A Geometric Approach to Conic Stability of Polynomials

Papri Dey

Department of Mathematics University of Missouri, Columbia

joint work with Stephan Gardoll and Thorsten Theobald

Imaginary Projections of Polynomials

2 Connection with hyperbolic polynomials

3 Certificate to Conic stability

Problem: Is there any relationship between the roots of two polynomials f, g and the roots of their average (f + g)/2?

- in general, no.
- the classical notion of *interlacing* and *common interlacing* polynomials.
- The existence of common interlacing is equivalent to some real-rootedness condition.
- interlacing and real-rootedness are entirely univariate notions.
- can be viewed as restrictions of multivariate phenomena.
- Two important generalizations of real-rootedness to more than one variable: real stability and hyperbolicity (isomorpism).

- A polynomial $f \in \mathbb{C}[\mathbf{z}]$ is called stable if every root $\mathbf{z} = (z_1, \ldots, z_n)$ satisfies $\mathsf{Im}(z_j) \leq 0$ for some *j*.
- A polynomial *f* is real stable if it is stable and all of its coefficients are real.
- A univariate polynomial is real stable if and only if it is real rooted.
- A homogeneous $f \in \mathbb{R}[\mathbf{z}]$ is called hyperbolic w.r.t $\mathbf{e} \in \mathbb{R}^n$, if $f(\mathbf{e}) \neq 0$ and for every $\mathbf{x} \in \mathbb{R}^n$ the real function $t \to f(x + t\mathbf{e})$ has only real roots.

A polynomial $f \in \mathbb{R}[\mathbf{z}]$ is real stable

the (unique) homogenization polynomial w.r.t. the variable z_0 is hyperbolic w.r.t. every vector $\mathbf{e} \in \mathbb{R}^{n+1}$ such that $e_0 = 0$ and $e_j > 0$ for all $1 \le j \le n$ (Gårding89)

History

- J. Borcea and P. Brändén, Applications of stable polynomials to mixed determi- nants: Johnson's conjectures, unimodality, and symmetrized fischer products. Duke Mathematical Journal,
- J. Borcea and P. Brändén,. The Lee–Yang and Pólya–Schur programs, I. Linear operators preserving stability. Invent. Math.,
- J. Borcea and P. Brändén, Multivariate Polya-Schur classification problems in the Weyl algebra. Proc. London Mathematical Society,
- L. Gårding. Linear hyperbolic partial differential equations with constant coefficients. Acta Mathematica,
- J. Renegar. Hyperbolic programs, and their derivative relaxations. Foundations of Computational Mathematics,
- Gurvits: Simple proof of a generalization of van der Waerden's Conjecture, Electron. J. Comb. 2008
- Marcus, Spielman, Srivastava: Proof of Kadison-Singer Conjecture, Ann. Math. 2015
- Marcus, Spielman, Srivastava: Existence of Ramanujan graphs, Ann. Math. 2015, FOCS 2013

Stable Polynomials

A polynomial $f \in \mathbb{C}[\mathbf{z}]$ is called **stable** provided whenever $\mathsf{Im}(\mathbf{z}) = (\mathsf{Im}(z_1), \dots, \mathsf{Im}(z_n)) > 0$, $(\mathsf{Im}(z_j) > 0$ for all j), $f(z_1, \dots, z_n) \neq 0$.

Let $\mathcal{H}^n_{\mathbb{C}}$ denotes the set $\{\mathbf{z} \in \mathbb{C}^n : \mathsf{Im}(z_j) > 0, 1 \le j \le n\}.$

f is **stable** if it has no roots in $\mathcal{H}^n_{\mathbb{C}}$.

Note that $\mathsf{Im}(\mathcal{H}^n_{\mathbb{C}}) =: \mathbb{R}^n_{>0}$ is the positive orthant.

f is **stable** if and only if $\{\mathsf{Im}(\mathbf{z}) = (\mathsf{Im}(z_1), \dots, \mathsf{Im}(z_n)) : f(\mathbf{z}) = 0\} \cap (\mathbb{R}_{>0})^n = \emptyset$ [Jörgens, Theobald, Wolff].

Question: Can this idea be generalized?

The cone

the imaginary projection of a polynomial?

Geometric Notion: Imaginary projections of polynomials

Definition

Given a polynomial
$$f \in \mathbb{C}[\mathbf{z}]$$
, define $\mathcal{I}(f) = \{\mathsf{Im}(\mathbf{z}) : \mathbf{z} \in \mathcal{V}(f)\}.$

We call $\mathcal{I}(f)$ the imaginary projection of f.

