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BN
Marginal density bounds
Theorem

LetX = (X1, .

,X,) € R" be a random vector with i.i.d. coordinates having

bounded density HfX/ ||oO < K. Then for any E C R" with dim(E) = d,
Question

fpexll oo < (CK)?.

Can one derive a similar lower estimate?
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Marginal density bounds

Theorem

Let X = (X1,...,X,) € R" be a random vector with i.i.d. coordinates having
bounded density HfX/ Hoo < K. Then for any E C R" with dim(E) = d,

fpex oo < (CK).

Question

Can one derive a similar lower estimate?

More precisely: Assume that fx,(y) >  for |y| < a. Is it true that

frex(v) > #(d)s?  whenever ||v|, < a?
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Marginal density bounds

Theorem

Let X = (X1,...,X,) € R" be a random vector with i.i.d. coordinates having
bounded density HfX/ Hoo < K. Then for any E C R" with dim(E) = d,

fpex oo < (CK).

Question

Can one derive a similar lower estimate?

More precisely: Assume that fx,(y) >  for |y| < a. Is it true that
frex(v) > #(d)s?  whenever ||v|, < a?
Example: X; ~ N (0, 1). Then PgX ~ N(0,1;).

Counterexample: X; = 1j_. o + %(51 + %5_1.
Then EX; = 0, EX? ~ 1, but fp,x(0) = O(1/+/n) if E = span(1, 1,...,1).
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Probability vs geometry
Modified question

Can one derive a lower estimate for some densities?

Test case: uniform density: X; ~ Uni([—1, 1]). Is it true that

frex(v) > ¢(d)

1
whenever ||v||, <
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Probability vs geometry

Modified question J

Can one derive a lower estimate for some densities?

Test case: uniform density: X; ~ Uni([—1, 1]). Is it true that

1
frex(v) > ¢(d) whenever ||v]|, < 5‘_?

Geometric formulation

Consider the cube @, C R” of a unit volume. Then

frox(v) = volu_a(Qn N (E* +v))

Is it true that the volume of any section of the cube O, by a subset having distance at
most % from the origin is bounded below independently of the ambient dimension?
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B
Sections of a cube
Question

Is it true that

voly—a(Qn N (E +v)) = ¢(d)
for dim(E) = n — d?

whenever ||v||, <

N =
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B
Sections of a cube
Question

Is it true that

voly—a(Qn N (E +v)) = ¢(d)
for dim(E) = n — d?

1
whenever ||v||, <
Central sections

2

@ Minimal section: coordinate vol,_;(Q, N (E 4+ 0)) > 1 (Vaaler).
@ Maximal section: vol,_4(Q, N (E +0)) < 2%/2 (Ball).
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Sections of a cube
Question

Isit true that  vol,_4(Q, N (E +v)) > ¢(d) whenever [|v||, <

N =

for dim(E) = n — d?

Central sections

@ Minimal section: coordinate vol,_;(Q, N (E 4+ 0)) > 1 (Vaaler).
@ Maximal section: vol,_4(Q, N (E 4 0)) < 2%/? (Ball).

Non-central sections

@ Maximal hyperplane section: vol,_4(Q, N (E + v)) is maximal for

E=(1,1,,...,1)* whenever ||v||, € (v/n — 1,/n) (Moody, Stone, Zach,
Zvavitch).

@ Upper estimate for hyperplane sections (Koldobsky, Konig).

The position of the maximal section depends on the distance.
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Sections of a cube

Question

1
Isit true that  vol,_4(Q, N (E +v)) > ¢(d) whenever [|v||, < 3

for dim(E) = n — d?

Distance % is critical.

o LetE =ei. Ifv = (§ — ¢) ey, then vol,_ 1 (Q, N (E+v)) = 1.
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N
Sections of a cube

Question

Isit true that  vol,_4(Q, N (E +v)) > ¢(d) whenever [|v||, <

N =

for dim(E) = n — d?

Distance % is critical.

o LetE =ei. Ifv = (§ —€) ey, then vol,_ 1 (Q, N (E+v)) = 1.
o LetE=ef. Ifv=(1+¢)e, thenQ,N(E+v)=2.

