Lower estimates of marginal density

Mark Rudelson joint work with Hermann König

Department of Mathematics University of Michigan

Marginal density bounds

Theorem

Let $X = (X_1, ..., X_n) \in \mathbb{R}^n$ be a random vector with i.i.d. coordinates having bounded density $\|f_{X_j}\|_{\infty} \leq K$. Then for any $E \subset R^n$ with $\dim(E) = d$,

$$||f_{P_EX}||_{\infty} \leq (CK)^d.$$

Question

Can one derive a similar lower estimate?

Marginal density bounds

Theorem

Let $X = (X_1, ..., X_n) \in \mathbb{R}^n$ be a random vector with i.i.d. coordinates having bounded density $\|f_{X_j}\|_{\infty} \leq K$. Then for any $E \subset R^n$ with $\dim(E) = d$,

$$||f_{P_EX}||_{\infty} \leq (CK)^d.$$

Question

Can one derive a similar lower estimate?

More precisely: Assume that $f_{X_i}(y) \ge \kappa$ for $|y| \le a$. Is it true that

$$f_{P_EX}(v) \ge \phi(d)\kappa^d$$
 whenever $\|v\|_2 \le a$?

Marginal density bounds

Theorem

Let $X = (X_1, ..., X_n) \in \mathbb{R}^n$ be a random vector with i.i.d. coordinates having bounded density $\|f_{X_j}\|_{\infty} \leq K$. Then for any $E \subset R^n$ with $\dim(E) = d$,

$$||f_{P_EX}||_{\infty} \leq (CK)^d$$
.

Question

Can one derive a similar lower estimate?

More precisely: Assume that $f_{X_i}(y) \ge \kappa$ for $|y| \le a$. Is it true that

$$f_{P_EX}(v) \ge \phi(d)\kappa^d$$
 whenever $\|v\|_2 \le a$?

Example: $X_i \sim N(0, 1)$. Then $P_E X \sim N(0, I_d)$.

Counterexample: $X_j = \mathbf{1}_{[-\varepsilon,\varepsilon]} + \frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$.

Then $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 \approx 1$, but $f_{P_EX}(0) = O(1/\sqrt{n})$ if E = span(1, 1, ..., 1).

Probability vs geometry

Modified question

Can one derive a lower estimate for some densities?

Test case: uniform density: $X_j \sim Uni([-\frac{1}{2}, \frac{1}{2}])$. Is it true that

$$f_{P_EX}(v) \ge \phi(d)$$
 whenever $||v||_2 \le \frac{1}{2}$?

Probability vs geometry

Modified question

Can one derive a lower estimate for some densities?

Test case: uniform density: $X_j \sim Uni([-\frac{1}{2}, \frac{1}{2}])$. Is it true that

$$f_{P_EX}(v) \ge \phi(d)$$
 whenever $\|v\|_2 \le \frac{1}{2}$?

Geometric formulation

Consider the cube $Q_n \subset \mathbb{R}^n$ of a unit volume. Then

$$f_{P_EX}(v) = \operatorname{vol}_{n-d}(Q_n \cap (E^{\perp} + v))$$

Is it true that the volume of any section of the cube Q_n by a subset having distance at most $\frac{1}{2}$ from the origin is bounded below independently of the ambient dimension?

for $\dim(E) = n - d$?

Question

Is it true that
$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $||v||_2 \le \frac{1}{2}$

Question

Is it true that
$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $||v||_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
?

Central sections

- Minimal section: coordinate $\operatorname{vol}_{n-d}(Q_n \cap (E+0)) \geq 1$ (Vaaler).
- Maximal section: $\operatorname{vol}_{n-d}(Q_n \cap (E+0)) \leq 2^{d/2}$ (Ball).

Question

Is it true that
$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $||v||_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
?

Central sections

- Minimal section: coordinate $\operatorname{vol}_{n-d}(Q_n \cap (E+0)) \geq 1$ (Vaaler).
- Maximal section: $\operatorname{vol}_{n-d}(Q_n \cap (E+0)) \leq 2^{d/2}$ (Ball).