The underlying projection is

$$\mathsf{Im}: \mathbb{R}^{2n} \to \mathbb{R}^n, (x_1, \dots, x_n, y_1, \dots, y_n) \mapsto (y_1, \dots, y_n), \text{ for } z_j = x_j + iy_j \tag{1}$$

Figure: Imaginary Projections of
$$f(z_1, z_2) = z_1^2 + z_2^2 + 1$$

Figure: Imaginary Projections of $f(z_1, z_2) = z_1^2 - z_2^2 - 1$ and $f(z_1, z_2) = -z_1^2 + z_2^2 - 1$

Properties of the Imaginary projection

- $\mathcal{I}(f)$ is a semialgebraic set as it is the projection of a real algebraic variety.
- It is not always closed.
- For $n \ge 2$, it is always unbounded.
- If f is irreducible, then $\mathcal{I}(f)$ is connected since the map (1) is continuous.
- Components of the complement are convex and finite in number [Jörgens, Theobald, Wolff]

Motivation:

• $\mathcal{V}(f) \to \mathbb{R}^n, \mathbf{z} \mapsto (|z_1|, \dots, |z_n|)$, (known as semialgebraic amoeba)

Definition

• The amoeba

$$A(f) = \{ (\log |z_1|, \ldots, \log |z_n|) : \mathbf{z} \in \mathcal{V}(f) \cap (\mathbb{C}^*)^n \},\$$

- the coamoeba $\operatorname{coA}(f) = \{(\operatorname{arg}(z_1), \dots, \operatorname{arg}(z_n)) : \mathbf{z} \in \mathcal{V}(f) \cap (\mathbb{C}^*)^n\},\$
- $\mathcal{V}(f) \to \mathbb{R}^n, \mathbf{z} \mapsto \mathsf{Im}(\mathbf{z}) \text{ or } \mathbf{z} \mapsto \mathsf{Re}(\mathbf{z})$

Conic Stable polynomials

Definition

Let $K \subseteq \mathbb{R}^n$ be a proper cone. A multivariate polynomial $f \in \mathbb{C}[\mathbf{z}] = \mathbb{C}[z_1, \dots, z_n]$ is called *K*-stable if $\mathcal{I}(f) \cap \text{Int } K = \emptyset$, where Int *K* is the interior of *K*.

f is **stable** if and only if $\mathcal{I}(f) \cap (\mathbb{R}_{>0})^n = \emptyset$, *K* is the non-negative orthant.

Examples: PSD stable and Determinantal polynomials

If $f \in \mathbb{R}[Z]$ on the symmetric matrix variables $Z = (z_{ij})_{n \times n}$ is S_n^+ -stable, then f is called positive semidefinite-stable (for short, psd-stable).

• Psd-stability of $f \in \mathbb{C}(Z)$ can be viewed as stability w.r.t the Siegel upper half-space

 $\mathcal{H}_g = \{A \in \mathbb{C}^{g \times g} \text{ symmetric } : \mathsf{Im}(A) = (\mathsf{Im}(a_{ij}))_{g \times g} \text{ is positive definite}\}$

• The determinantal polynomial $f(\mathbf{z}) = \det(A_0 + \sum_{j=1}^n A_j z_j)$ is real stable or the zero polynomial where A_j 's are positive semidefinite $d \times d$ -matrices and A_0 is a Hermitian $d \times d$ -matrix [Borcea, Brändén].

Relationship

Question: The class of stable polynomials $\subseteq_{?}$ the class of psd stable polynomials

Not all stable polynomials are psd-stable

• The determinantal polynomial

$$f(z_1, z_2, z_3) = (z_1 + z_3)^2 - z_2^2 = (z_1 + z_3 - z_2)(z_1 + z_3 + z_2)$$

is not stable, because $(1, 2, 1) \in \mathcal{I}(f) \cap \mathbb{R}^3_{>0}$.

• In the matrix variables $Z = \begin{bmatrix} z_1 & z_2 \\ z_2 & z_3 \end{bmatrix}$, the polynomial $f(Z) = f(z_1, z_2, z_3)$ is psd-stable.