Mark Rudelson (Michigan) Lower estimates of marginal density 5/19



N
Sections of a cube

Question
1
Isit true that  vol,_4(Q, N (E +v)) > ¢(d) whenever [|v||, < 3
for dim(E) = n — d?

1

Distance 5 is critical.

o LetE =ef. Ifv = (% —€) ey, then vol,_;(Q, N (E+v)) =1
o LetE =ef. va—( +s)e1,thenQn (E+v) =
o LetE = (e) +cey)t. If v

ZW(EI + €e,), then voln 1(QnN(E+V)) ~ 1.
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Lower bound - general dimension

Question

Is it true that

volo—a(Qn N (E +v)) = ¢(d)
for dim(E) = n — d?

whenever ||v]|, <
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Lower bound - general dimension

Theorem (K6nig-R”)
It is true that

VOln—d(Qn N (E + V)) > ¢(d)
fordm(E)=n—-d

whenever ||v||, <

1
2
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Lower bound - general dimension

Theorem (K6nig-R”)
It is true that

VOln—d(Qn N (E + V)) > d)(d)
for dim(E) =n —d.

1

whenever ||v||, < -

[\S)

Remark

The bound ¢(d) is not efficient: the proof yields ¢(d) = O(exp(Cd®))
We will return to this later.
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Proof ideas

@ We repeatedly pass from probabilistic to geometric version of the question until
it becomes elementary.
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Proof ideas

it becomes elementary.

@ We repeatedly pass from probabilistic to geometric version of the question until

@ Divide and concur: treat compressible and incompressible vectors differently.
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Step 1: vectors with a large /., norm.

Our goal: frx (%v) > ¢(d) (*)

© Probability. Let P = Py.. Then P = > | (Pe;)(Pe;) .
This allows to prove () using characteristic functions
if v || Pejand |[Pejl, > 1 - e1(d).
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Step 1: vectors with a large /., norm.

Our goal: frx (%v) > ¢(d) (*)

© Probability. Let P = Py.. Then P = > | (Pe;)(Pe;) .
This allows to prove () using characteristic functions
if v || Pejand |[Pejl, > 1 - e1(d).

@ Geometry. Assume that ||Pe;|, > 1 —(d) and v is
almost parallel to Pe;:

V =v4+mw whereweE- wlv \6//’)

Then (x) holds for v/ if |#| < §(d)
(log concavity implies that fpy (5 (v + tw)) cannot decay
too fast).
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Step 1: vectors with a large /., norm.

Our goal: frx (%v) > ¢(d) (*)

© Probability. Let P = Py.. Then P = > | (Pe;)(Pe;) .
This allows to prove () using characteristic functions
if v || Pejand |[Pejl, > 1 - e1(d).

@ Geometry. Assume that ||Pe;|, > 1 —(d) and v is
almost parallel to Pe;:

V=v+tw wherewecE', wlv \i’//)

Then (x) holds for v/ if |#| < §(d)
(log concavity implies that fpy (5 (v + tw)) cannot decay
too fast).

@ Assume that ||v|| . > 1 —e3(d). Then (x) holds
(combination of 1 and 2).
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Step 2: incompressible vectors.

Incompressible = small coordinates carry non-negligible mass.

@ Probability. Let X be a random vector uniformly distributed in Q,,.
For any € > 0, there exist 4,7 > 0 such that
if J5 = {j: |y <d}and ), uf > thenP ((X,u) > 1) > 7.
Proof: Berry-Esseen theorem.
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Step 2: incompressible vectors.

Incompressible = small coordinates carry non-negligible mass.
@ Probability. Let X be a random vector uniformly distributed in Q,,.
For any € > 0, there exist 4,7 > 0 such that
if J5 = {j: |y <d}and ), uf > thenP ((X,u) > 1) > 7.
Proof: Berry-Esseen theorem.
Berry-Esseen theorem does not provide any density bounds.

@ Geometry. Let D := {y € EL : fpx(y) > fox (1)} (convex and symmetric)
2
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Step 2: incompressible vectors.

Incompressible = small coordinates carry non-negligible mass.

