A Geometric Approach to Conic Stability of Polynomials

Papri Dey

Department of Mathematics
University of Missouri, Columbia
joint work with Stephan Gardoll and Thorsten Theobald

Outline

(1) Imaginary Projections of Polynomials
(2) Connection with hyperbolic polynomials
(3) Certificate to Conic stability

Background and Motivation

Problem: Is there any relationship between the roots of two polynomials f, g and the roots of their average $(f+g) / 2$?

- in general, no.
- the classical notion of interlacing and common interlacing polynomials.

```
here
```

- The existence of common interlacing is equivalent to some real-rootedness condition.
- interlacing and real-rootedness are entirely univariate notions.
- can be viewed as restrictions of multivariate phenomena.
- Two important generalizations of real-rootedness to more than one variable: real stability and hyperbolicity (isomorpism).

Stability and Hyperbolicity

(1) A polynomial $f \in \mathbb{C}[\mathbf{z}]$ is called stable if every $\operatorname{root} \mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$ satisfies $\operatorname{Im}\left(z_{j}\right) \leq 0$ for some j.
(2) A polynomial f is real stable if it is stable and all of its coefficients are real.
(3) A univariate polynomial is real stable if and only if it is real rooted.
(9) A homogeneous $f \in \mathbb{R}[\mathbf{z}]$ is called hyperbolic w.r.t $\mathbf{e} \in \mathbb{R}^{n}$, if $f(\mathbf{e}) \neq 0$ and for every $\mathbf{x} \in \mathbb{R}^{n}$ the real function $t \rightarrow f(x+t \mathbf{e})$ has only real roots.

A polynomial $f \in \mathbb{R}[\mathbf{z}]$ is real stable

 ॥the (unique) homogenization polynomial w.r.t. the variable z_{0} is hyperbolic w.r.t. every vector $\mathbf{e} \in \mathbb{R}^{n+1}$ such that $e_{0}=0$ and $e_{j}>0$ for all $1 \leq j \leq n$ (Gårding89)

History

© J. Borcea and P. Brändén,. Applications of stable polynomials to mixed determi- nants: Johnson's conjectures, unimodality, and symmetrized fischer products. Duke Mathematical Journal,
(2) J. Borcea and P. Brändén,. The Lee-Yang and Pólya-Schur programs, I. Linear operators preserving stability. Invent. Math.,
© J. Borcea and P. Brändén,. Multivariate Polya-Schur classification problems in the Weyl algebra. Proc. London Mathematical Society,
(9) L. Gårding. Linear hyperbolic partial differential equations with constant coefficients. Acta Mathematica,
© J. Renegar. Hyperbolic programs, and their derivative relaxations. Foundations of Computational Mathematics,
(0) Gurvits: Simple proof of a generalization of van der Waerden's Conjecture, Electron. J. Comb. 2008
(1) Marcus, Spielman, Srivastava: Proof of Kadison-Singer Conjecture, Ann. Math. 2015
(3) Marcus, Spielman, Srivastava: Existence of Ramanujan graphs, Ann. Math. 2015, FOCS 2013

Stable Polynomials

A polynomial $f \in \mathbb{C}[\mathbf{z}]$ is called stable provided whenever $\operatorname{Im}(\mathbf{z})=\left(\operatorname{Im}\left(z_{1}\right), \ldots, \operatorname{Im}\left(z_{n}\right)\right)>0,\left(\operatorname{Im}\left(z_{j}\right)>0\right.$ for all $\left.j\right), f\left(z_{1}, \ldots, z_{n}\right) \neq 0$.

Let $\mathcal{H}_{\mathbb{C}}^{n}$ denotes the set $\left\{\mathbf{z} \in \mathbb{C}^{n}: \operatorname{Im}\left(z_{j}\right)>0,1 \leq j \leq n\right\}$.
f is stable if it has no roots in $\mathcal{H}_{\mathbb{C}}^{n}$.
Note that $\operatorname{Im}\left(\mathcal{H}_{\mathbb{C}}^{n}\right)=: \mathbb{R}_{>0}^{n}$ is the positive orthant.
f is stable if and only if $\left\{\operatorname{Im}(\mathbf{z})=\left(\operatorname{lm}\left(z_{1}\right), \ldots, \operatorname{Im}\left(z_{n}\right)\right): f(\mathbf{z})=0\right\} \cap\left(\mathbb{R}_{>0}\right)^{n}=\emptyset$
[Jörgens,Theobald, Wolff].

Question: Can this idea be generalized?
(1) The cone
(2) the imaginary projection of a polynomial?

