{E}\|Y-\mathbb{E} Z\|_{F}^{p}\right)=2 j_{p} \mathbb{E}\|Z-\mathbb{E} Z\|_{F}^{p} \leq 2 \mathbb{E}\left\|Z-Z^{\prime}\right\|_{F}^{p}$
$=\mathbb{E}\|X-Y\|_{F}^{p}+\frac{\mathbb{E}\left\|X-X^{\prime}\right\|_{F}^{p}+\mathbb{E}\left\|Y-Y^{\prime}\right\|_{F}^{p}}{2} \leq\left(1+\frac{r_{p}}{2}\right) \mathbb{E}\|X-Y\|_{F}^{p}$.

Exact values of $j_{p}\left(L_{q}\right), b_{p}\left(L_{q}\right)$, and $r_{p}\left(L_{q}\right)$

Theorem: For every $p, q \in[1, \infty)$ we have $j_{p}\left(L_{q}\right)=2^{c(p, q)}$, where

$$
c(p, q)=\min \left(1, p-1, \frac{p}{q}, \frac{(q-1) p}{q}\right) .
$$

For every $1 \leq p \leq q \leq 2$ we have $b_{p}\left(L_{q}\right)=m_{p}\left(L_{q}\right)=2^{2-p}$.

If $\frac{p}{p-1} \leq q \leq p$, then $r_{p}\left(L_{q}\right)=2^{p-1}$ If $\frac{q}{q-1} \leq p<q$, then $r_{p}\left(L_{q}\right)=2^{\frac{(q-2) p}{q}+1}$ If $1 \leq p \leq q \leq 2$, then $r_{p}\left(L_{q}\right)=2$. Various bounds in the remaining cases

Exact values of $j_{p}\left(L_{q}\right), b_{p}\left(L_{q}\right)$, and $r_{p}\left(L_{q}\right)$

Theorem: For every $p, q \in[1, \infty)$ we have $j_{p}\left(L_{q}\right)=2^{c(p, q)}$, where

$$
c(p, q)=\min \left(1, p-1, \frac{p}{q}, \frac{(q-1) p}{q}\right)
$$

For every $1 \leq p \leq q \leq 2$ we have $b_{p}\left(L_{q}\right)=m_{p}\left(L_{q}\right)=2^{2-p}$.

If $1 \leq p \leq q \leq 2$, then $r_{p}\left(L_{q}\right)=2$.
Various bounds in the remaining cases.

Theorem: For every $p, q \in[1, \infty)$ we have $j_{p}\left(L_{q}\right)=2^{c(p, q)}$, where

$$
c(p, q)=\min \left(1, p-1, \frac{p}{q}, \frac{(q-1) p}{q}\right) .
$$

For every $1 \leq p \leq q \leq 2$ we have $b_{p}\left(L_{q}\right)=m_{p}\left(L_{q}\right)=2^{2-p}$.
Let $p, q \in(1, \infty)$.
If $\frac{p}{p-1} \leq q \leq p$, then $r_{p}\left(L_{q}\right)=2^{p-1}$.
If $\frac{q}{q-1} \leq p \leq q$, then $r_{p}\left(L_{q}\right)=2^{\frac{(q-2) p}{q}+1}$.
If $1 \leq p \leq q \leq 2$, then $r_{p}\left(L_{q}\right)=2$.
Various bounds in the remaining cases.

Theorem: For every $p, q \in[1, \infty)$ we have $j_{p}\left(L_{q}\right)=2^{c(p, q)}$, where

$$
c(p, q)=\min \left(1, p-1, \frac{p}{q}, \frac{(q-1) p}{q}\right) .
$$

For every $1 \leq p \leq q \leq 2$ we have $b_{p}\left(L_{q}\right)=m_{p}\left(L_{q}\right)=2^{2-p}$.
Let $p, q \in(1, \infty)$.
If $\frac{p}{p-1} \leq q \leq p$, then $r_{p}\left(L_{q}\right)=2^{p-1}$.
If $\frac{q}{q-1} \leq p \leq q$, then $r_{p}\left(L_{q}\right)=2^{\frac{(q-2) p}{q}+1}$.
If $1 \leq p \leq q \leq 2$, then $r_{p}\left(L_{q}\right)=2$.
Various bounds in the remaining cases.