Not all determinantal polynomials are psd-stable

Example

A non psd-stable determinantal polynomial is the determinant of the spectrahedral representation of the open Lorentz cone $g(\mathbf{z}) = \det \begin{pmatrix} z_1 + z_3 & z_2 \\ z_2 & z_1 - z_3 \end{pmatrix} = z_1^2 - z_2^2 - z_3^2$.

Imaginary Projections and Hyperbolic polynomials

Definition

Let $f \in \mathbb{R}[\mathbf{z}]$ be homogeneous. Then f is called **hyperbolic** w.r.t $\mathbf{e} \in \mathbb{R}^n$, if $f(\mathbf{e}) \neq 0$ and for every $\mathbf{x} \in \mathbb{R}^n$ the real function $t \mapsto f(\mathbf{x} + t\mathbf{e})$ has only real roots.

Definition

If *f* is hyperbolic w.r.t $\mathbf{e} \in \mathbb{R}^n$, we call $C(f, \mathbf{e}) := {\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x} + t\mathbf{e}) = 0 \Rightarrow t < 0}$ the hyperbolicity cone of *f* with respect to \mathbf{e} .

- $C(f, \mathbf{e})$ is open and convex (Gårding, 1959).
- *f* is hyperbolic to every point \mathbf{e}' in its hyperbolicity cone and $C(f, \mathbf{e}) = C(f, \mathbf{e}')$.

Theorem: Jörgens-Theobald

Let $f \in \mathbb{R}[\mathbf{z}]$ be homogeneous. Then the hyperbolicity cones of f coincide with the complement components of $\mathcal{I}(f)$.

Connection:Hyperbolic Polynomials

A hyperbolic polynomial f w.r.t **e** is cl(C(f, e))-stable. The FAE:

- A hyperbolic polynomial $f \in \mathbb{R}[\mathbf{z}]$ is *K*-stable
- **2** f is hyperbolic w.r.t every point in int K
- So Int $K \subseteq C(f, \mathbf{e})$ for some hyperbolicity direction \mathbf{e} of f.
- The initial form of f, denoted by in(f), is defined as $in(f)(\mathbf{z}) = f_h(0, \mathbf{z})$, where f_h is the homogenization of f w.r.t. the variable z_0 .

Theorem:[Dey, Gardoll, Thoebald]

If a degree *d* polynomial $f = \det(A_0 + \sum_{j=1}^n z_j A_j)$ where $A_j, j = 0, ..., n$ are Hermitian matrices, and there exists an $\mathbf{e} \in \mathbb{R}^n$ with $\sum_{j=1}^n A_j e_j > 0$, then

- in(f) is hyperbolic and
- **2** every hyperbolicity cone of in(f) is contained in $\mathcal{I}(f)^c$.

Idea of the proof

- Since f is of degree d, $in(f) = det(\sum_{j=1}^{n} A_j z_j)$.
- The initial form in(f) has exactly the two hyperbolicity cones $C_1 = \{ \mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n A_j x_j \succ 0 \}$ and $C_2 = \{ \mathbf{x} \in \mathbb{R}^n : \sum_{j=1}^n A_j x_j \prec 0 \}$ [Mario19].
- Show that $C_1 \subseteq \mathcal{I}(f)^{\mathsf{c}}$. Suppose $\mathbf{e} \in C_1$.
- For every $\mathbf{x} \in \mathbb{R}^n$, we have

$$f(\mathbf{x} + t\mathbf{e}) = \det(A_0 + \sum_{j=1}^n A_j x_j + t \sum_{j=1}^n A_j e_j).$$

• Since $\sum_{j=1}^{n} A_j e_j \succ 0$, we obtain

$$f(\mathbf{x} + t\mathbf{e}) = \det(\sum_{j=1}^{n} A_{j}e_{j}) \det\left((\sum_{j=1}^{n} A_{j}e_{j})^{-1/2}(A_{0} + \sum_{j=1}^{n} A_{j}x_{j})(\sum_{j=1}^{n} A_{j}e_{j})^{-1/2} + tI\right).$$

• There cannot be a non-real vector $\mathbf{a} + i\mathbf{e} \operatorname{s.t} f(\mathbf{a} + i\mathbf{e}) = 0$.

• $\mathbf{e} \in \mathcal{I}(f)^{c}$.