Geometric Notion: Imaginary projections of polynomials

Definition

Given a polynomial $f \in \mathbb{C}[\mathbf{z}]$, define $\mathcal{I}(f)=\{\operatorname{lm}(\mathbf{z}): \mathbf{z} \in \mathcal{V}(f)\}$.
We call $\mathcal{I}(f)$ the imaginary projection of f.
The underlying projection is

$$
\begin{equation*}
\operatorname{Im}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n},\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(y_{1}, \ldots, y_{n}\right), \text { for } z_{j}=x_{j}+i y_{j} \tag{1}
\end{equation*}
$$

$\operatorname{Re}(f(z))=x 1^{\wedge} 2-y 1^{\wedge} 2+x 2^{\wedge} 2-y 2^{\wedge} 2-1$
$\operatorname{lm}(f(z))=x 1 y 1+x 2 y 2$
$1(f)=\left(y \cdot x 2^{\wedge} 2\left(y 1^{\wedge} 2^{2}+2^{\wedge} 2\right)-y 1^{\wedge} 2\right.$
(y1^2+y2^2-1) has a real solution $\times 2$ \}
$y 1^{\wedge} 2+y 2^{\wedge} 2 \cdot 1>=0$

Figure: Imaginary Projections of $f\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}+1$

Pictures

Figure: Imaginary Projections of $f\left(z_{1}, z_{2}\right)=z_{1}^{2}-z_{2}^{2}-1$ and $f\left(z_{1}, z_{2}\right)=-z_{1}^{2}+z_{2}^{2}-1$

Properties of the Imaginary projection

- $\mathcal{I}(f)$ is a semialgebraic set as it is the projection of a real algebraic variety.
- It is not always closed.
- For $n \geq 2$, it is always unbounded.
- If f is irreducible, then $\mathcal{I}(f)$ is connected since the map (1) is continuous.
- Components of the complement are convex and finite in number [Jörgens, Theobald, Wolff]

Motivation:

- $\mathcal{V}(f) \rightarrow \mathbb{R}^{n}, \mathbf{z} \mapsto\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)$, (known as semialgebraic amoeba)

Definition

- The amoeba

$$
A(f)=\left\{\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right): \mathbf{z} \in \mathcal{V}(f) \cap\left(\mathbb{C}^{*}\right)^{n}\right\}
$$

- the coamoeba

$$
\operatorname{co} A(f)=\left\{\left(\arg \left(z_{1}\right), \ldots, \arg \left(z_{n}\right)\right): \mathbf{z} \in \mathcal{V}(f) \cap\left(\mathbb{C}^{*}\right)^{n}\right\}
$$

- $\mathcal{V}(f) \rightarrow \mathbb{R}^{n}, \mathbf{z} \mapsto \operatorname{Im}(\mathbf{z})$ or $\mathbf{z} \mapsto \operatorname{Re}(\mathbf{z})$

Conic Stable polynomials

Definition

Let $K \subseteq \mathbb{R}^{n}$ be a proper cone. A multivariate polynomial $f \in \mathbb{C}[\mathbf{z}]=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ is called K-stable if $\mathcal{I}(f) \cap$ Int $K=\emptyset$, where Int K is the interior of K.
f is stable if and only if $\mathcal{I}(f) \cap\left(\mathbb{R}_{>0}\right)^{n}=\emptyset, K$ is the non-negative orthant.

Examples: PSD stable and Determinantal polynomials

If $f \in \mathbb{R}[Z]$ on the symmetric matrix variables $Z=\left(z_{i j}\right)_{n \times n}$ is S_{n}^{+}-stable, then f is called positive semidefinite-stable (for short, psd-stable).

- Psd-stability of $f \in \mathbb{C}(Z)$ can be viewed as stability w.r.t the Siegel upper half-space

$$
\mathcal{H}_{g}=\left\{A \in \mathbb{C}^{g \times g} \text { symmetric }: \operatorname{Im}(A)=\left(\operatorname{Im}\left(a_{i j}\right)\right)_{g \times g} \text { is positive definite }\right\}
$$

- The determinantal polynomial $f(\mathbf{z})=\operatorname{det}\left(A_{0}+\sum_{j=1}^{n} A_{j} z_{j}\right)$ is real stable or the zero polynomial where A_{j} 's are positive semidefinite $d \times d$-matrices and A_{0} is a Hermitian $d \times d$-matrix [Borcea, Brändén].

Relationship

Question: The class of stable polynomials $\underbrace{\subseteq}_{?}$ the class of psd stable polynomials

Not all stable polynomials are psd-stable

- The determinantal polynomial

$$
f\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+z_{3}\right)^{2}-z_{2}^{2}=\left(z_{1}+z_{3}-z_{2}\right)\left(z_{1}+z_{3}+z_{2}\right)
$$

is not stable, because $(1,2,1) \in \mathcal{I}(f) \cap \mathbb{R}_{>0}^{3}$.

