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Part 1

Motivation

Ï what are random optimisation problems?

Ï and what are they good for?



What are random optimisation problems?
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Examples

Ï minimum spanning trees with random weights [F85,. . . ]

Ï planted clique [AKS98,. . . ]

Ï MAX CUT on random graphs [CGHS04,. . . ]



The average case myth
n

n1/2

Hypothesis: hard instances are rare. . .

Ï . . . but real-world instances are easy!

Ï random models of real-world problems?

Ï semi-random, smoothed, power law. . . [FK01,ST01,FR19]

Ï where are the really hard problems?



The average case myth

Example: SAT solving

Ï 10m variables, 32m clauses

Ï 2020 winner KISSAT based on clause learning [BFFH2020]

Ï real-world SAT instances solved on an industrial scale



The average case myth

Example: random k-SAT

Ï satisfiability threshold m/n ∼ 2k log2 [DSS15]

Ï algorithmic barrier m/n ∼ 2k log(k)/k [ACO08,CO09]



The average case myth

Hypothesis: hard instances are rare. . .

Ï . . . but real-world instances are easy! [they are structured]

Ï can random instances model real-world problems? [not really]

Ï semi-random, smoothed, power law. . . [excess entropy]

Ï where are the really hard problems? [try random ones!]



The probabilistic method

Success stories [personal selection]

Ï low-density parity check codes [G63,KRU11]

Ï compressed sensing [KMSSZ12,DJM13]

Ï group testing [COGHKL20]



A glimpse of complexity?

Ï proof complexity [BSW00,. . . ]

Ï planted clique vs SOS [DM15,BHKKMP19,. . . ]

Ï k-SAT refutation [F02,FO07,COGL04,KMODW17,. . . ]

Ï overlap gap property [GS14,GZ19,BAWZ20,. . . ]

Ï statistical algorithms [FPV13,SW20]



Part 2

Techniques

Ï what can we prove about random optimisation problems?

Ï what techniques do we have at our disposal?



Running example

MAXCUT on random regular graphs

G=G(n,d) random d-regular graph of order n

MAXCUT(G) = max
σ∈{±1}n

∑
v w∈E(G)

1−σvσw

2
.



Combinatorial bounds

Greedy algorithms [DDSW03]

Ï assign each vertex the minority spin amongst its neighbours

Ï method of differential equations



Combinatorial bounds

The first moment bound

The expected number of cuts of size αdn/2 equals

exp

(
n

[(
1− d

2

)
log2+ d

2
H(α)+o(1)

])



The physics perspective

The Ising antiferromagnet

For an inverse temperature β≥ 0 introduce

HG(σ) = ∑
v w∈E(G)

1+σvσw

2

ZG,β =
∑

σ∈{±1}n

exp(−βHG(σ))

µG,β(σ) = exp(−βHG(σ))/ZG,β



The physics perspective

The Ising antiferromagnet

Ï The average number of edges cut equals

dn

2
−〈

HG(σ),µG,β
〉= dn

2
+ ∂

∂β
log ZG,β

Ï Taking β→∞ yields

MAXCUT(G) = lim
β→∞

dn

2
+ ∂

∂β
log ZG,β



Replica symmetry breaking

Absence of long-range correlations [KMRTSZ07]

Gibbs uniqueness: the root decouples from the boundary

Non-reconstruction: decoupling from a typical boundary

Static replica symmetry: E
∣∣µG,β

({
σv1 =σv2

})− 1
2

∣∣= o(1)



Replica symmetry breaking

First moment redux

Ï assume static replica symmetry, assemble G one edge at a time

Ï every time we insert a new edge e = v w ,

ZG,β(G+e)

ZG,β
∼ 1− (1−e−β)µG,β ({σv =σw }) ∼ 1+e−β

2

1

n
log ZG,β ∼ log2+ d

2
log

1+e−β

2
= 1

n
logE[ZG,β]



Replica symmetry breaking

Pure states [KMRTSZ07]

low β the cross-section is contiguous

high β decomposition into separate pure states



Replica symmetry breaking
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The overlap [KMRTSZ07]

replica symmetry the overlap σ ·σ′/n concentrates about 0

1-step replica symmetry breaking concentration on two points

full replica symmetry breaking no overlap concentration



The replica symmetry breaking transition

The free energy

The singularities of

φd (β) = lim
n→∞

1

n
E[log ZG,β]

are called phase transitions.



The replica symmetry breaking transition

Theorem [COLMS20]

For any d ≥ 3 we have

φd (β) = log2+ d

2
log

1+e−β

2
if β≤β∗(d) = log

p
d −1+1p
d −1−1

φd (β) < log2+ d

2
log

1+e−β

2
if β>β∗(d)



The replica symmetry breaking transition

Non-reconstruction/Kesten-Stigum

Ï broadcasting on the (d −1)-ary tree

Ï reconstruction threshold at β∗(d) = log
p

d−1+1p
d−1−1

Ï Gibbs uniqueness threshold at β†(d) = log d
d−2



First attempt

The second moment method

E[Z 2
G,β] = ∑

σ,σ′∈{±1}n

E
[
exp(−βHG(σ)−βHG(σ′))

]
=

n∑
a=−n

∑
σ·σ′=a

E
[
exp(−βHG(σ)−βHG(σ′))

]
= exp

(
n max
α∈[−1,1]

fd ,β(α)+o(n)

)

fd ,β(α) = (1−d) log2+H

(
1+α

2

)
+ d

2
log

(
(1+e−β)2 +α2(1−e−β)2

)
.