Non-central sections

- Maximal hyperplane section: $\operatorname{vol}_{n-d}(Q_n \cap (E+\nu))$ is maximal for $E=(1,1,\ldots,1)^{\perp}$ whenever $\|\nu\|_2 \in (\sqrt{n-1},\sqrt{n})$ (Moody, Stone, Zach, Zvavitch).
- Upper estimate for hyperplane sections (Koldobsky, König).

The position of the maximal section depends on the distance.

Question

Is it true that
$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $||v||_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
?

Distance $\frac{1}{2}$ is critical.

• Let
$$E = e_1^{\perp}$$
. If $v = \left(\frac{1}{2} - \varepsilon\right) e_1$, then $\operatorname{vol}_{n-1}(Q_n \cap (E + v)) = 1$.

Question

Is it true that
$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $\|v\|_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
?

Distance $\frac{1}{2}$ is critical.

- Let $E = e_1^{\perp}$. If $v = \left(\frac{1}{2} \varepsilon\right) e_1$, then $\operatorname{vol}_{n-1}(Q_n \cap (E + v)) = 1$.
- Let $E = e_1^{\perp}$. If $v = (\frac{1}{2} + \varepsilon) e_1$, then $Q_n \cap (E + v) = \emptyset$.

Question

Is it true that
$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $||v||_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
?

Distance $\frac{1}{2}$ is critical.

- Let $E = e_1^{\perp}$. If $v = \left(\frac{1}{2} \varepsilon\right) e_1$, then $\operatorname{vol}_{n-1}(Q_n \cap (E + v)) = 1$.
- Let $E = e_1^{\perp}$. If $v = \left(\frac{1}{2} + \varepsilon\right) e_1$, then $Q_n \cap (E + v) = \emptyset$.
- Let $E = (e_1 + \varepsilon e_2)^{\perp}$. If $v = \frac{1}{2\sqrt{1+\varepsilon^2}}(e_1 + \varepsilon e_2)$, then $\operatorname{vol}_{n-1}(Q_n \cap (E+v)) \approx \frac{1}{2}$.

Lower bound - general dimension

Question

Is it true that

$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $\|v\|_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
?

Lower bound - general dimension

Theorem (König-R')

It is true that

$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $\|v\|_2 \le \frac{1}{2}$

for
$$\dim(E) = n - d$$
.

Lower bound - general dimension

Theorem (König-R')

It is true that

$$\operatorname{vol}_{n-d}(Q_n \cap (E+v)) \ge \phi(d)$$
 whenever $\|v\|_2 \le \frac{1}{2}$

 $for \dim(E) = n - d.$

Remark

The bound $\phi(d)$ is not efficient: the proof yields $\phi(d) = O(\exp(Cd^c))$. We will return to this later.

Proof ideas

• We repeatedly pass from probabilistic to geometric version of the question until it becomes elementary.

Proof ideas

- We repeatedly pass from probabilistic to geometric version of the question until it becomes elementary.
- ② Divide and concur: treat compressible and incompressible vectors differently.

Step 1: vectors with a large ℓ_{∞} norm.

Our goal:
$$f_{PX}\left(\frac{1}{2}v\right) \ge \phi(d)$$
 (*)

• Probability. Let $P = P_{E^{\perp}}$. Then $P = \sum_{j=1}^{n} (Pe_j)(Pe_j)^{\top}$. This allows to prove (*) using characteristic functions if $v \parallel Pe_j$ and $\parallel Pe_j \parallel_2 \geq 1 - \varepsilon_1(d)$.

Step 1: vectors with a large ℓ_{∞} norm.

Our goal:
$$f_{PX}\left(\frac{1}{2}v\right) \ge \phi(d)$$
 (*)

- Probability. Let $P = P_{E^{\perp}}$. Then $P = \sum_{j=1}^{n} (Pe_j)(Pe_j)^{\top}$. This allows to prove (*) using characteristic functions if $v \parallel Pe_j$ and $\parallel Pe_j \parallel_2 \geq 1 \varepsilon_1(d)$.
- **②** Geometry. Assume that $||Pe_j||_2 \ge 1 \varepsilon_2(d)$ and v is almost parallel to Pe_j :

$$v' = v + tw$$
 where $w \in E^{\perp}$, $w \perp v$

Then (*) holds for v' if $|t| \le \delta(d)$ (log concavity implies that $f_{PX}\left(\frac{1}{2}(v+tw)\right)$ cannot decay too fast).