Quadratic Polynomials

Known Classification

Every real quadric in \mathbb{R}^n is affinely equivalent to a quadric given by one of the three (normal form) types,

$$\begin{array}{ll} \text{(I)} & \sum_{j=1}^{p} z_{j}^{2} - \sum_{j=p+1}^{r} z_{j}^{2} & (1 \leq p \leq r, \, r \geq 1, \, p \geq \frac{r}{2}) \,, \\ \text{(II)} & \sum_{j=1}^{p} z_{j}^{2} - \sum_{j=p+1}^{r} z_{j}^{2} + 1 & (0 \leq p \leq r, \, r \geq 1) \,, \\ \text{(III)} & \sum_{j=1}^{p} z_{j}^{2} - \sum_{j=p+1}^{r} z_{j}^{2} + z_{r+1} & (1 \leq p \leq r, \, r \geq 1, \, p \geq \frac{r}{2}) \,. \end{array}$$

• Let $f \in \mathbb{R}[\mathbf{z}]$ be a quadratic polynomial of the form

$$f = \mathbf{z}^{T} A \mathbf{z} + \mathbf{b}^{T} \mathbf{z} + c$$
 (2)

with $A \in \operatorname{sym}_n$, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

- It is well known that a non-degenerate quadratic form $f \in \mathbb{R}[\mathbf{z}]$ is hyperbolic if and only if *A* has signature (n 1, 1) [Gårding59]
- There are two unbounded components in the complement $\mathcal{I}(f)^{c}$ [Jörgens, Theobald].

Homogeneous and non-homogeneous

Homogeneous	Non-homogeneous
$f = \mathbf{z}^T A \mathbf{z}$	$f = \mathbf{z}^T A \mathbf{z} + \mathbf{b}^T \mathbf{z} + c$
<i>f</i> is of type (I) with $r = 1$ - <i>A</i> has Lorentzian signature $(n - 1, 1)$	f is of type (II) with $p = 1$ (sub-case I) and f is of type (II) with $p = n - 1$ (sub-case II)
$\mathcal{I}(f) = \{\mathbf{y} \in \mathbb{R}^n \ : \ \mathbf{y}^T A \mathbf{y} < 0\}$	
	$\mathcal{I}(f) = \begin{cases} \{ \mathbf{y} \in \mathbb{R}^n : y_1^2 - \sum_{j=2}^r y_j^2 \le 1 \}, p = 1, \\ \{ \mathbf{y} \in \mathbb{R}^n : \sum_{j=1}^{n-1} y_j^2 > y_n^2 \} \cup \{ 0 \}, p = n \end{cases}$
Hyperbolicity cone is Lorentz cone here	p = 1, no suitable connected components $p = n - 1$, Int $S \subset C(in(f))$ for every full dimensional cone S.

Figure: Lorentz cone:
$$(y_1, y_2, y_3) = y_3^2 - y_1^2 - y_2^2 > 0$$

Spectrahedral Representation: Quadratic Polynomials

Hyperbolicity cones are spectrahedral

Theorem

Let $n \ge 3$ and $f = \mathbf{z}^T A \mathbf{z} + \mathbf{b}^T \mathbf{z} + c \in \mathbb{R}[\mathbf{z}]$ be quadratic of the form of type (II) with p = n - 1. Then there exists a linear form $\ell(\mathbf{z})$ in \mathbf{z} such that $-\ell(\mathbf{z})^{n-2} \operatorname{in}(f)$ has a determinantal representation. In particular, the closure of each unbounded component of $\mathcal{I}(f)^c$ is a spectrahedral cone.

Computational Algorithm

- -A has Lorentzian signature.
- Find normal form of $in(f) = \mathbf{z}^T A \mathbf{z}$, i.e., $in(f)(\mathbf{z}) = in(g)(T \mathbf{z})$ where

•
$$g = \sum_{j=1}^{n-1} z_j^2 - z_n^2 + 1$$

• $A = LDL^T, D = \text{Diag}(d_1, \dots, d_{n-1}, d_n)$ such that $d_1, \dots, d_{n-1} > 0$ and $d_n < 0$ and $T = \text{Diag}(\sqrt{d_1}, \dots, \sqrt{d_{n-1}}, \sqrt{|d_n|}) L^T$.

• Let $g \in \mathbb{C}[\mathbf{z}]$ and $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then, $\mathcal{I}(g(S\mathbf{z})) = S^{-1}\mathcal{I}(g(\mathbf{z}))$.