- In the matrix variables $Z=\left[\begin{array}{ll}z_{1} & z_{2} \\ z_{2} & z_{3}\end{array}\right]$, the polynomial $f(Z)=f\left(z_{1}, z_{2}, z_{3}\right)$ is psd-stable.

Not all determinantal polynomials are psd-stable

Example

A non psd-stable determinantal polynomial is the determinant of the spectrahedral representation of the open Lorentz cone $g(\mathbf{z})=\operatorname{det}\left(\begin{array}{cc}z_{1}+z_{3} & z_{2} \\ z_{2} & z_{1}-z_{3}\end{array}\right)=z_{1}^{2}-z_{2}^{2}-z_{3}^{2}$.

Imaginary Projections and Hyperbolic polynomials

Definition

Let $f \in \mathbb{R}[\mathbf{z}]$ be homogeneous. Then f is called hyperbolic w.r.t $\mathbf{e} \in \mathbb{R}^{n}$, if $f(\mathbf{e}) \neq 0$ and for every $\mathbf{x} \in \mathbb{R}^{n}$ the real function $t \mapsto f(\mathbf{x}+t \mathbf{e})$ has only real roots.

Definition

If f is hyperbolic w.r.t $\mathbf{e} \in \mathbb{R}^{n}$, we call $C(f, \mathbf{e}):=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}+t \mathbf{e})=0 \Rightarrow t<0\right\}$ the hyperbolicity cone of f with respect to \mathbf{e}.

- $C(f, \mathbf{e})$ is open and convex (Gårding, 1959).
- f is hyperbolic to every point \mathbf{e}^{\prime} in its hyperbolicity cone and $C(f, \mathbf{e})=C\left(f, \mathbf{e}^{\prime}\right)$.

Theorem:Jörgens-Theobald

Let $f \in \mathbb{R}[\mathbf{z}]$ be homogeneous. Then the hyperbolicity cones of f coincide with the complement components of $\mathcal{I}(f)$.

Connection:Hyperbolic Polynomials

A hyperbolic polynomial f w.r.t \mathbf{e} is $\mathrm{cl}(C(f, \mathbf{e}))$-stable.
The FAE:
(1) A hyperbolic polynomial $f \in \mathbb{R}[\mathbf{z}]$ is K-stable
(2) f is hyperbolic w.r.t every point in int K
(3) Int $K \subseteq C(f, \mathbf{e})$ for some hyperbolicity direction \mathbf{e} of f.

- The initial form of f, denoted by $\operatorname{in}(f)$, is defined as $\operatorname{in}(f)(\mathbf{z})=f_{h}(0, \mathbf{z})$, where f_{h} is the homogenization of f w.r.t. the variable z_{0}.

Theorem:[Dey, Gardoll, Thoebald]

If a degree d polynomial $f=\operatorname{det}\left(A_{0}+\sum_{j=1}^{n} z_{j} A_{j}\right)$ where $A_{j}, j=0, \ldots, n$ are Hermitian matrices, and there exists an $\mathbf{e} \in \mathbb{R}^{n}$ with $\sum_{j=1}^{n} A_{j} e_{j}>0$, then
(1) in (f) is hyperbolic and
(2) every hyperbolicity cone of in (f) is contained in $\mathcal{I}(f)^{c}$.

Idea of the proof

- Since f is of degree $d, \operatorname{in}(f)=\operatorname{det}\left(\sum_{j=1}^{n} A_{j} z_{j}\right)$.
- The initial form in (f) has exactly the two hyperbolicity cones

$$
C_{1}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \sum_{j=1}^{n} A_{j} x_{j} \succ 0\right\} \text { and } C_{2}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \sum_{j=1}^{n} A_{j} x_{j} \prec 0\right\} \text { [Mario19]. }
$$

- Show that $C_{1} \subseteq \mathcal{I}(f)^{c}$. Suppose $\mathbf{e} \in C_{1}$.
- For every $\mathbf{x} \in \mathbb{R}^{n}$, we have

$$
f(\mathbf{x}+t \mathbf{e})=\operatorname{det}\left(A_{0}+\sum_{j=1}^{n} A_{j} x_{j}+t \sum_{j=1}^{n} A_{j} e_{j}\right) .
$$

- Since $\sum_{j=1}^{n} A_{j} e_{j} \succ 0$, we obtain

$$
f(\mathbf{x}+t \mathbf{e})=\operatorname{det}\left(\sum_{j=1}^{n} A_{j} e_{j}\right) \operatorname{det}\left(\left(\sum_{j=1}^{n} A_{j} e_{j}\right)^{-1 / 2}\left(A_{0}+\sum_{j=1}^{n} A_{j} x_{j}\right)\left(\sum_{j=1}^{n} A_{j} e_{j}\right)^{-1 / 2}+t I\right) .
$$

- There cannot be a non-real vector $\mathbf{a}+i$ s.t $f(\mathbf{a}+i \mathbf{e})=0$.
- $\mathbf{e} \in \mathcal{I}(f)^{\text {c }}$.