Step 1: vectors with a large ℓ_{∞} norm.

Our goal:
$$f_{PX}\left(\frac{1}{2}v\right) \ge \phi(d)$$
 (*)

- Probability. Let $P = P_{E^{\perp}}$. Then $P = \sum_{j=1}^{n} (Pe_j)(Pe_j)^{\top}$. This allows to prove (*) using characteristic functions if $v \parallel Pe_j$ and $\parallel Pe_j \parallel_2 \geq 1 \varepsilon_1(d)$.
- **②** Geometry. Assume that $||Pe_j||_2 \ge 1 \varepsilon_2(d)$ and v is almost parallel to Pe_j :

$$v' = v + tw$$
 where $w \in E^{\perp}$, $w \perp v$

- Then (*) holds for v' if $|t| \le \delta(d)$ (log concavity implies that $f_{PX}\left(\frac{1}{2}(v+tw)\right)$ cannot decay too fast).
- Assume that $\|v\|_{\infty} \ge 1 \varepsilon_3(d)$. Then (*) holds (combination of 1 and 2).

Incompressible = small coordinates carry non-negligible mass.

• Probability. Let X be a random vector uniformly distributed in Q_n . For any $\varepsilon > 0$, there exist $\delta, \eta > 0$ such that if $J_{\delta} = \{j : |u_j| < \delta\}$ and $\sum_{j \in J_{\delta}} u_j^2 > \varepsilon^2$ then $\mathbb{P}(\langle X, u \rangle \geq 1) \geq \eta$. Proof: Berry-Esseen theorem.

Incompressible = small coordinates carry non-negligible mass.

- Probability. Let X be a random vector uniformly distributed in Q_n . For any $\varepsilon > 0$, there exist $\delta, \eta > 0$ such that if $J_{\delta} = \{j: |u_j| < \delta\}$ and $\sum_{j \in J_{\delta}} u_j^2 > \varepsilon^2$ then $\mathbb{P}\left(\langle X, u \rangle \geq 1\right) \geq \eta$. Proof: Berry-Esseen theorem.
- Berry-Esseen theorem does not provide any density bounds.
- **3** Geometry. Let $D := \{ y \in E^{\perp} : f_{PX}(y) \ge f_{PX}(\frac{1}{2}v) \}$ (convex and symmetric)

Incompressible = small coordinates carry non-negligible mass.

- Probability. Let X be a random vector uniformly distributed in Q_n . For any $\varepsilon > 0$, there exist $\delta, \eta > 0$ such that if $J_{\delta} = \{j : |u_j| < \delta\}$ and $\sum_{j \in J_{\delta}} u_j^2 > \varepsilon^2$ then $\mathbb{P}\left(\langle X, u \rangle \geq 1\right) \geq \eta$. Proof: Berry-Esseen theorem.
- Berry-Esseen theorem does not provide any density bounds.
- **②** Geometry. Let $D := \{ y \in E^{\perp} : f_{PX}(y) \ge f_{PX}\left(\frac{1}{2}v\right) \}$ (convex and symmetric) Let $S \subset E^{\perp}$ be a supporting hyperplane to D at v in E^{\perp} . Write $S = \tau u + L$, where $u \in E^{\perp} \cap S^{n-1}$ satisfies $u \perp L$, and $\tau \in [0, \frac{1}{2}]$.

Incompressible = small coordinates carry non-negligible mass.

- Probability. Let X be a random vector uniformly distributed in Q_n . For any $\varepsilon > 0$, there exist $\delta, \eta > 0$ such that if $J_{\delta} = \{j: |u_j| < \delta\}$ and $\sum_{j \in J_{\delta}} u_j^2 > \varepsilon^2$ then $\mathbb{P}\left(\langle X, u \rangle \geq 1\right) \geq \eta$. Proof: Berry-Esseen theorem.
- Berry-Esseen theorem does not provide any density bounds.
- **②** Geometry. Let $D := \{ y \in E^{\perp} : f_{PX}(y) \ge f_{PX}\left(\frac{1}{2}v\right) \}$ (convex and symmetric) Let $S \subset E^{\perp}$ be a supporting hyperplane to D at v in E^{\perp} . Write $S = \tau u + L$, where $u \in E^{\perp} \cap S^{n-1}$ satisfies $u \perp L$, and $\tau \in [0, \frac{1}{2}]$.