Theorem: For every $p, q \in[1, \infty)$ we have $j_{p}\left(L_{q}\right)=2^{c(p, q)}$, where

$$
c(p, q)=\min \left(1, p-1, \frac{p}{q}, \frac{(q-1) p}{q}\right) .
$$

For every $1 \leq p \leq q \leq 2$ we have $b_{p}\left(L_{q}\right)=m_{p}\left(L_{q}\right)=2^{2-p}$.
Let $p, q \in(1, \infty)$.
If $\frac{p}{p-1} \leq q \leq p$, then $r_{p}\left(L_{q}\right)=2^{p-1}$.
If $\frac{q}{q-1} \leq p \leq q$, then $r_{p}\left(L_{q}\right)=2^{\frac{(q-2) p}{q}+1}$.
If $1 \leq p \leq q \leq 2$, then $r_{p}\left(L_{q}\right)=2$.
Various bounds in the remaining cases.

Complex interpolation

1. Express L_{q} as an interpolation space between L_{2} and L_{Q}.
2. Choose the right operator. Prove that it satisfies a simple
$L_{\infty}\left(L_{Q}\right) \rightarrow L_{\infty}\left(L_{Q}\right)$ norm bound and (via spectral methods) a more subtle $L_{2}\left(L_{2}\right) \rightarrow L_{2}\left(L_{2}\right)$ norm bound.
3. Bound the operator's $L_{p}\left(L_{q}\right) \rightarrow L_{p}\left(L_{q}\right)$ norm using complex interpolation methods.
4. Read from it a bound on the geometric modulus (here the choice of the "right operator" plays a crucial role).
5. If lucky enough, find an example indicating that the obtained bound on the geometric modulus cannot be improved (thus establishing the exact value of the modulus).
6. Try using first the interpolation trick for some other moduli and then taking advantage of some relation between moduli. Sometimes it works better than the straightforward approach described above.
7. Try to improve the obtained bounds, if they are not optimal, by using some other tricks (e.g. non-linear isometric embeddings). The same for Schatten classes (noncommutative counterpart of L_{q}).

Interpolation picture

$$
\begin{aligned}
& T: L_{Q} \xrightarrow{L_{\infty} \rightarrow L_{\infty}} L_{Q} \\
& T: L_{q} \xrightarrow{L_{p} \rightarrow L_{p}} L_{q} \\
& T: L_{2} \xrightarrow{L_{2} \rightarrow L_{2}} L_{2}
\end{aligned} \quad L_{q}=\left[L_{Q}, L_{2}\right]_{\theta}, \quad \frac{1}{q}=\frac{1-\theta}{Q}+\frac{\theta}{2}, \quad \frac{1}{p}=\frac{1-\theta}{\infty}+\frac{\theta}{2}
$$

Caveat: When playing with the interpolation parameter $\theta \in[0,1]$, avoid $Q>\infty$ and $Q<1$!

Interpolation picture

$T: L_{Q} \xrightarrow{L_{\infty} \rightarrow L_{\infty}} L_{Q}$
$T: L_{q} \xrightarrow{L_{p} \rightarrow L_{p}} L_{q} \quad L_{q}=\left[L_{Q}, L_{2}\right]_{\theta}, \quad \frac{1}{q}=\frac{1-\theta}{Q}+\frac{\theta}{2}, \quad \frac{1}{p}=\frac{1-\theta}{\infty}+\frac{\theta}{2}$
$T: L_{2} \xrightarrow{L_{2} \rightarrow L_{2}} L_{2}$
or
$T: L_{Q} \xrightarrow{L_{1} \rightarrow L_{1}} L_{Q}$
$T: L_{q} \xrightarrow{L_{p} \rightarrow L_{p}} L_{q} \quad L_{q}=\left[L_{Q}, L_{2}\right]_{\theta}, \quad \frac{1}{q}=\frac{1-\theta}{Q}+\frac{\theta}{2}, \quad \frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{2}$
$T: L_{2} \xrightarrow{L_{2} \rightarrow L_{2}} L_{2}$
Caveat: When playing with the interpolation parameter $\theta \in[0,1]$, avoid $Q>\infty$ and $Q<1$!

Interpolation picture

$T: L_{Q} \xrightarrow{L_{\infty} \rightarrow L_{\infty}} L_{Q}$
$T: L_{q} \xrightarrow{L_{p} \rightarrow L_{p}} L_{q} \quad L_{q}=\left[L_{Q}, L_{2}\right]_{\theta}, \quad \frac{1}{q}=\frac{1-\theta}{Q}+\frac{\theta}{2}, \quad \frac{1}{p}=\frac{1-\theta}{\infty}+\frac{\theta}{2}$
$T: L_{2} \xrightarrow{L_{2} \rightarrow L_{2}} L_{2}$
or
$T: L_{Q} \xrightarrow{L_{1} \rightarrow L_{1}} L_{Q}$
$T: L_{q} \xrightarrow{L_{p} \rightarrow L_{p}} L_{q} \quad L_{q}=\left[L_{Q}, L_{2}\right]_{\theta}, \quad \frac{1}{q}=\frac{1-\theta}{Q}+\frac{\theta}{2}, \quad \frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{2}$
$T: L_{2} \xrightarrow{L_{2} \rightarrow L_{2}} L_{2}$
Caveat: When playing with the interpolation parameter $\theta \in[0,1]$, avoid $Q>\infty$ and $Q<1$!