@ Probability. Let X be a random vector uniformly distributed in Q,,.
For any € > 0, there exist 4,7 > 0 such that
if J5 = {j: |y <d}and ), uf > thenP ((X,u) > 1) > 7.
Proof: Berry-Esseen theorem.
Berry-Esseen theorem does not provide any density bounds.
Q@ Geometry. Let D := {y € E* : fpx(y) > fpx (3v) } (convex and symmetric)
Let S C E* be a supporting hyperplane to D at v in E*.
Write § = 7u + L, where u € E+ N §"~! satisfies u L L, and 7 € [0, 3].
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Step 2: incompressible vectors.

Incompressible = small coordinates carry non-negligible mass.

@ Probability. Let X be a random vector uniformly distributed in Q,,.
For any € > 0, there exist 4,7 > 0 such that
if J5 = {j: |y <d}and ), uf > thenP ((X,u) > 1) > 7.
Proof: Berry-Esseen theorem.
Berry-Esseen theorem does not provide any density bounds.
Q@ Geometry. Let D := {y € E* : fpx(y) > fpx (3v) } (convex and symmetric)
Let S C E* be a supporting hyperplane to D at v in E*.
Write § = 7u + L, where u € E+ N §"~! satisfies u L L, and 7 € [0, 3].

)1+d/2.

Then  fox (;) > o(d) (B((X.) > 7)
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Step 3: compressible vectors.

; . 2
Compressible vectors: } s u; < &(d).

Need: P((X,u) > 1) >(d).
Xou)= D" uXi+ Y wX;=Y+Z

|uj| <6 [uj| =8

@ Incompressible vectors: drop Z and work with Y.

@ Compressible vectors: drop Y and work with Z.
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Step 3: compressible vectors.

; . 2
Compressible vectors: } s u; < &(d).

Need: P((X,u) > 1) >(d).
Xou)= D" uXi+ Y wX;=Y+Z

|| <& |uj| =6

@ Incompressible vectors: drop Z and work with Y.
@ Compressible vectors: drop Y and work with Z.

We have to bound below

w T
P <<X, HW_> > —> 5 where w = Z uje;.

||2 HW||2 |uj|>6

We reduced the original question to a similar one
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Step 3: compressible vectors.

; . 2
Compressible vectors: } s u; < &(d).

Need: P((X,u) > 1) >(d).
Xou)= D" uXi+ Y wX;=Y+Z

|| <& |uj| =6

@ Incompressible vectors: drop Z and work with Y.
@ Compressible vectors: drop Y and work with Z.

We have to bound below

w T
P <<X, HW_> > —> 5 where w = Z uje;.

||2 HW||2 |uj|>6

We reduced the original question to a similar one in dimension < 62 = §~2(d)
independent of n.
We can now allow a bound depending on the ambient dimension.
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Step 3: compressible vectors.

We have to bound below

w T
P ((X,HW—> > —) , Wwherew = Z uje;.

||2 ||W||2 |uj|>6

Here 7 < % However, ”W”

the cube entirely. We have to analyze this situation.

can a priory be greater than , and the section can miss
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Step 3: compressible vectors.

We have to bound below

w T
P (<X’||w_> > —) , wherew = Z uje;.

||2 HW“Z |uj‘25

Here 7 < % However. can a priory be greater than , and the section can miss

’ IIWH
the cube entirely. We have to analyze this situation.

Recall that ||w||, > 1 — e(d) since the vector is compressible.

Hence, W can be only slightly greater than %
2
In this case, if the section misses the cube, then

> 1-¢'(d)

H Wl [l oo
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Step 3: compressible vectors.

We have to bound below

w T
P (<){7 HT> > |\4}||2> s where w = Z ujej

I> | >0

Here 7 < % However, W can a priory be greater than %, and the section can miss
2

the cube entirely. We have to analyze this situation.

Recall that ||w||, > 1 — e(d) since the vector is compressible.

Hence, —”v:” can be only slightly greater than %
2
In this case, if the section misses the cube, then

> 1-¢'(d)

oo

I
[Iwlly

@ The section does not miss the cube — elementary geometry + Vaaler’s theorem.

