Reducing Sampling to KLS

He Jia, Aditi Laddha, Yin Tat Lee, Santosh Vempala

Sampling Problem

Input: a convex set K with a membership oracle

Output: sample a point from the uniform distribution on K .

Martin Dyer, Alan Frieze, Ravi Kannan

Theorem: For any convex set, we can sample in $n^{3.5}$ (unconditional) / n^3 (under KLS conj) steps. (Same runtime for volume.)

Story Time

Ball Walk

if y is in K , go to y .

otherwise, sample again

This walk may get trapped on one side if the set is not convex.

Cheeger constant

For any set K, we define the Cheeger constant ϕ_K by

$$
\phi_K = \min_{S} \frac{\text{Area}(\partial S)}{\min(\text{vol}(S), \text{vol}(S^c))}
$$

Theorem

Given a random point in K , we can generate another in $\hskip1cm \swarrow \quad \hskip1cm \swarrow$

iterations of Ball Walk where δ is step size.

- ϕ_K and δ larger, mix better.
- \cdot δ cannot be too large, otherwise, fail probability is ~1.

 ϕ small, easy to cut the set

Cheeger constant of Convex Set

Note that ϕ_K is not affine invariant and can be arbitrary small.

EX Set
\n
$$
Cov(K) = \mathbb{E}_{x \sim K} x x^T
$$
\n
$$
\downarrow
$$
\n
$$
\phi_K = 1/L.
$$
\n
$$
v(K) = I.
$$
\n
$$
v(K) = I.
$$

 $1 \angle$

 $L \times \times \times \times$

 $\frac{101}{n}$, ball walk stays inside the set with constant probability.

Cheeger constant of Convex Set

Note that ϕ_K is not affine invariant and can be arbitrary small.

L
 $\phi_K = 1/L$.

However, you can renormalize K such that $Cov(K) = I$.

Definition: K is isotropic, if it is mean 0 and **Theorem:** Given a random point in isotropic *K*, we can generate another in $O(\frac{n^2}{\epsilon^2}\log(1/\varepsilon))$ ϕ_K^2 $log(1/c)$

KLS Conjecture

KLS Conjecture
 Kannan-Lovász-Simonovits Conjecture:

For any isotropic convex *K*, $\phi_K = \Omega(1)$. **KLS Conjecture**
 Kannan-Lovász-Simonovits Conjecture:

For any isotropic convex K , $\phi_K = \Omega(1)$.

Previous Results

[Klartag 06] $\sigma = \Omega(1) n^{-1/2} \log^{1/2} n$.

[Fleury-Guedon-Paouris 06] $\sigma = \Omega(1) n^{-1/2} \log^{1/6} n \log^{-2} \log n$.

. \searrow

.

What if we cut the body by sphere only? $\sigma \stackrel{\text{def}}{=} Var(||X||)^{-1/2} \geq \phi$

[Lovasz-Simonovits 93] $\phi = \Omega(1)n^{-1/2}$.
 [Klartag 06] $\sigma = \Omega(1)n^{-1/2} \log^{1/2} n$.
 [Fleury-Guedon-Paouris 06] $\sigma = \Omega(1)n^{-1/2} \log^{1/6} n \log^{-2} \log n$.
 [Klartag 06] $\sigma = \Omega(1)n^{-0.4}$.
 [Fleury 10] $\sigma = \Omega(1)n^{-0.375}$.
 [Gue For isotropic convex sets, we can sample in $n^{2.5}$ (unconditional) / n^2 (under KLS) time.

How to make the body isotropic?

Lovász-Vempala Rounding Algorithm

- **Start with a ball B inside** K
- \bullet While B does not cover K
	-
	-
	-

.

) time. Best known even under KLS conj.

Theorem [Srivastava-Vershynin 13]. $M =$ the empirical covariance of K using n/ϵ^2 samples. Then

$$
(1-\epsilon)M \leq Cov(K) \leq (1+\epsilon)M
$$

Lovász-Vempala at 2006

There is one possible further improvement on the horizon. … If this conjecture is true... could perhaps lead to an $O^*(n^3)$ volume algorithm. But besides the mixing time, a number of further problems concerning achieving isotropic position would have to be solved.

Rounding++

A faster rounding algorithm

How to make the body isotropic?

Lovász-Vempala Rounding Algorithm

- **Start with a ball B inside K**
- \bullet While *B* does not cover *K*

Then the contract of \mathcal{L}_max

-
-
-

.

