Random Optimisation Problems

Amin Coja-Oghlan

partly based on joint work with Philipp Loick, Balazs Mezei, Greg Sorkin thanks to Philipp for helping with the pictures!

Goethe Universität Frankfurt

Part 1

Motivation

- what are random optimisation problems?
- and what are they good for?

What are random optimisation problems?

Examples

- ► minimum spanning trees with random weights [F85,...]
- ► planted clique [AKS98,...]
- MAX CUT on random graphs

[CGHS04,...]

Hypothesis: hard instances are rare...

-but real-world instances are easy!
- random models of real-world problems?
- semi-random, smoothed, power law...
- where are the really hard problems?

[FK01,ST01,FR19]

Number of solved instances CPU time 4,000s

Example: SAT solving

- 10m variables, 32m clauses
- 2020 winner KISSAT based on clause learning [BFFH2020]
- real-world SAT instances solved on an industrial scale

Number of solved instances CPU time 4,000s

Example: random k-SAT

- satisfiability threshold $m/n \sim 2^k \log 2$
- algorithmic barrier $m/n \sim 2^k \log(k)/k$

[DSS15] [ACO08,CO09]

Hypothesis: hard instances are rare...

- ... but real-world instances are easy! [they are structured]
- can random instances model real-world problems? [not really]
- semi-random, smoothed, power law...
- where are the really hard problems?

[excess entropy]

[try random ones!]

The probabilistic method

Success stories

[personal selection]

- low-density parity check codes
- compressed sensing
- group testing

[G63,KRU11] [KMSSZ12,DJM13] [COGHKL20]

A glimpse of complexity?

- proof complexity
- planted clique vs SOS
- k-SAT refutation
- overlap gap property
- statistical algorithms

[BSW00,...] [DM15,BHKKMP19,...] [F02,F007,COGL04,KMODW17,...] [GS14,GZ19,BAWZ20,...] [FPV13,SW20]

Techniques

- what can we prove about random optimisation problems?
- what techniques do we have at our disposal?

Running example

MAXCUT on random regular graphs

 $\mathbb{G} = \mathbb{G}(n, d)$ random *d*-regular graph of order *n*

MAXCUT(G) =
$$\max_{\sigma \in \{\pm 1\}^n} \sum_{v \, w \in E(G)} \frac{1 - \sigma_v \sigma_w}{2}$$

Combinatorial bounds

Greedy algorithms

[DDSW03]

- assign each vertex the minority spin amongst its neighbours
- method of differential equations

Combinatorial bounds

The first moment bound

The expected number of cuts of size $\alpha dn/2$ equals

$$\exp\left(n\left[\left(1-\frac{d}{2}\right)\log 2+\frac{d}{2}H(\alpha)+o(1)\right]\right)$$

The physics perspective

The Ising antiferromagnet

For an inverse temperature $\beta \ge 0$ introduce

$$\mathcal{H}_{\mathbb{G}}(\sigma) = \sum_{v \, w \in E(\mathbb{G})} \frac{1 + \sigma_v \sigma_w}{2}$$
$$Z_{\mathbb{G},\beta} = \sum_{\sigma \in \{\pm 1\}^n} \exp(-\beta \mathcal{H}_{\mathbb{G}}(\sigma))$$
$$\mu_{\mathbb{G},\beta}(\sigma) = \exp(-\beta \mathcal{H}_{\mathbb{G}}(\sigma)) / Z_{\mathbb{G},\beta}$$

The physics perspective

The Ising antiferromagnet

The average number of edges cut equals

$$\frac{dn}{2} - \left\langle \mathcal{H}_{\mathbb{G}}(\boldsymbol{\sigma}), \mu_{\mathbb{G},\beta} \right\rangle = \frac{dn}{2} + \frac{\partial}{\partial\beta} \log Z_{\mathbb{G},\beta}$$

• Taking $\beta \to \infty$ yields

MAXCUT(G) =
$$\lim_{\beta \to \infty} \frac{dn}{2} + \frac{\partial}{\partial \beta} \log Z_{G,\beta}$$

Absence of long-range correlations

[KMRTSZ07]

Gibbs uniqueness: the root decouples from the boundary Non-reconstruction: decoupling from a typical boundary Static replica symmetry: $\mathbb{E} \left| \mu_{\mathbb{G},\beta} \left(\{ \boldsymbol{\sigma}_{v_1} = \boldsymbol{\sigma}_{v_2} \} \right) - \frac{1}{2} \right| = o(1)$