Then
$$f_{PX}\left(\frac{1}{2}v\right) \geq c(d)\Big(\mathbb{P}\left(\langle X,u\rangle \geq \tau\right)\Big)^{1+d/2}.$$

Compressible vectors: $\sum_{|u_j|<\delta} u_j^2 < \varepsilon(d)$.

Need:
$$\mathbb{P}(\langle X, u \rangle \geq \tau) \geq \psi(d)$$
.
 $\langle X, u \rangle = \sum_{i} u_{i}X_{i} + \sum_{j} u_{j}X_{j} =: Y + Z$.

- Incompressible vectors: drop Z and work with Y.
- Compressible vectors: drop *Y* and work with *Z*.

Compressible vectors: $\sum_{|u_j|<\delta} u_j^2 < \varepsilon(d)$.

Need:
$$\mathbb{P}(\langle X, u \rangle \geq \tau) \geq \psi(d)$$
.
 $\langle X, u \rangle = \sum_{|u_j| < \delta} u_j X_j + \sum_{|u_j| \geq \delta} u_j X_j =: Y + Z$.

- Incompressible vectors: drop Z and work with Y.
- Compressible vectors: drop *Y* and work with *Z*.

We have to bound below

$$\mathbb{P}\left(\langle X, \frac{w}{\|w\|_2} \rangle > \frac{\tau}{\|w\|_2}\right), \text{ where } w = \sum_{|u_j| \ge \delta} u_j e_j.$$

We reduced the original question to a similar one

Compressible vectors: $\sum_{|u_j|<\delta} u_j^2 < \varepsilon(d)$.

Need:
$$\mathbb{P}(\langle X, u \rangle \geq \tau) \geq \psi(d)$$
.
 $\langle X, u \rangle = \sum_{|u_j| < \delta} u_j X_j + \sum_{|u_j| \geq \delta} u_j X_j =: Y + Z$.

- Incompressible vectors: drop Z and work with Y.
- Compressible vectors: drop *Y* and work with *Z*.

We have to bound below

$$\mathbb{P}\left(\langle X, \frac{w}{\|w\|_2} \rangle > \frac{\tau}{\|w\|_2}\right), \text{ where } w = \sum_{|u_j| \ge \delta} u_j e_j.$$

We reduced the original question to a similar one in dimension $\leq \delta^{-2} = \delta^{-2}(d)$ independent of n.

We can now allow a bound depending on the ambient dimension.

We have to bound below

$$\mathbb{P}\left(\langle X, \frac{w}{\|w\|_2} \rangle > \frac{\tau}{\|w\|_2}\right), \text{ where } w = \sum_{|u_j| \ge \delta} u_j e_j.$$

Here $\tau < \frac{1}{2}$. However, $\frac{\tau}{\|w\|_2}$ can a priory be greater than $\frac{1}{2}$, and the section can miss the cube entirely. We have to analyze this situation.

We have to bound below

$$\mathbb{P}\left(\langle X, \frac{w}{\|w\|_2} \rangle > \frac{\tau}{\|w\|_2}\right), \text{ where } w = \sum_{|u_j| \ge \delta} u_j e_j.$$

Here $\tau < \frac{1}{2}$. However, $\frac{\tau}{\|w\|_2}$ can a priory be greater than $\frac{1}{2}$, and the section can miss the cube entirely. We have to analyze this situation.

Recall that $||w||_2 \ge 1 - \varepsilon(d)$ since the vector is compressible.

Hence, $\frac{\tau}{\|w\|_2}$ can be only slightly greater than $\frac{1}{2}$. In this case, if the section misses the cube, then

$$\left\| \frac{w}{\|w\|_2} \right\|_{\infty} > 1 - \varepsilon'(d)$$

We have to bound below

$$\mathbb{P}\left(\langle X, \frac{w}{\|w\|_2} \rangle > \frac{\tau}{\|w\|_2}\right), \quad \text{where } w = \sum_{|u_j| \ge \delta} u_j e_j.$$

Here $\tau < \frac{1}{2}$. However, $\frac{\tau}{\|w\|_2}$ can a priory be greater than $\frac{1}{2}$, and the section can miss the cube entirely. We have to analyze this situation.