Computational Algorithm:continuation

- $\mathcal{I}(g)^{c}$ has the two unbounded conic components
- These are the open Lorentz cone and its negative.
- Their closures are exactly the closures of the hyperbolicity cones of the initial form in(g) of g.
- Open Lorentz cone has the spectrahedral representation

$$L(\mathbf{z}) := \begin{pmatrix} & & z_1 \\ & & \vdots \\ \hline & & z_n I & \vdots \\ \hline & & z_{n-1} \\ \hline z_1 & \cdots & z_{n-1} & z_n \end{pmatrix} \succ 0,$$

- Note that z_n^{n-2} in $(g) = -\det(L(\mathbf{z}))$
- $(T\mathbf{z})_n$ provides $\ell(\mathbf{z})$.
- $-\det F(\mathbf{z}) = ((T\mathbf{z})_n)^{n-2} \operatorname{in}(f)$

Key Idea: Spectrahedral Representations

The cone *K* and the conic components of $\mathcal{I}(f)^{c}$ are spectrahedral, conic stability turns into a problem of spectrahedral containment.

Why? and How? int $K \subseteq C(in(f))$

Usual stability: *K* non-negative orthant, is the positive semidefiniteness region of the linear matrix pencil

$$M^{\geq 0}(\mathbf{x}) = \sum_{j=1}^{n} M_{j}^{\geq 0} x_{j}$$

with $M_j^{\geq 0} = E_{ij}$, where E_{ij} is the matrix with a one in position (i, j) and zeros elsewhere.

PSD-stability: *K* is the cone of psd matrices. The matrix pencil is

$$M^{\rm psd}(X) = \sum_{i,j=1}^n M^{\rm psd}_{ij} x_{ij}$$

with symmetric matrix variables $X = (x_{ij})$ and $M_{ij}^{\text{psd}} = \frac{1}{2}(E_{ij} + E_{ji}) = \frac{1}{2}(e_i e_j^T + e_j e_i^T)$

Positive maps

Set-Up

- Let $U(\mathbf{x}) = \sum_{j=1}^{n} U_j x_j$ and $V(\mathbf{x}) = \sum_{j=1}^{n} V_j x_j$
- The spectrahedra $S_U := \{x \in \mathbb{R}^n : U(\mathbf{x}) \succeq 0\}$, and $S_V := \{x \in \mathbb{R}^n : V(\mathbf{x}) \succeq 0\}$ are cones.
- Let $\mathcal{U} = \operatorname{span}(U_1, \ldots, U_n) \subseteq \operatorname{Herm}_k$ (or sym_k) and $\mathcal{V} = \operatorname{span}(V_1, \ldots, V_n) \subseteq \operatorname{Herm}_k$ (or sym_l).
- If U_1, \ldots, U_n are linearly independent, then the linear mapping $\Phi_{UV} : \mathcal{U} \to \mathcal{V}$, $\Phi_{UV}(U_i) := V_i, 1 \le i \le n$, is well defined.
- A linear map $\Phi : \mathcal{U} \to \mathcal{V}$ is called *positive* if $\Phi(U) \succeq 0$ for any $U \in \mathcal{U}$ with $U \succeq 0$ for given two linear subspaces $\mathcal{U} \subseteq \operatorname{Herm}_k$ and $\mathcal{V} \subseteq \operatorname{Herm}_l$ (or $\mathcal{U} \subseteq \mathcal{S}_k$ and $\mathcal{V} \subseteq \mathcal{S}_l$).
- The *d*-multiplicity map Φ_d on the set of all Hermitian $d \times d$ block matrices with symmetric $n \times n$ -matrix entries is defined by

$$(A_{ij})_{i,j=1}^d \mapsto (\Phi(A_{ij}))_{i,j=1}^d.$$

- The map Φ is called *d-positive* if the *d*-multiplicity map Φ_d (viewed as a map on a Hermitian matrix space) is a positive map.
- Φ is called *completely positive* if Φ_d is a positive map for all $d \ge 1$.

Let $U_1, \ldots, U_n \subset \text{Herm}_k$ (or, $U_1, \ldots, U_n \subset \text{sym}_k$, respectively) be linearly independent and $S_U \neq \emptyset$. Then for the properties

the semidefinite feasibility problem

$$C = (C_{ij})_{i,j=1}^{k} \succeq 0 \text{ and } V_p = \sum_{i,j=1}^{k} (U_p)_{ij} C_{ij} \text{ for } p = 1, \dots, n$$
 (3)

has a solution with Hermitian (respectively symmetric) matrix C,

- **2** Φ_{UV} is completely positive,
- Φ_{UV} is positive,
- $S_U \subseteq S_V$ (containment problem for spectrahedra),

the implications and equivalences $(1) \implies (2) \implies (3) \iff (4)$ hold, and if \mathcal{U} contains a positive definite matrix, $(1) \iff (2)$.