Replica symmetry breaking

First moment redux

- ► assume static replica symmetry, assemble G one edge at a time
- every time we insert a new edge e = v w,

$$\frac{Z_{\mathbb{G},\beta}(\mathbb{G}+\boldsymbol{e})}{Z_{\mathbb{G},\beta}} \sim 1 - (1 - \mathrm{e}^{-\beta})\mu_{\mathbb{G},\beta}\left(\{\boldsymbol{\sigma}_{\boldsymbol{v}} = \boldsymbol{\sigma}_{\boldsymbol{w}}\}\right) \sim \frac{1 + \mathrm{e}^{-\beta}}{2}$$
$$\frac{1}{n}\log Z_{\mathbb{G},\beta} \sim \log 2 + \frac{d}{2}\log\frac{1 + \mathrm{e}^{-\beta}}{2} = \frac{1}{n}\log\mathbb{E}[Z_{\mathbb{G},\beta}]$$

Pure states

[KMRTSZ07]

low β the cross-section is contiguous high β decomposition into separate pure states

Replica symmetry breaking $-\frac{1}{1}$ 0 1 $-\frac{1}{1}$ 0 1 $-\frac{1}{1}$ 0 1 $-\frac{1}{1}$ 0 1

The overlap

[KMRTSZ07]

replica symmetry the overlap $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}' / n$ concentrates about 0 1-step replica symmetry breaking concentration on two points full replica symmetry breaking no overlap concentration The replica symmetry breaking transition

The free energy The singularities of

$$\phi_d(\beta) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[\log Z_{\mathbb{G},\beta}]$$

are called *phase transitions*.

The replica symmetry breaking transition

Theorem

[COLMS20]

For any $d \ge 3$ we have

$$\begin{split} \phi_d(\beta) &= \log 2 + \frac{d}{2} \log \frac{1 + e^{-\beta}}{2} & \text{if } \beta \leq \beta^*(d) = \log \frac{\sqrt{d-1} + 1}{\sqrt{d-1} - 1} \\ \phi_d(\beta) &< \log 2 + \frac{d}{2} \log \frac{1 + e^{-\beta}}{2} & \text{if } \beta > \beta^*(d) \end{split}$$

The replica symmetry breaking transition

Non-reconstruction/Kesten-Stigum

- broadcasting on the (d-1)-ary tree
- reconstruction threshold at $\beta^*(d) = \log \frac{\sqrt{d-1}+1}{\sqrt{d-1}-1}$
- Gibbs uniqueness threshold at $\beta^{\dagger}(d) = \log \frac{d}{d-2}$

First attempt

The second moment method

$$\mathbb{E}[Z_{\mathbb{G},\beta}^{2}] = \sum_{\sigma,\sigma' \in \{\pm 1\}^{n}} \mathbb{E}\left[\exp(-\beta\mathcal{H}_{\mathbb{G}}(\sigma) - \beta\mathcal{H}_{\mathbb{G}}(\sigma'))\right]$$
$$= \sum_{a=-n}^{n} \sum_{\sigma,\sigma'=a} \mathbb{E}\left[\exp(-\beta\mathcal{H}_{\mathbb{G}}(\sigma) - \beta\mathcal{H}_{\mathbb{G}}(\sigma'))\right]$$
$$= \exp\left(n \max_{\alpha \in [-1,1]} f_{d,\beta}(\alpha) + o(n)\right)$$

$$f_{d,\beta}(\alpha) = (1-d)\log 2 + H\left(\frac{1+\alpha}{2}\right) + \frac{d}{2}\log\left((1+{\rm e}^{-\beta})^2 + \alpha^2(1-{\rm e}^{-\beta})^2\right).$$

First attempt

The second moment method

- ► $\mathbb{E}[Z^2_{\mathbb{G},\beta}] = O(\mathbb{E}[Z_{\mathbb{G},\beta}]^2)$ iff $f_{d,\beta}(\alpha)$ attains its max at $\alpha = 0$
- this is the case iff $\beta < \beta^*(d+1) < \beta^*(d)$

First attempt

The Erdős-Rényi model

- identical first/second moments
- ▶ Po(*d*) offspring in the Erdős-Rényi model
- phase transition at $\beta^*(d+1)$