Recall that $||w||_2 \ge 1 - \varepsilon(d)$ since the vector is compressible.

Hence, $\frac{\tau}{\|\mathbf{w}\|_2}$ can be only slightly greater than $\frac{1}{2}$. In this case, if the section misses the cube, then

$$\left\| \frac{w}{\|w\|_2} \right\|_{\infty} > 1 - \varepsilon'(d)$$

- The section does not miss the cube elementary geometry + Vaaler's theorem.
- $\left\| \frac{w}{\|w\|_2} \right\|_{\infty} > 1 \varepsilon'(d)$ already excluded at the beginning.

One-dimensional marginals a.k.a. hyperplane sections

A "reasonable" bound

Theorem (König-R')

Let $E \subset \mathbb{R}^n$ be a hyperplane. Then

$$f_{P_{E^{\perp}}X}(v) = \operatorname{vol}_{n-d}(Q_n \cap (E+v)) > \frac{1}{17}$$
 whenever $\|v\|_2 \leq \frac{1}{2}$

A "reasonable" bound

Theorem (König-R')

Let $E \subset \mathbb{R}^n$ be a hyperplane. Then

$$f_{P_{E^{\perp}}X}(v) = \text{vol}_{n-d}(Q_n \cap (E+v)) > \frac{1}{17} \text{ whenever } ||v||_2 \le \frac{1}{2}$$

Remark: this is at most 5.2 times smaller than the optimal bound.

Fourier analysis at work

Theorem (Polya)

Let $a \in S^{n-1}$ and let $E = a^{\perp} \subset \mathbb{R}^n$ be a hyperplane. Then

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \frac{2}{\pi} \int_0^\infty \prod_{j=1}^n \frac{\sin(a_j s)}{a_j s} \cos s \, ds$$

Remark: this is an oscillating integral. It is highly unstable.

Fourier analysis at work

Theorem (Polya)

Let $a \in S^{n-1}$ and let $E = a^{\perp} \subset \mathbb{R}^n$ be a hyperplane. Then

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \frac{2}{\pi} \int_0^\infty \prod_{j=1}^n \frac{\sin(a_j s)}{a_j s} \cos s \, ds$$

Remark: this is an oscillating integral. It is highly unstable.

Lemma

Let U_1, \ldots, U_n be a sequence of i.i.d. random vectors uniformly distributed on the sphere $S^2 \subset \mathbb{R}^3$.

Then for any $a \in S^{n-1}$,

$$vol_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{dm(U)}{|\sum_{j=1}^n a_j U_j|}$$

Fourier analysis at work

Lemma

Let U_1, \ldots, U_n be a sequence of i.i.d. random vectors uniformly distributed on the sphere $S^2 \subset \mathbb{R}^3$.

Then for any $a \in S^{n-1}$,

$$vol_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{dm(U)}{|\sum_{j=1}^n a_j U_j|}$$

Fourier analysis at work

Lemma

Let U_1, \ldots, U_n be a sequence of i.i.d. random vectors uniformly distributed on the sphere $S^2 \subset \mathbb{R}^3$.

Then for any $a \in S^{n-1}$,

$$vol_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{dm(U)}{|\sum_{j=1}^n a_j U_j|}$$

If $e \in S^2$, then $\langle U, e \rangle \sim Uni([-1, 1])$. Hence,

$$\int_{S^2} \exp(it \langle e, U \rangle) dm(u) = \frac{\sin(t)}{t}$$

Fourier analysis at work

Lemma

Let U_1, \ldots, U_n be a sequence of i.i.d. random vectors uniformly distributed on the sphere $S^2 \subset \mathbb{R}^3$.