Operator used in the proof of $j_{p}\left(L_{q}\right)$ bounds

Let $Z:(\Omega, \mu) \rightarrow \mathcal{H}$, where $\mathcal{H} \simeq L_{2}$ is a separable Hilbert space. For $L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)$ let S denote the orthogonal projection to the closed linear subspace of functions of the form $f(x, y)=\Phi(x)-\Phi(y)$ for $\Phi: \Omega \rightarrow \mathcal{H}$ with $\int_{\Omega} \Phi \mathrm{d} \mu=0$.
 check that

Since $(T f)(Z)$ and $(T f)\left(Z^{\prime}\right)$ are independent,

Operator used in the proof of $j_{p}\left(L_{q}\right)$ bounds

Let $Z:(\Omega, \mu) \rightarrow \mathcal{H}$, where $\mathcal{H} \simeq L_{2}$ is a separable Hilbert space. For $L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)$ let S denote the orthogonal projection to the closed linear subspace of functions of the form $f(x, y)=\Phi(x)-\Phi(y)$ for $\Phi: \Omega \rightarrow \mathcal{H}$ with $\int_{\Omega} \Phi \mathrm{d} \mu=0$.

Thus, $(S f)(x, y)=(T f)(x)-(T f)(y)$ for some $T f$. One can easily check that

$$
(T f)(x)=\int_{\Omega} \frac{f(x, z)-f(z, x)}{2} \mathrm{~d} \mu(z)
$$

so that $T: L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu) \rightarrow L_{2}(\Omega \rightarrow \mathcal{H}, \mu)$ is linear.
Since $(T f)(Z)$ and $(T f)\left(Z^{\prime}\right)$ are independent,

$$
\|f\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)}^{2} \geq\|S f\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)}^{2}
$$

Operator used in the proof of $j_{p}\left(L_{q}\right)$ bounds

Let $Z:(\Omega, \mu) \rightarrow \mathcal{H}$, where $\mathcal{H} \simeq L_{2}$ is a separable Hilbert space. For $L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)$ let S denote the orthogonal projection to the closed linear subspace of functions of the form $f(x, y)=\Phi(x)-\Phi(y)$ for $\Phi: \Omega \rightarrow \mathcal{H}$ with $\int_{\Omega} \Phi \mathrm{d} \mu=0$.

Thus, $(S f)(x, y)=(T f)(x)-(T f)(y)$ for some $T f$. One can easily check that

$$
(T f)(x)=\int_{\Omega} \frac{f(x, z)-f(z, x)}{2} \mathrm{~d} \mu(z)
$$

so that $T: L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu) \rightarrow L_{2}(\Omega \rightarrow \mathcal{H}, \mu)$ is linear.
Since $(T f)(Z)$ and $(T f)\left(Z^{\prime}\right)$ are independent,

$$
\begin{gathered}
\|f\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)}^{2} \geq\|S f\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)}^{2} \\
=\left\|\left(T \otimes \operatorname{Id}_{\mathcal{H}}\right) f\right\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)}^{2}+\left\|\left(\operatorname{Id}_{\mathcal{H}} \otimes T\right) f\right\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu)}^{2} \\
=2\|T f\|_{L_{2}(\Omega \rightarrow \mathcal{H}, \mu)}^{2} .
\end{gathered}
$$

Operator T norm bound

We have proved that, for T given by

$$
(T f)(x)=\int_{\Omega} \frac{f(x, z)-f(z, x)}{2} \mathrm{~d} \mu(z)
$$

we have

$$
\|T\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu) \rightarrow L_{2}(\Omega \rightarrow \mathcal{H}, \mu)} \leq \sqrt{2} / 2
$$

On the other hand, by the triangle inequality for any Banach space F we have, for T defined by the same formula, $\|T\|_{L_{\infty}(\Omega \times \Omega \rightarrow F, \mu \otimes \mu) \rightarrow L_{\infty}(\Omega \rightarrow F, \mu)} \leq 1$
and

$$
\|T\|_{L_{1}(\Omega \times \Omega \rightarrow F, \mu \otimes \mu) \rightarrow L_{1}(\Omega \rightarrow F, \mu)} \leq 1 .
$$

It remains to interpolate the norm bound and apply it to $f(x, y)=Z(x)-Z(y)$, for which $T f=Z-\mathbb{E} Z$.