Determinantal polynomials

Main Result

Let $f = \det(A_0 + \sum_{j=1}^n A_j z_j)$ with Hermitian matrices A_0, \ldots, A_n be a degree *d* determinantal polynomial such that

- in(f) is irreducible and
- there exists $\mathbf{e} \in \mathbb{R}^n$ with $\sum_{j=1}^n A_j e_j \succ 0$.

Let $M(\mathbf{x}) = \sum_{j=1}^{n} M_j x_j$ with symmetric $l \times l$ -matrices be a pencil of the cone *K*. If there exists a Hermitian block matrix $C = (C_{ij})_{i,j=1}^{l}$ with blocks C_{ij} of size $d \times d$ and

$$C = (C_{ij})_{i,j=1}^{l} \succeq 0, \quad \forall p = 1, \dots, n : \sigma A_{p} = \sum_{i,j=1}^{l} (M_{p})_{ij} C_{ij}$$
(4)

for some $\sigma \in \{-1, 1\}$, then *f* is *K*-stable.

Idea:

$$A^{h}(\mathbf{x}) = (I \cdots I)(M(\mathbf{x}) * C) \begin{pmatrix} I \\ \vdots \\ I \end{pmatrix}$$

Deciding whether such a block matrix *C* exists is a semidefinite feasibility problem.

Revisit: the stability criterion for a determinantal polynomial.

- View Choi matrix *C* as a block diagonal matrix $C = (C_{ij})_{i=1}^{l}$ with diagonal blocks C_{ii} of size $d \times d$ and vanishing non-diagonal blocks C_{ij} $(i \neq j)$.
- such that

$$A_p = C_{pp} \quad \text{for } p = 1, \dots, n,$$

• stability criterion in main Theorem is satisfied if and only if the matrices A_1, \ldots, A_n are positive semidefinite

The determinantal polynomial $f(\mathbf{z}) = \det(A_0 + \sum_{j=1}^n A_j z_j)$ is real stable or the zero polynomial if and only if the matrices A_1, \ldots, A_n are positive semidefinite.

Example

- Let $g(z_1, z_2, z_3) := 31z_1^2 + 32z_1z_3 + 8z_3^2 8z_1z_2 16z_2^2$.
- A determinantal representation of g is given by det $\begin{pmatrix} 4z_1 + 2z_3 & z_1 + 4z_2 \\ z_1 + 4z_2 & 8z_1 + 4z_3 \end{pmatrix}$, and
- at $\mathbf{z} = (0, 0, 1)^T$, the matrix polynomial is positive definite.
- Let $M(\mathbf{x})$ denote the linear matrix pencil of the psd cone sym₂⁺.
- Then the psd-stability of g follows from the above Theorem
- by the Choi matrix

$$C = \begin{pmatrix} 4 & 1 & 0 & 2 \\ 1 & 8 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 4 \end{pmatrix} \succeq 0.$$

- Characterization (includes certification)
- Closure property:operations which preserve conic stability)
- Connection with log-concave (Lorentzian) polynomials
- generalize Hyperbolic programming?

Thank You for your attention!

Definition

Let *f* be a degree *n* polynomial with real roots $\{\alpha_i\}$, and let *g* be degree *n* or n - 1 with real roots $\{\beta_i\}$ (ignoring β_n in the degree n - 1 case). We say that *g* interlaces *f* if their roots alternate, i.e.,

$$\beta_n \leq \alpha_n \leq \beta_{n-1} \leq \ldots \beta_1 \leq \alpha_1,$$

and the largest root belongs to f.

If there is a single g which interlaces a family of polynomials f_1, \ldots, f_m , we say that they have a common interlacing. Back to there

Theorem

Let f_1, \ldots, f_m be degree *n* polynomials. All of their convex combinations $\sum_{i=1}^{m} \mu_i f_i$ have real roots if and only if they have a common interlacing.

For example, f << g, if the univariate polynomials f(x + te), g(x + te) are in proper position for all x ∈ ℝⁿ, e ∈ ℝⁿ_{≥0} \ {0}.