Then for any $a \in S^{n-1}$,

$$vol_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{dm(U)}{|\sum_{j=1}^n a_j U_j|}$$

If $e \in S^2$, then $\langle U, e \rangle \sim Uni([-1, 1])$. Hence,

$$\int_{S^2} \exp(it \langle e, U \rangle) \, dm(u) = \frac{\sin(t)}{t}$$

Applying this twice, we get

$$\prod_{j=1}^{n} \frac{\sin(a_{j}s)}{a_{j}s} = \int_{(S^{2})^{n}} \frac{\sin(|\sum_{j=1}^{n} a_{j}U_{j}|s)}{|\sum_{j=1}^{n} a_{j}U_{j}|s} dm(U)$$

Fourier analysis at work

Lemma

Let U_1, \ldots, U_n be a sequence of i.i.d. random vectors uniformly distributed on the sphere $S^2 \subset \mathbb{R}^3$.

Then for any $a \in S^{n-1}$,

$$vol_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{dm(U)}{|\sum_{j=1}^n a_j U_j|}$$

If $e \in S^2$, then $\langle U, e \rangle \sim Uni([-1, 1])$. Hence,

$$\int_{S^2} \exp(it \langle e, U \rangle) \, dm(u) = \frac{\sin(t)}{t}$$

Applying this twice, we get

$$\int_0^\infty \prod_{j=1}^n \frac{\sin(a_j s)}{a_j s} \cos s \, ds = \int_0^\infty \int_{(S^2)^n} \frac{\sin(|\sum_{j=1}^n a_j U_j| s)}{|\sum_{j=1}^n a_j U_j| s} \, dm(U) \cos s \, ds$$

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{d\mathbb{P}}{|\sum_{j=1}^n a_j U_j|}$$
$$= \int_0^1 \mathbb{P}\left(1 \le |\sum_{j=1}^n a_j U_j| < \frac{1}{s}\right) ds$$

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{d\mathbb{P}}{|\sum_{j=1}^n a_j U_j|}$$
$$= \int_0^1 \mathbb{P}\left(1 \le |\sum_{j=1}^n a_j U_j| < \frac{1}{s}\right) ds$$

 $\sum_{j=1}^{n} a_j U_j$ is a subgaussian random variable

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) \succeq \mathbb{P}\left(1 \le |\sum_{j=1}^n a_j U_j|\right)$$

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{d\mathbb{P}}{|\sum_{j=1}^n a_j U_j|}$$
$$= \int_0^1 \mathbb{P}\left(1 \le |\sum_{j=1}^n a_j U_j| < \frac{1}{s}\right) ds$$

 $\sum_{j=1}^{n} a_j U_j$ is a subgaussian random variable

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) \succeq \mathbb{P}\left(1 \le |\sum_{j=1}^n a_j U_j|^2\right)$$

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) = \int_{|\sum_{j=1}^n a_j U_j| \ge 1} \frac{d\mathbb{P}}{|\sum_{j=1}^n a_j U_j|}$$
$$= \int_0^1 \mathbb{P}(1 \le |\sum_{j=1}^n a_j U_j| < \frac{1}{s}) ds$$

 $\sum_{j=1}^{n} a_j U_j$ is a subgaussian random variable

$$\operatorname{vol}_{n-d}(Q_n \cap (E + \frac{1}{2}a)) \succeq \mathbb{P}\left(1 \le |\sum_{j=1}^n a_j U_j|^2\right)$$
$$= \mathbb{P}\left(\sum_{1 \le i < j \le n} a_i a_j \langle U_i, U_j \rangle \ge 0\right)$$

Probability of positivity

We reduced the original problem to finding a lower bound for $\mathbb{P}(Y > 0)$, where

$$Y = \sum_{1 \le i < j \le n} a_i a_j \langle U_i, U_j \rangle \quad \text{with } a \in S^{n-1}, \ U_1, \dots, U_n \text{ i.i.d. } Uni(S^2)$$

Note that $\mathbb{E}Y = 0$ and Y is **not** symmetric.

Probability of positivity

We reduced the original problem to finding a lower bound for $\mathbb{P}(Y > 0)$, where

$$Y = \sum_{1 \le i < j \le n} a_i a_j \langle U_i, U_j \rangle \quad \text{with } a \in S^{n-1}, \ U_1, \dots, U_n \text{ i.i.d. } Uni(S^2)$$

Note that $\mathbb{E}Y = 0$ and Y is **not** symmetric.

