Reducing Sampling to KLS

He Jia, Aditi Laddha, Yin Tat Lee, Santosh Vempala

Sampling Problem

Input: a convex set *K* with a membership oracle

Output: sample a point from the uniform distribution on K.

Martin Dyer, Alan Frieze, Ravi Kannan

	Year/Authors	New ingredients	Steps
	1989/Dyer-Frieze-Kannan [6]	Everything	n^{23}
	1990/Lovász-Simonovits [18]	Better isoperimetry	n^{16}
	1990/Lovász [17]	Ball walk	n^{10}
	1991/Applegate-Kannan [2]	Logconcave sampling	n^{10}
	1990/Dyer-Frieze [5]	Better error analysis	n^8
	1993/Lovász-Simonovits [19]	Localization lemma	n^7
1997/Kannan-Lovi;œsz-Simonovits [11]		Speedy walk, isotropy	n^5
	2003/Lovász-Vempala [20]	Annealing, hit-and-run	n^4
2015/0	Cousins-Vempala [3] (well-rounded)	Gaussian Cooling	n^3

Theorem: For any convex set, we can sample in $n^{3.5}$ (unconditional) / n^3 (under KLS conj) steps.

(Same runtime for volume.)

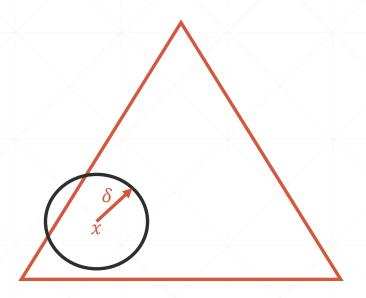
Story Time

Ball Walk

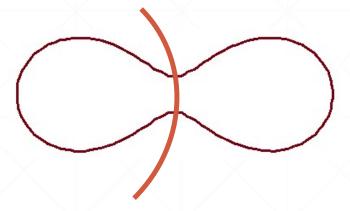
At x, pick random y from $x + \delta B_n$,

if y is in K, go to y.

otherwise, sample again



This walk may get trapped on one side if the set is not convex.



Cheeger constant

For any set K, we define the Cheeger constant ϕ_K by

$$\phi_K = \min_{S} \frac{\operatorname{Area}(\partial S)}{\min(\operatorname{vol}(S), \operatorname{vol}(S^c))}$$

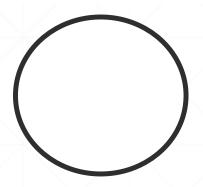
Theorem

Given a random point in K, we can generate another in $O(\frac{n}{\delta^2\phi_{\kappa}^2}\log(1/\varepsilon))$

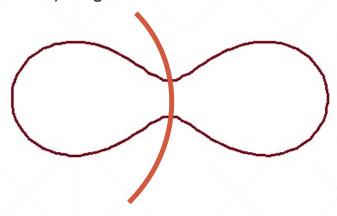
$$O(\frac{n}{\delta^2 \phi_K^2} \log(1/\varepsilon))$$

iterations of Ball Walk where δ is step size.

- ϕ_K and δ larger, mix better.
- δ cannot be too large, otherwise, fail probability is ~1.



 ϕ large, hard to cut the set

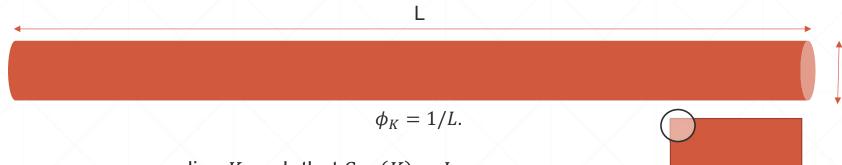


 ϕ small, easy to cut the set

Cheeger constant of Convex Set

 $Cov(K) = \mathbb{E}_{x \sim K} x x^T$

Note that ϕ_K is not affine invariant and can be arbitrary small.



However, you can renormalize K such that Cov(K) = I.

Definition: K is isotropic, if it is mean 0 and Cov(K) = I.

Theorem: If isotropic, $\delta < \frac{0.001}{\sqrt{n}}$, ball walk stays inside the set with constant probability.

Theorem: Given a random point in isotropic K, we can generate another in $O(\frac{n^2}{\phi_K^2}\log(1/\varepsilon))$

KLS Conjecture

Kannan-Lovász-Simonovits Conjecture:

For any isotropic convex K, $\phi_K = \Omega(1)$.

Ravindran Kannan

Lovász László

Miklós Simonovits

Previous Results

[Lovasz-Simonovits 93] $\phi = \Omega(1)n^{-1/2}$.