[MNS15]

... aka stochastic block model

- draw a configuration $\boldsymbol{\sigma}^* \in \{\pm 1\}^n$
- draw a *d*-regular graph \mathbb{G}^* from

$$\mathbb{P}\left[\mathbb{G}^* = G \mid \boldsymbol{\sigma}^*\right] \propto \exp(-\beta \mathcal{H}_G(\boldsymbol{\sigma}^*))$$

$$\blacktriangleright \mathbb{P}[\mathbb{G}^* \in \mathscr{E}] = \Theta(\mathbb{E}[Z_{\mathbb{G},\beta} \cdot \mathbb{1}\{\mathbb{G} \in \mathscr{E}\}])$$

... aka stochastic block model

- draw a configuration $\boldsymbol{\sigma}^* \in \{\pm 1\}^n$
- draw a *d*-regular graph \mathbb{G}^* from

$$\mathbb{P}\left[\mathbb{G}^* = G \mid \boldsymbol{\sigma}^*\right] \propto \exp(-\beta \mathcal{H}_G(\boldsymbol{\sigma}^*))$$

$$\blacktriangleright \mathbb{P}[\mathbb{G}^* \in \mathscr{E}] = \Theta(\mathbb{E}[Z_{\mathbb{G},\beta} \cdot \mathbb{1}\{\mathbb{G} \in \mathscr{E}\}])$$

The broadcasting process

- locally (\mathbb{G}^*, σ^*) resembles the broadcasing process
- ► ⇒ $\mu_{\mathbb{G}^*,\beta}$ has static replica symmetry for $\beta < \beta^*(d)$
- ► ⇒ overlap concentrates about zero for $\beta < \beta^*(d)$ [cf. MNS15]

 $\mu_{\mathbb{G}^*,\beta}(\{\boldsymbol{\sigma}\cdot\boldsymbol{\sigma}'/n<\varepsilon\})\sim 1$

The truncated second moment

- $\blacktriangleright \ \mathcal{E} = \left\{ \mu_{\mathbb{G},\beta}(\{\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}' / n < \varepsilon\}) \sim 1 \right\}$
- $\blacktriangleright \ \mathbb{E}[Z_{\mathbb{G},\beta} \cdot \mathbb{1}\{\mathbb{G} \in \mathcal{E}\}] \sim \mathbb{E}[Z_{\mathbb{G},\beta}]$
- $\models \mathbb{E}[Z^2_{\mathbb{G},\beta} \cdot \mathbb{I}\{\mathbb{G} \in \mathcal{E}\}] = \mathbb{E}[Z_{\mathbb{G},\beta}]^2 \cdot \exp(\varepsilon^2 n)$
- Paley-Zygmund inequality

 $\Rightarrow \qquad Z_{\mathbb{G},\beta} \geq Z_{\mathbb{G},\beta} \cdot \mathbb{1}\{\mathbb{G} \in \mathscr{E}\} \geq \mathbb{E}[Z_{\mathbb{G},\beta}] \cdot \exp(o(n)) \text{ w.h.p.}$

The first part of the theorem follows.

The planted model diverges

Quiet vs noisy planting

- $\log Z_{G,\beta}$ is tightly concetrated about $\mathbb{E}[\log Z_{G,\beta}]$
- $\bullet \Rightarrow \text{if } \mathbb{E}[\log Z_{\mathbb{G},\beta}] \sim \log \mathbb{E}[Z_{\mathbb{G},\beta}], \text{ then } \mathbb{G} \approx \mathbb{G}^*$

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[\log Z_{\mathbb{G}^*,\beta}] > \log 2 + \frac{d}{2} \log \frac{1 + e^{-\beta}}{2} \ge \phi_d(\beta)$$
$$\Rightarrow \quad \phi_d(\beta) < \log 2 + \frac{d}{2} \log \frac{1 + e^{-\beta}}{2}$$

The planted model diverges

The planted free energy

[COHKLMPP20]

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[\log Z_{\mathbb{G}^*,\beta}] = \sup_{\pi} \mathscr{B}_{d,\beta}^*(\pi)$$
$$\mathscr{B}_{d,\beta}^*(\pi) = \mathbb{E}\Big[\frac{\Lambda \left(\sum_{\sigma=\pm 1} \prod_{i=1}^d 1 - (1 - e^{-\beta})(1 + \sigma \rho_i)/2\right)}{2^{1-d}(1 + e^{-\beta})^d} - \frac{d\Lambda \left(1 - (1 - e^{-\beta})(1 + \rho_1 \rho_2)/2\right)}{1 + e^{-\beta}}\Big]$$