Suffice to make a well-rounded body isotropic.

 (n^3) time. Best known even under KLS conj.

al covariance of K using n/ϵ^2 samples.

How to make the well-rounded body isotropic? Rounding++ **How to make the well-rounded

Rounding++

•** $r \leftarrow 1$ **
• While** $r^2 \le n$ **
• Use** $\tilde{\theta}(r^2)$ **samples to estimate the covariance of** K **. How to make the well-rounded boot

Rounding + +

•** $r \leftarrow 1$ **

• While** $r^2 \le n$ **

• Use** $\tilde{\theta}(r^2)$ **samples to estimate the covariance of** *K***.

• Let** *V* **be the subspace of the empirical covariance with eiger OW to make the well-rounded body isotropic?**

Uniding ++
 $r \leftarrow 1$
 $\cdot \text{While } r^2 \le n$
 $\cdot \text{Let } V \text{ be the subspace of the empirical covariance with eigenvalues } \ge n.$
 $\cdot \text{See } \mathfrak{d}(r^2) \text{ samples to estimate the covariance with eigenvalues } \ge n.$
 $\cdot \text{See } \mathfrak{d}(l) \le n \cdot I$
 $\cdot \text{See } \mathfrak{d}(l) \le n \cdot I$
 $\cdot \text{See } \mathfrak{$ **make the well-rounded body**
 $\begin{array}{l} \mathbf{n} \end{array}$
 $\$ **If empirical covariance is accurate,** $B(0,r) \subset K$ **

Steps.**

-
- - Use $\tilde{O}(r^2)$ samples to estimate the covariance of K.
	-
- $\begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$
Cov $(K) \leq n \cdot 1$
ate, $B(0,r) \leq K$

EXECUTE 19944

• While $r^2 \le n$

• Use $\bar{O}(r^2)$ samples to estimate the covariance of K.

• Let V be the subspace of the empirical covariance with eigenvalues $\ge n$.

• Scale up all directions in V^{\perp} by a facto We only need $log(n)$ steps.

Intuition:

-
-
-

Why r^2 samples enough to find all eigenvalues $\geq n$? **ugh to find all eigenvalues** $\ge n$ **?**
 de-Winter]:

nce of *k* samples. Then,
 $\hat{A} = (1 \pm \varepsilon)A \pm \tilde{O}(\frac{Tr(A)}{\varepsilon k})I$. **es enough to find all eigenvalues** $\geq n$

ff, Ahlswede-Winter]:

cal covariance of k samples. Then,
 $\hat{A} = (1 \pm \varepsilon)A \pm \tilde{O}(\frac{Tr(A)}{\varepsilon k})I$.

we have $\hat{A} = (1 \pm \frac{1}{2})A \pm nI$. Suffices to detect eigenvalues \geq

Lemma [Matrix Chernoff, Ahlswede-Winter]:

A: covariance, \hat{A} : empirical covariance of k samples. Then, $Tr(A)$ $\frac{1}{\varepsilon k}$)I. **Why** r^2 **samples enough to find all**

Lemma [Matrix Chernoff, Ahlswede-Winter]:

A: covariance, \hat{A} : empirical covariance of k samples. Then,
 $\hat{A} = (1 \pm \varepsilon)A \pm \tilde{O}(\frac{Tr(A)}{\varepsilon k})$

Claim: Tr $A = O(r^2n)$.

With ϵ **Why** r^2 **samples enough to find all eige**

Lemma [Matrix Chernoff, Ahlswede-Winter]:

A: covariance, \hat{A} : empirical covariance of k samples. Then,
 $\hat{A} = (1 \pm \varepsilon)A \pm \tilde{O}(\frac{Tr(A)}{\varepsilon k})I$.

Claim: Tr $A = O(r^2n)$.

W **Why** r^2 **samples enough to find all eigenvalues** $\geq n$ **?**

Lemma [Matrix Chernoff, Ahlswede-Winter]:
 $A: \text{ covariance, } \hat{A}: \text{ empirical covariance of } k \text{ samples. Then,}$
 $\hat{A} = (1 \pm \varepsilon)A \pm \tilde{O}(\frac{Tr(A)}{\varepsilon k})I.$

Claim: Tr $A = O(r^2n)$.

With $\varepsilon = 1/2$ and

Claim: Tr $A = O(r^2n)$.