[Klartag 06] $\sigma = \Omega(1)n^{-1/2}\log^{1/2}n$.

[Fleury-Guedon-Paouris 06] $\sigma = \Omega(1)n^{-1/2}\log^{1/6}n\log^{-2}\log n$.

[Klartag 06] $\sigma = \Omega(1)n^{-0.4}$.

[Fleury 10] $\sigma = \Omega(1)n^{-0.375}$.

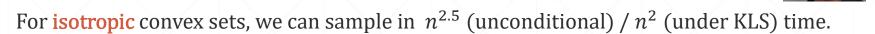
[Guedon-Milman 10] $\sigma = \Omega(1)n^{-0.333}$.

[Eldan 12] $\phi = \widetilde{\Omega}(1)\sigma = \widetilde{\Omega}(1)n^{-0.333}$.

[Lee-Vempala 16] $\phi = \Omega(1)n^{-0.25}$.

What if we cut the body by sphere only?

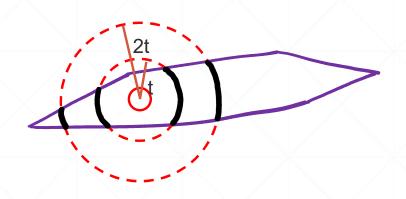
$$\sigma \stackrel{\text{def}}{=} Var(||X||)^{-1/2} \ge \phi$$



How to make the body isotropic?

Lovász-Vempala Rounding Algorithm

- Start with a ball B inside K
- While B does not cover K
 - Use O(n) samples to estimate the covariance of $K \cap B$.
 - Transform K to make $K \cap B$ isotropic.
 - $B \leftarrow 2B$.



Total Complexity = $\log(n) \cdot n \cdot n^3$.

Lemma. $K \cap B$ isotropic $\Rightarrow K \cap 2B$ well-rounded, i.e. $\mathbb{E}||x||^2 = O(n)$ and $Cov(K) \geq \Omega(I)$.

Lemma. We can sample a well-rounded body in time $O(n^3)$ time.

Best known even under KLS conj.

Theorem [Srivastava-Vershynin 13]. M = the empirical covariance of K using n/ϵ^2 samples. Then

$$(1 - \epsilon)M \le \text{Cov}(K) \le (1 + \epsilon)M$$

Lovász-Vempala at 2006

There is one possible further improvement on the horizon. ... If this conjecture is true... could perhaps lead to an $O^*(n^3)$ volume algorithm. But besides the mixing time, a number of further problems concerning achieving isotropic position would have to be solved.

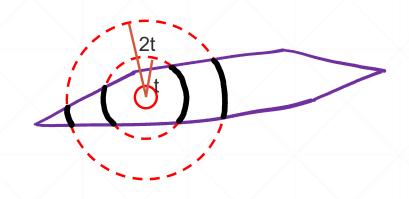
Rounding++

A faster rounding algorithm

How to make the body isotropic?

Lovász-Vempala Rounding Algorithm

- Start with a ball B inside K
- While B does not cover K
 - Use O(n) samples to estimate the covariance of $K \cap B$.
 - Transform K to make $K \cap B$ isotropic.
 - $B \leftarrow 2B$.



Total Complexity = $\log(n) \cdot n \cdot n^3$.

Suffice to make a well-rounded body isotropic.

 $|x||^2 = O(n)$ and $Cov(K) \ge \Omega(I)$.

 (n^3) time. Best known even under KLS conj.

Il covariance of K using n/ϵ^2 samples.

 $(1-\epsilon)^{M} \approx \operatorname{COV}(K) \approx (1+\epsilon)M$

How to make the well-rounded body isotropic?

Rounding++

- $r \leftarrow 1$
- While $r^2 \le n$
 - Use $\tilde{O}(r^2)$ samples to estimate the covariance of K.
 - Let V be the subspace of the empirical covariance with eigenvalues $\geq n$.

• Scale up all directions in V^{\perp} by a factor of 2. If empirical covariance is accurate, B(0,r)

 $r \leftarrow 2\left(1 - \frac{1}{\log n}\right)r$. We only need log(n) steps.

Intuition:

- We keep scaling up eigenvalues whenever $\leq n$. So, all eigenvalues converges to n.
- Initially, *K* far from isotropic. We only need **few expensive** samples.
- At the end, K close to isotropic. We can afford many cheap samples.

Why r^2 samples enough to find all eigenvalues $\geq n$?

Lemma [Matrix Chernoff, Ahlswede-Winter]:

A: covariance, \hat{A} : empirical covariance of k samples. Then,

$$\hat{A} = (1 \pm \varepsilon)A \pm \tilde{O}(\frac{Tr(A)}{\varepsilon k})I.$$

Claim: $\operatorname{Tr} A = O(r^2 n)$.