_w_
[Iwll,

‘ > 1 — &/(d) — already excluded at the beginning. O
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One-dimensional marginals a.k.a. hyperplane sections
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B
A “reasonable ”’ bound

Theorem (K6nig-R”)

Let E C R" be a hyperplane. Then

1

=} F = = DA
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B
A “reasonable ”’ bound

Theorem (K6nig-R”)

Let E C R" be a hyperplane. Then

1

=] F = = DA
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fr, x(v) = vol,_q(Qu N (E+V)) > —  whenever |||, <

[\

Remark: this is at most 5.2 times smaller than the optimal bound.




Fourier analysis at work

Theorem (Polya)
Leta € 8" ' and let E = a* C R" be a hyperplane. Then

vol,—4(0n N (E—I— a / Hsm %) cos s ds

Remark: this is an oscillating integral. It is highly unstable.

Mark Rudelson (Michigan) Lower estimates of marginal density 14/19



Fourier analysis at work

Theorem (Polya)
Leta € 8" ' and let E = a* C R" be a hyperplane. Then

vol,—4(0n N (E—I— a / Hsm %) cos s ds

Remark: this is an oscillating integral. It is highly unstable.

Lemma

Let Uy, ..., U, be a sequence of i.i.d. random vectors uniformly distributed on the
sphere S* C R3.
Then for any a € S"~!,

dm(U)

1
vol,_a(Qn N (E + ~a)) = Ll
! 2 | 214Ul

|20 aUj|>1
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Fourier analysis at work

Lemma

Let Uy, ..., U, be a sequence of i.i.d. random vectors uniformly distributed on the
sphere §> C R®.

Then for any a € S"~!,

1 dm(U)
Vol a(0n N (E + ~a)) = )
" " 2 |E]n=l a]lJ]|
|22 qUj>1

[m] =l = =

DA
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Fourier analysis at work

Lemma

Let Uy, ..., U, be a sequence of i.i.d. random vectors uniformly distributed on the
sphere S* C R>,

Then for any a € S"~!,

vol,_q(Q. N (E + la)) — dm(U)

2 |27=1 a;Uj
[ U] >1

If e € $2, then (U, e) ~ Uni([—1,1]). Hence,

sin(?)
t

/ exp(it < e,U >) dm(u) =
52
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Fourier analysis at work

Lemma

Let Uy, ..., U, be a sequence of i.i.d. random vectors uniformly distributed on the
sphere S* C R>,
Then for any a € S"~!,

1 dm(U)
‘7()1 __‘1((2 M (lf —+ -(1)) = —_—
" ! 2 |Z]=1 a]l]]|
[ 227 Ui =1
If e € $2, then (U, e) ~ Uni([—1,1]). Hence,
in(t
/ exp(it < e,U >) dm(u) = smt( )
52

Applying this twice, we get

f[ sin(ajs) B / sin(| Y57, a;Ujls)
ajs (82) | 27:1 ajUj|s

dm(U)

J=1

Mark Rudelson (Michigan) Lower estimates of marginal density

15/19




Fourier analysis at work

Lemma

Let Uy, ..., U, be a sequence of i.i.d. random vectors uniformly distributed on the
sphere S* C R>,
Then for any a € S"~!,

1 dm(U)
‘7()1 __‘1((2 M (lf —+ -(1)) = —_—
" ! 2 |Z]=1 a]l]]|
|22 Uy >1
If e € $2, then (U, e) ~ Uni([—1,1]). Hence,
in(t
/ exp(it < e,U >) dm(u) = smt( )
52

Applying this twice, we get

sin a;U;
/ H sin(a;s) ———cossds = / / 12 m e dm(U)cos s ds
0 T as 0 Js)n |ZJ 1 4Ujls
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From the integral to probability

vol,_ (00N (E+ Sa)) =

dP

| 221 4 Ujl
[ 30— qUj| =1

1 n
1
= P(1< U -)d.
L <13 a0l < e

=] F = = DA
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|
From the integral to probability

dP

1
vol,—qg(Qn N (E+ =a)) = —_—
2 |21 4Uj]