Operator T norm bound

We have proved that, for T given by

$$
(T f)(x)=\int_{\Omega} \frac{f(x, z)-f(z, x)}{2} \mathrm{~d} \mu(z)
$$

we have

$$
\|T\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu) \rightarrow L_{2}(\Omega \rightarrow \mathcal{H}, \mu)} \leq \sqrt{2} / 2
$$

On the other hand, by the triangle inequality for any Banach space F we have, for T defined by the same formula,

$$
\|T\|_{L_{\infty}(\Omega \times \Omega \rightarrow F, \mu \otimes \mu) \rightarrow L_{\infty}(\Omega \rightarrow F, \mu)} \leq 1
$$

and

$$
\|T\|_{L_{1}(\Omega \times \Omega \rightarrow F, \mu \otimes \mu) \rightarrow L_{1}(\Omega \rightarrow F, \mu)} \leq 1 .
$$

It remains to interpolate the norm bound and apply it to $f(x, y)=Z(x)-Z(y)$, for which $T f=Z-\mathbb{E} Z$.

Operator T norm bound

We have proved that, for T given by

$$
(T f)(x)=\int_{\Omega} \frac{f(x, z)-f(z, x)}{2} \mathrm{~d} \mu(z)
$$

we have

$$
\|T\|_{L_{2}(\Omega \times \Omega \rightarrow \mathcal{H}, \mu \otimes \mu) \rightarrow L_{2}(\Omega \rightarrow \mathcal{H}, \mu)} \leq \sqrt{2} / 2
$$

On the other hand, by the triangle inequality for any Banach space F we have, for T defined by the same formula,

$$
\|T\|_{L_{\infty}(\Omega \times \Omega \rightarrow F, \mu \otimes \mu) \rightarrow L_{\infty}(\Omega \rightarrow F, \mu)} \leq 1
$$

and

$$
\|T\|_{L_{1}(\Omega \times \Omega \rightarrow F, \mu \otimes \mu) \rightarrow L_{1}(\Omega \rightarrow F, \mu)} \leq 1
$$

It remains to interpolate the norm bound and apply it to $f(x, y)=Z(x)-Z(y)$, for which $T f=Z-\mathbb{E} Z$.

Teaser $(p=0)$

Let $\left(F,\|\cdot\|_{F}\right)$ be a Banach space with $\operatorname{dim}_{\mathbb{R}}(F) \leq 3$. Then, for every pair of independent F-valued random vectors X, Y satisfying $\mathbb{E} \ln \left(1+\|X\|_{F}\right)<\infty$ and $\mathbb{E} \ln \left(1+\|Y\|_{F}\right)<\infty$, we have

$$
\mathbb{E} \ln \left\|X-X^{\prime}\right\|_{F}+\mathbb{E} \ln \left\|Y-Y^{\prime}\right\|_{F} \leq 2 \mathbb{E} \ln \|X-Y\|_{F}
$$

and

$$
\inf _{z \in F} \mathbb{E}\left(\ln \|X-z\|_{F}+\ln \|Y-z\|_{F}\right) \leq 2 \mathbb{E} \ln \|X-Y\|_{F}
$$

where X^{\prime} and Y^{\prime} are independent copies of X and Y, respectively.

Kalton-Koldobsky-Yaskin-Yaskina:

F "isometrically" linearly embeds into L_{0}, where $\|f\|_{L_{0}}:=\exp (\mathbb{E} \ln |f|)$ for f such that $\mathbb{E} \ln (1+|f|)<\infty$

Teaser $(p=0)$

Let $\left(F,\|\cdot\|_{F}\right)$ be a Banach space with $\operatorname{dim}_{\mathbb{R}}(F) \leq 3$. Then, for every pair of independent F-valued random vectors X, Y satisfying $\mathbb{E} \ln \left(1+\|X\|_{F}\right)<\infty$ and $\mathbb{E} \ln \left(1+\|Y\|_{F}\right)<\infty$, we have

$$
\mathbb{E} \ln \left\|X-X^{\prime}\right\|_{F}+\mathbb{E} \ln \left\|Y-Y^{\prime}\right\|_{F} \leq 2 \mathbb{E} \ln \|X-Y\|_{F}
$$

and

$$
\inf _{z \in F} \mathbb{E}\left(\ln \|X-z\|_{F}+\ln \|Y-z\|_{F}\right) \leq 2 \mathbb{E} \ln \|X-Y\|_{F},
$$

where X^{\prime} and Y^{\prime} are independent copies of X and Y, respectively.

Kalton-Koldobsky-Yaskin-Yaskina:
F "isometrically" linearly embeds into L_{0}, where
$\|f\|_{L_{0}}:=\exp (\mathbb{E} \ln |f|)$ for f such that $\mathbb{E} \ln (1+|f|)<\infty$.