With $\epsilon=1/2$ and $k=r^2$, we have $\hat{A}=\left(1\pm\frac{1}{2}\right)A\pm nI$. Suffices to detect eigenvalues $\geq\Theta(n)$.

Proof of Claim:

Each step, we scale up some direction by a factor of 2 and TrA increased by at most 4.

Since each step r around double, we have $TrA = O(r^2n)$.

$B(0,r) \subset K$

Lemma. While $\lambda \ge 4r^2 \log n$, r increases by a factor of at least $2\left(1 - \frac{1}{\log n}\right)$ in each iteration. (We use $\lambda = n$).

Proof:

Scale up all directions with variance $< \lambda$.

V contains ellipsoid with minimum axis length λ

 V^{\perp} contains a ball of radius r that is scaled up by 2.

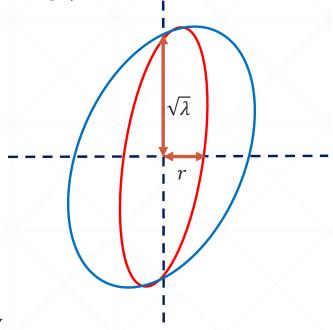
Then, new body contains a ball of radius nearly 2r.

Consider any x on the boundary, we have

$$x = \alpha y + (1 - \alpha)$$
 where $\alpha \in [0,1], y \in \partial B(2r) \cap V^{\perp}, z \in \partial B^{n}(\lambda) \cap V$

Then,

$$||x||^2 = \alpha^2 4r^2 + (1 - \alpha)^2 \lambda \ge \frac{4\lambda r^2}{\lambda + 4r^2} \ge 4 \cdot \frac{\log n}{\log n + 1} \cdot r^2$$



How to make the well-rounded body isotropic?

Rounding++

- $r \leftarrow 1$
- While $r^2 < n$
 - Use $\tilde{O}(r^2)$ samples to estimate the covariance of K.
 - Let V be the subspace of the empirical covariance with eigenvalues $\geq n$.

b n.

• Scale up all directions in V^{\perp} by a factor of 2. If empirical covariance is accurate, B(0,r)

 $r \leftarrow 2\left(1 - \frac{1}{\log n}\right)r$.

We only need log(n) steps.

Intuition:

We keep scaling up eigenv

Under KLS, $Cov(K) \leq n \cdot I$ and $B(0,r) \subset K$ implies n^3/r^2 time per sample.

Initially, K far from isotropic So, each phase takes n^3 time.

At the end, K close to isotropic. We can afford many cheap samples.

Without KLS: Isoperimetry for non-isotropic sets

Theorem [Lee-Vempala 16]

$$\phi_K = \Omega(||\mathsf{Cov}K||_F^{-1/2})$$

In particular, $\phi_K = \Omega(n^{-1/4})$ for any isotropic K.

Corollary [This paper] We have complexity $n^{3.5}$.

Lemma [This paper]

Suppose $\phi_K \ge n^{-\beta}$ for isotropic K. For any convex K, we have $\phi_K = \widetilde{\Omega}(||\text{Cov}K||_{1/(2\beta)}^{-1/2})$

(Namely, it suffices to understand isoperimetry for isotropic sets.)

Proof: stochastic localization.

Corollary [This paper] If $\phi_K \ge n^{-\beta}$, we have complexity $n^{3+2\beta}$.

Is $\phi_K \ge n^{-\beta}$ for some $\beta < \frac{1}{4}$?

Extra motivation

Theorem (CLT for convex bodies) [Klartag 06]

For any isotropic log-concave p in \mathbb{R}^n ,

$$d_{TV}(\pi_x p, \mathcal{N}(0,1)) \leq o_n(1)$$
 with high prob in $x \sim S^{n-1}$

Theorem: $W_2(p^{\mathsf{T}}q, \mathcal{N}(0, n)) = O(n^{2\beta + \epsilon})$ So, $\beta < \frac{1}{4}$ implies GCLT holds.

Conjecture (Generalized CLT for convex bodies)

For any isotropic log-concave p, q in \mathbb{R}^n ,

$$d_{TV}(\pi_x p, \mathcal{N}(0, \mathbf{n})) \leq o_n(1)$$
 with high prob in $x \sim q$

This version is not symmetric enough. Alternatively:

$$W_2(p^{\mathsf{T}}q, \mathcal{N}(0, n)) = o_n(\sqrt{n})$$

Haotian Jiang