 $A = (1 \pm \varepsilon)A \pm O(\frac{\varepsilon}{\varepsilon k})I.$
 Claim: Tr $A = O(r^2n)$.

With $\epsilon = 1/2$ and $k = r^2$, we have $\hat{A} = (1 \pm \frac{1}{2})A \pm nI$. Suffices to detect eigenvalues $\geq \Theta(n)$.
 Proof of Claim:

Each step, we scale up some direction b

Each step, we scale up some direction by a factor of 2 and TrA increased by at most 4.

Since each step r around double, we have $Tr A = O(r^2 n)$.

 $B(0, r) \subset K$
 Lemma. While $\lambda \ge 4r^2 \log n$, r increases by a factor of at least 2 (1 use $\lambda = n$). log *n*, *r* increases by a factor of at least $2\left(1 - \frac{1}{\log n}\right)$ in each iteration. (We $\frac{1}{\log n}$) in each iteration. (We $B(0, r) \subset K$
 Lemma. While $\lambda \ge 4r^2 \log n$, r increases by a factor of a use $\lambda = n$).
 Proof:

Scale up all directions with variance < λ . $B(0, r) \subset K$
 Lemma. While $\lambda \ge 4r^2 \log n$, r increases by a factor of at least $2\left(1 - \frac{1}{\log n}\right)$ in each ite
 Proof:

Scale up all directions with variance < λ .
 V contains ellipsoid with minimum axis length λ λ) o V
 λ) o V
 $\geq 4 \cdot \frac{\log n}{\log n + 1} \cdot r^2$

 \boldsymbol{r}

Proof:

 V^{\perp} contains a ball of radius r that is scaled up by 2.

Then, new body contains a ball of radius nearly $2r$.

Consider any x on the boundary, we have

Then,

use
$$
\lambda = n
$$
).
\nProof:
\nScale up all directions with variance $\langle \lambda$.
\nV contains ellipsoid with minimum axis length λ
\nV[⊥] contains a ball of radius r that is scaled up by 2.
\nThen, new body contains a ball of radius nearly 2r.
\nConsider any x on the boundary, we have
\n $x = \alpha y + (1 - \alpha)$ where $\alpha \in [0,1]$, $y \in \partial B(2r) \cap V^{\perp}, z \in \partial B^n(\lambda) \cap V$
\nThen,
\n
$$
||x||^2 = \alpha^2 4r^2 + (1 - \alpha)^2 \lambda \ge \frac{4\lambda r^2}{\lambda + 4r^2} \ge 4 \cdot \frac{\log n}{\log n + 1} \cdot r^2
$$

How to make the well-rounded body isotropic? Rounding++ **How to make the well-rounded

Rounding++

•** $r \leftarrow 1$ **
• While** $r^2 \le n$ **
• Use** $\tilde{\theta}(r^2)$ **samples to estimate the covariance of** K **. How to make the well-rounded boot

Rounding + +

•** $r \leftarrow 1$ **

• While** $r^2 \le n$ **

• Use** $\tilde{\theta}(r^2)$ **samples to estimate the covariance of** *K***.

• Let** *V* **be the subspace of the empirical covariance with eiger** • Use $\tilde{O}(r^2)$ samples to estimate the covariance of K. **OW to make the well-rounded body isotropic?**

Use $\overline{O(r^2)}$ samples to estimate the covariance of K.
 \cdot Let V be the subspace of the empirical covariance with eigenvalues ≥ n.
 \cdot Scale up all directions in $V^$ **make the well-rounded body**
 $\begin{array}{l} \mathbf{n} \end{array}$
 $\$ Intuition: **EXECUTE 19944**

• While $r^2 \le n$

• Use $\bar{O}(r^2)$ samples to estimate the covariance of *K*.

• Let *V* be the subspace of the empirical covariance with eigenvalues $\ge n$.

• Scale up all directions in *V*¹ by a fa We only need $log(n)$ steps. **If empirical covariance is accurate,** $B(0,r) \subset K$ **

If empirical covariance is accurate,** $B(0,r) \subset K$ **

If empirical covariance is accurate,** $B(0,r) \subset K$ $\begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$
Cov $(K) \leq n \cdot 1$
ate, $B(0,r) \leq K$ the covariance of *K*.

the covariance with eigenvalues $\ge n$.

a factor of 2.