[ 307 aUj| =1
= P(1< iUl < =)d
| <13 a0l < e

Z;;l a;U; is a subgaussian random variable =

1 n
vob-s(00 N (E + 30) = F(1<13aU) )
=
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From the integral to probability

dP

1
vol,—qg(Qn N (E+ =a)) = —_—
2 |21 4Uj]

[ 307 aUj| =1
= P(1< iUl < =)d
| <13 a0l < e

Z;;l a;U; is a subgaussian random variable =

1 n
vob-s(00 N (E + 30) = F(1 <13 aU)
<
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|
From the integral to probability

dP

1
vol,—qg(Qn N (E+ =a)) = —_—
2 |21 4Uj]

[ 307 aUj| =1
= P(1< iUl < =)d
| <13 a0l < e

Z;;l a;U; is a subgaussian random variable =

1 n
vob-s(00 N (E + 30) = F(1 <13 aU)
<

=P Z aiaj<Ui,(]j> 20

1<i<j<n
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|
Probability of positivity

We reduced the original problem to finding a lower bound for P (Y > 0), where

Y= > aa(U,U) withaes', Uy,...,U,iid Uni(s?)

1<i<j<n

Note that EY = 0 and Y is not symmetric.

Mark Rudelson (Michigan) Lower estimates of marginal density 17/19



|
Probability of positivity

We reduced the original problem to finding a lower bound for P (Y > 0), where

Y= > aa(U,U) withaes', Uy,...,U,iid Uni(s?)
1<i<j<n

Note that EY = 0 and Y is not symmetric.

Let |||, , |||l;; be dual Orlicz norms. Then
EYy =E(Yy - 10,00) < Y4l - 10,000 (V) ],

[11(0,00)(Y) ||M can be used to estimate P (Y > 0).
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Probability of positivity

We reduced the original problem to finding a lower bound for P (Y > 0), where

Y= > aa(U,U) withaes', Uy,...,U,iid Uni(s?)
1<i<j<n

Note that EY = 0 and Y is not symmetric.

Let |||, , |||l;; be dual Orlicz norms. Then
EY, =E(Y; - 10,00)) < Y41, - [[10,00) V)],
[11(0,00)(Y) ||M can be used to estimate P (Y > 0).

The faster L grows, the better the estimate is. Choose L of the exponential type.
We need to bound

1
EY, = §E|Y| below and  Eexp(A\Y;) above
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Exponential moment
We need to bound
Lemma

Eexp(AY,)

Let Y be a real-valued random variable such that EY = 0. Then for any A > 0,

Eexp(AY;) <Eexp(AY) + Eexp(—M\Y).

=] F = = DA
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BN
Exponential moment
We need to bound
Lemma

Eexp(AY,)

Let Y be a real-valued random variable such that EY = 0. Then for any A > 0,

1
Eexp(AY;) < Eexp(AY) + ~Eexp(—\Y).

=] F = = DA
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Exponential moment

We need to bound

Eexp(A\Y,)

Lemma

Let Y be a real-valued random variable such that EY = 0. Then for any A > 0,

1
Eexp(AY;) < Eexp(AY) + ZE exp(—AY).

Remark. If Eexp(—AY) > 2, then one can obtain a better bound

Eexp(A\Y,) < Eexp(\Y) — (Ecxp(f)\Y))71 +1

It remains to bound the Laplace transform of Y.

Mark Rudelson (Michigan)
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Laplace transform

We need to bound

Eexp(AY) for¥Y= > aai(U;Uj)

1<i<j<n
Herea € S"~', Uy,..., U, are i.i.d. Uni(S?) random variables.
Ui, ..., U, are subgaussian random vectors. Y is a quadratic form of their coordinates

4

we can use the Hanson-Wright inequality
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Laplace transform

We need to bound

Eexp(AY) for¥Y= > aai(U;Uj)

1<i<j<n
Herea € S"~', Uy,..., U, are i.i.d. Uni(S?) random variables.
Ui, ..., U, are subgaussian random vectors. Y is a quadratic form of their coordinates
4
we can use the Laplace transform proof of the Hanson-Wright inequality
and the spectral structure of the quadratic form O
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