Let $\|\cdot\|_L$, $\|\cdot\|_M$ be dual Orlicz norms. Then

$$\mathbb{E}Y_{+} = \mathbb{E}(Y_{+} \cdot \mathbf{1}_{(0,\infty)}) \le ||Y_{+}||_{L} \cdot ||\mathbf{1}_{(0,\infty)}(Y)||_{M}$$

 $\|\mathbf{1}_{(0,\infty)}(Y)\|_{M}$ can be used to estimate $\mathbb{P}(Y>0)$.

Probability of positivity

We reduced the original problem to finding a lower bound for $\mathbb{P}(Y > 0)$, where

$$Y = \sum_{1 \le i < j \le n} a_i a_j \langle U_i, U_j \rangle \quad \text{with } a \in S^{n-1}, \ U_1, \dots, U_n \text{ i.i.d. } Uni(S^2)$$

Note that $\mathbb{E}Y = 0$ and Y is **not** symmetric.

Let $\|\cdot\|_L$, $\|\cdot\|_M$ be dual Orlicz norms. Then

$$\mathbb{E}Y_+ = \mathbb{E}(Y_+ \cdot \mathbf{1}_{(0,\infty)}) \le \|Y_+\|_L \cdot \|\mathbf{1}_{(0,\infty)}(Y)\|_M$$

 $\|\mathbf{1}_{(0,\infty)}(Y)\|_{M}$ can be used to estimate $\mathbb{P}(Y>0)$.

The faster L grows, the better the estimate is. Choose L of the exponential type. We need to bound

$$\mathbb{E}Y_+ = \frac{1}{2}\mathbb{E}|Y|$$
 below and $\mathbb{E}\exp(\lambda Y_+)$ above

Exponential moment

We need to bound

$$\mathbb{E}\exp(\lambda Y_+)$$

Lemma

Let Y be a real-valued random variable such that $\mathbb{E}Y = 0$. Then for any $\lambda > 0$,

$$\mathbb{E} \exp(\lambda Y_+) \le \mathbb{E} \exp(\lambda Y) + \mathbb{E} \exp(-\lambda Y).$$

Exponential moment

We need to bound

$$\mathbb{E}\exp(\lambda Y_+)$$

Lemma

Let Y be a real-valued random variable such that $\mathbb{E}Y = 0$. Then for any $\lambda > 0$,

$$\mathbb{E} \exp(\lambda Y_+) \le \mathbb{E} \exp(\lambda Y) + \frac{1}{4} \mathbb{E} \exp(-\lambda Y).$$

Exponential moment

We need to bound

$$\mathbb{E}\exp(\lambda Y_+)$$

Lemma

Let Y be a real-valued random variable such that $\mathbb{E}Y = 0$. Then for any $\lambda > 0$,

$$\mathbb{E} \exp(\lambda Y_+) \leq \mathbb{E} \exp(\lambda Y) + \frac{1}{4} \mathbb{E} \exp(-\lambda Y).$$

Remark. If $\mathbb{E} \exp(-\lambda Y) > 2$, then one can obtain a better bound

$$\mathbb{E} \exp(\lambda Y_+) \le \mathbb{E} \exp(\lambda Y) - (\mathbb{E} \exp(-\lambda Y))^{-1} + 1$$

It remains to bound the Laplace transform of Y.

Laplace transform

We need to bound

$$\mathbb{E} \exp(\lambda Y)$$
 for $Y = \sum_{1 \le i < j \le n} a_i a_j \langle U_i, U_j \rangle$

Here $a \in S^{n-1}$, U_1, \ldots, U_n are i.i.d. $Uni(S^2)$ random variables.

 U_1, \ldots, U_n are subgaussian random vectors. Y is a quadratic form of their coordinates

we can use

the Hanson-Wright inequality

Laplace transform

We need to bound

$$\mathbb{E} \exp(\lambda Y)$$
 for $Y = \sum_{1 \le i < j \le n} a_i a_j \langle U_i, U_j \rangle$

Here $a \in S^{n-1}$, U_1, \ldots, U_n are i.i.d. $Uni(S^2)$ random variables.

 U_1, \ldots, U_n are subgaussian random vectors. Y is a quadratic form of their coordinates

we can use the Laplace transform proof of the Hanson-Wright inequality and the spectral structure of the quadratic form