Under KLS, Cov(*K*) $\le n \cdot 1$ and *B*(0,*r*) \subset *K*

Under KLS, Cov(*K*) $\le n \cdot 1$ and *B*(0,*r*) \subset *K*

implies
 n^3/r^2 time per sam implies n^3/r^2 time per sample. The same \mathbb{R}^3 So, each phase takes n^3 time. The contract of the contract of \mathbb{R}^3 ✔ ✔ ✔

Without KLS: Isoperimetry for non-isotropic sets **Without KLS: Isoperimetry for non-isotro
Theorem [Lee-Vempala 16]**
In particular, $\phi_K = \Omega(n^{-1/4})$ for any isotropic *K*. **netry for non-isotropic sets**
 $\phi_K = \Omega(||\text{CovK}||_F^{-1/2})$

otropic *K*.
 ϕ_{NP} and χ_{NP} **Without KLS: Isoperimetry for non-isonal ISON Theorem [Lee-Vempala 16]**
 $\phi_K = \Omega(||CovK||_F^{-1/2})$

In particular, $\phi_K = \Omega(n^{-1/4})$ for any isotropic K.
 Corollary [This paper] We have complexity $n^{3.5}$.

 $\phi_K = \Omega(||CovK||_F^{-1/2})$) and \longrightarrow and \longrightarrow

In particular, $\phi_K = \Omega(n^{-1/4})$ for any isotropic K.

Corollary [This paper] We have complexity $n^{3.5}$. . Note that the set of \mathcal{A}

Lemma [This paper]

Without KLS: Isoperimetry for non-isotropic sets

Theorem [Lee-Vempala 16]
 $\phi_K = \Omega(||CovK||_F^{-1/2})$

In particular, $\phi_K = \Omega(n^{-1/4})$ for any isotropic K.

Corollary [This paper] We have complexity $n^{3.5}$.

Lemma [This pape **Metry for hon-isotropic sets**
 $\phi_K = \Omega(||\text{CovK}||_F^{-1/2})$
sotropic K.

mplexity $n^{3.5}$.

or any convex K, we have
 $\phi_K = \Omega(||\text{CovK}||_{1/(2\beta)}^{-1/2})$

perimetry for isotropic sets.) Suppose $\phi_K \ge n^{-\beta}$ for isotropic *K*. For any convex *K*, we have $\phi_K = \widetilde{\Omega}(|\text{CovK}||_{1/(2\beta)}^{-1/2})$) \angle \angle \angle **Corollary [This paper]** We have complexity $n^{3.5}$.
 Lemma [This paper]

Suppose $\phi_K \ge n^{-\beta}$ for isotropic K. For any convex K, we have $\phi_K = \Omega(||\text{CovK}||_{1/(2\beta)}^{-1/2})$

(Namely, it suffices to understand isoperimetry f

(Namely, it suffices to understand isoperimetry for isotropic sets.)

Proof: stochastic localization.

Is $\phi_K \geq n^{-\beta}$ for some $\beta < \frac{1}{4}$?

Extra motivation

Extra motivation
• Theorem (CLT for convex bodies) [Klartag 06]
For any isotropic log-concave p in \mathbb{R}^n ,

For any isotropic log-concave p in \mathbb{R}^n ,

 $d_{TV}(\pi_x p, \mathcal{N}(0,1)) \leq o_n(1)$ with high prob in $x \sim S^{n-1}$
Theorem: $W_2(p^T q, \mathcal{N}(0,n)) = O(n^{2\beta+\epsilon})$

Theorem: $W_2(p^\top q, \mathcal{N}(0, n)) = O(n^{2\beta + \epsilon})$

So, $\beta < \frac{1}{4}$ implies GCLT holds. **Solution**
 Solution $x \sim S^{n-1}$

Theorem: $W_2(p^\top q, \mathcal{N}(0, n)) = O(n^{2\beta + \epsilon})$

So, $\beta < \frac{1}{4}$ implies GCLT holds. $\frac{1}{4}$ implies GCLT holds.

▪ Conjecture (Generalized CLT for convex bodies)

For any isotropic log-concave p, q in \mathbb{R}^n ,

 $d_{TV}(\pi_x p, \mathcal{N}(0, n)) \leq o_n(1)$ with high prob in $x \sim q$

This version is not symmetric enough. Alternatively: $_2(p, q, w, w, n) = o_n$ $T_a N(0, n) = o(\sqrt{n})$ $n(\sqrt{n})$ \sim \sim

Haotian Jiang