 $\Lambda(x) = x \log x$

The planted model diverges

Lemma

For $\beta > \beta^*(d)$ there is $\varepsilon > 0$ such that $\pi_{\varepsilon} = \frac{1}{2} (\delta_{-\varepsilon} + \delta_{\varepsilon})$ satisfies

$$\mathscr{B}_{d,\beta}^*(\pi_{\varepsilon}) > \log 2 + \frac{d}{2}\log \frac{1 + \mathrm{e}^{-\beta}}{2}$$

Proof

- Compute the first four derivatives of $\varepsilon \mapsto \mathscr{B}^*_{d,\beta}(\pi_{\varepsilon})$
- (seriously...)

We thus obtain the second part of the theorem.

Theorem

For any $d \ge 3$, $\beta > 0$, any probability measure *r* on (-1, 1) and any 0 < y < 1 we have

$$\phi_{d}(\beta) \leq \frac{1}{y} \log \mathbb{E}[X^{y}] - \frac{d}{2y} \log \mathbb{E}[Y^{y}]$$
$$X = \sum_{\tau = \pm 1} \prod_{i=1}^{d} 1 - (1 - e^{-\beta}) \frac{1 + \tau \rho_{i}}{2}$$
$$Y = 1 - (1 - e^{-\beta}) \sum_{\tau = \pm 1} \frac{(1 + \tau \rho_{1})(1 + \tau \rho_{2})}{4}$$

Regular variant of [G03, FL03, PT04].

Pure states and Poisson-Dirichlet weights

- auxiliary model that represents the 1-step rsb scenario
- interpolation along time $t \in [0, 1]$
- *Hypothesis*: the weights of the pure states are Poisson–Dirichlet
- ► to bound MAX CUT we use MAXCUT(G) $\leq \frac{dn}{2} + \frac{1}{\beta} \log Z_{G,\beta}$

Theorem

N

For any $d \ge 3$ we have

$$\begin{aligned}
\mathsf{MAXCUT}(\mathbb{G}) &\leq \frac{dn}{2} \left(1 + \inf_{\alpha, z} - \frac{\log \zeta \mathscr{A}^d \xi}{\log z} + \frac{d \log(1 - 2\alpha^2 + 2\alpha^2 z)}{2 \log z} \right) \\
\zeta &= (1, 0, 0, \ldots) \qquad \xi = (1, z^{-1/2}, z^{-1}, \ldots)^T \\
\mathscr{A} &= (1 - 2\alpha) \mathrm{id} + 2\alpha \sqrt{z} \begin{bmatrix} 0 & 1 & 0 & \cdots & \cdots & \cdots \\ \frac{1}{2} & 0 & \frac{1}{2} & \ddots & \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & \ddots & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & & 0 & 1 & 0 \end{bmatrix}
\end{aligned}$$

Some numbers

d	3	4	5	6	7	8	9	10
1st mmt	0.9385	0.8900	0.8539	0.8260	0.8038	0.7855	0.7701	0.7570
new bound	0.9241	0.8683	0.8350	0.8049	0.7851	0.7659	0.7523	0.7388
greedy	0.9067	0.8333	0.7989	0.7775	0.7571	0.7404	0.7263	0.7144

Match the numbers of [ZB10].

Outlook

	Bethe states and precise variational formulas	[COP19]
	convergence to Sherrington–Kirkpatrick as d –	$\rightarrow \infty$ [DMS19]
	proof of the 1RSB formula in <i>k</i> -NAESAT	[SSZ16]
	breaking of 1RSB	[BSZ19]
	open: the Zdeborová–Boettcher conjecture	[ZB10]
	open: better MAX CUT algorithms	[see Eliran's talk]
	open: planted MAX CUT	[CO05]
•	open: ultrametricity and the Gibbs measure	[P13]

Summary

Random optimisaton problems

- hard but rewarding
- algorithmic challenges and new algorithms
- probabilistic constructions
- techniques:
 - physics-enhanced moment methods
 - the planted model
 - spatial mixing and asymptotic Gibbs measures
 - the interpolation method
 - coupling arguments