First attempt

The second moment method

Ï E[Z 2
G,β] =O(E[ZG,β]2) iff fd ,β(α) attains its max at α= 0

Ï this is the case iff β<β∗(d +1) <β∗(d)



First attempt

d-1 Po(d)

The Erdős-Rényi model

Ï identical first/second moments

Ï Po(d) offspring in the Erdős-Rényi model

Ï phase transition at β∗(d +1) [MNS15]



The planted model

. . . aka stochastic block model

Ï draw a configuration σ∗ ∈ {±1}n

Ï draw a d-regular graph G∗ from

P
[
G∗ =G |σ∗]∝ exp(−βHG (σ∗))

Ï P[G∗ ∈ E ] =Θ(E[ZG,β · 1{G ∈ E }])



The planted model

. . . aka stochastic block model

Ï draw a configuration σ∗ ∈ {±1}n

Ï draw a d-regular graph G∗ from

P
[
G∗ =G |σ∗]∝ exp(−βHG (σ∗))

Ï P[G∗ ∈ E ] =Θ(E[ZG,β · 1{G ∈ E }])



The planted model

The broadcasting process

Ï locally (G∗,σ∗) resembles the broadcasing process

Ï ⇒ µG∗,β has static replica symmetry for β<β∗(d)

Ï ⇒ overlap concentrates about zero for β<β∗(d) [cf. MNS15]

µG∗,β({σ ·σ′/n < ε}) ∼ 1



The planted model

The truncated second moment

Ï E = {
µG,β({σ ·σ′/n < ε}) ∼ 1

}
Ï E[ZG,β · 1{G ∈ E }] ∼ E[ZG,β]

Ï E[Z 2
G,β · 1{G ∈ E }] = E[ZG,β]2 ·exp(ε2n)

Ï Paley-Zygmund inequality

⇒ ZG,β ≥ ZG,β · 1{G ∈ E } ≥ E[ZG,β] ·exp(o(n)) w.h.p.

The first part of the theorem follows.



The planted model diverges

Quiet vs noisy planting

Ï log ZG,β is tightly concetrated about E[log ZG,β]

Ï ⇒ if E[log ZG,β] ∼ logE[ZG,β], then G≈G∗

lim
n→∞

1

n
E[log ZG∗,β] > log2+ d

2
log

1+e−β

2
≥φd (β)

⇒ φd (β) < log2+ d

2
log

1+e−β

2



The planted model diverges

The planted free energy [COHKLMPP20]

lim
n→∞

1

n
E[log ZG∗,β] = sup

π
B∗

d ,β(π)

B∗
d ,β(π) = E

[Λ(∑
σ=±1

∏d
i=1 1− (1−e−β)(1+σρi )/2

)
21−d (1+e−β)d

− dΛ
(
1− (1−e−β)(1+ρ1ρ2)/2

)
1+e−β

]
Λ(x) = x log x



The planted model diverges

Lemma

For β>β∗(d) there is ε> 0 such that πε = 1
2 (δ−ε+δε) satisfies

B∗
d ,β(πε) > log2+ d

2
log

1+e−β

2

Proof

Ï Compute the first four derivatives of ε 7→B∗
d ,β(πε)

Ï (seriously. . . )

We thus obtain the second part of the theorem.



The interpolation method

Theorem [SSZ16]

For any d ≥ 3,β> 0, any probability measure r on (−1,1) and any
0 < y < 1 we have

φd (β) ≤ 1

y
logE[X y ]− d

2y
logE[Y y ]

X = ∑
τ=±1

d∏
i=1

1− (1−e−β)
1+τρi

2

Y = 1− (1−e−β)
∑
τ=±1

(1+τρ1)(1+τρ2)

4

Regular variant of [G03, FL03, PT04].



The interpolation method

Pure states and Poisson–Dirichlet weights

Ï auxiliary model that represents the 1-step rsb scenario

Ï interpolation along time t ∈ [0,1]

Ï Hypothesis: the weights of the pure states are Poisson–Dirichlet

Ï to bound MAX CUT we use MAXCUT(G) ≤ dn
2 + 1

β log ZG,β



The interpolation method

Theorem

For any d ≥ 3 we have

MAXCUT(G) ≤ dn

2

(
1+ inf

α,z
− logζA dξ

log z
+ d log(1−2α2 +2α2z)

2log z

)
ζ= (1,0,0, . . .) ξ= (1, z−1/2, z−1, . . .)T

A = (1−2α)id+2α
p

z
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The interpolation method

Some numbers
d 3 4 5 6 7 8 9 10

1st mmt 0.9385 0.8900 0.8539 0.8260 0.8038 0.7855 0.7701 0.7570
new bound 0.9241 0.8683 0.8350 0.8049 0.7851 0.7659 0.7523 0.7388

greedy 0.9067 0.8333 0.7989 0.7775 0.7571 0.7404 0.7263 0.7144

Match the numbers of [ZB10].



Outlook

Ï Bethe states and precise variational formulas [COP19]

Ï convergence to Sherrington–Kirkpatrick as d →∞ [DMS19]

Ï proof of the 1RSB formula in k-NAESAT [SSZ16]

Ï breaking of 1RSB [BSZ19]

Ï open: the Zdeborová–Boettcher conjecture [ZB10]

Ï open: better MAX CUT algorithms [see Eliran’s talk]

Ï open: planted MAX CUT [CO05]

Ï open: ultrametricity and the Gibbs measure [P13]



Summary

Random optimisaton problems

Ï hard but rewarding

Ï algorithmic challenges and new algorithms

Ï probabilistic constructions
Ï techniques:

Ï physics-enhanced moment methods
Ï the planted model
Ï spatial mixing and asymptotic Gibbs measures
Ï the interpolation method
Ï coupling arguments