Quadratic Polynomials

Known Classification

Every real quadric in \mathbb{R}^{n} is affinely equivalent to a quadric given by one of the three (normal form) types,
(I) $\quad \sum_{j=1}^{p} z_{j}^{2}-\sum_{j=p+1}^{r} z_{j}^{2}$

$$
\left(1 \leq p \leq r, r \geq 1, p \geq \frac{r}{2}\right)
$$

(II) $\sum_{j=1}^{p} z_{j}^{2}-\sum_{j=p+1}^{r} z_{j}^{2}+1$ $(0 \leq p \leq r, r \geq 1)$,
(III) $\sum_{j=1}^{p} z_{j}^{2}-\sum_{j=p+1}^{r} z_{j}^{2}+z_{r+1}$ $\left(1 \leq p \leq r, r \geq 1, p \geq \frac{r}{2}\right)$.

- Let $f \in \mathbb{R}[\mathbf{z}]$ be a quadratic polynomial of the form

$$
\begin{equation*}
f=\mathbf{z}^{T} A \mathbf{z}+\mathbf{b}^{T} \mathbf{z}+c \tag{2}
\end{equation*}
$$

with $A \in \operatorname{sym}_{n}, \mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.

- It is well known that a non-degenerate quadratic form $f \in \mathbb{R}[\mathbf{z}]$ is hyperbolic if and only if A has signature $(n-1,1)$ [Gårding59]
- There are two unbounded components in the complement $\mathcal{I}(f)^{\text {c }}$ [Jörgens, Theobald].

Homogeneous and non-homogeneous

Homogeneous

$$
f=\mathbf{z}^{T} A \mathbf{z}
$$

Non-homogeneous
$f=\mathbf{z}^{T} A \mathbf{z}+\mathbf{b}^{T} \mathbf{z}+c$
f is of type (I) with $r=1$
$-A$ has Lorentzian signature $(n-1,1)$

$$
\mathcal{I}(f)=\left\{\mathbf{y} \in \mathbb{R}^{n}: \mathbf{y}^{T} A \mathbf{y}<0\right\}
$$

$$
\mathcal{I}(f)=\left\{\begin{array}{l}
\left\{\mathbf{y} \in \mathbb{R}^{n}: y_{1}^{2}-\sum_{j=2}^{r} y_{j}^{2} \leq 1\right\}, p=1, \\
\left\{\mathbf{y} \in \mathbb{R}^{n}: \sum_{j=1}^{n-1} y_{j}^{2}>y_{n}^{2}\right\} \cup\{\mathbf{0}\}, p=n
\end{array}\right.
$$

Hyperbolicity cone is Lorentz cone
$p=1$, no suitable connected components
$p=n-1$, Int $S \subset C(\operatorname{in}(f))$ for every full dimensional cone S.

Figure: Lorentz cone: $\left(y_{1}, y_{2}, y_{3}\right)=y_{3}^{2}-y_{1}^{2}-y_{2}^{2}>0$

Back to there

Spectrahedral Representation:Quadratic Polynomials

Hyperbolicity cones are spectrahedral

Theorem

Let $n \geq 3$ and $f=\mathbf{z}^{T} A \mathbf{z}+\mathbf{b}^{T} \mathbf{z}+c \in \mathbb{R}[\mathbf{z}]$ be quadratic of the form of type (II) with $p=n-1$. Then there exists a linear form $\ell(\mathbf{z})$ in \mathbf{z} such that $-\ell(\mathbf{z})^{n-2}$ in (f) has a determinantal representation. In particular, the closure of each unbounded component of $\mathcal{I}(f)^{\mathrm{c}}$ is a spectrahedral cone.

Computational Algorithm

- $-A$ has Lorentzian signature.
- Find normal form of $\operatorname{in}(f)=\mathbf{z}^{T} A \mathbf{z}$, i.e., $\operatorname{in}(f)(\mathbf{z})=\operatorname{in}(g)(T \mathbf{z})$ where
- $g=\sum_{j=1}^{n-1} z_{j}^{2}-z_{n}^{2}+1$
- $A=L D L^{T}, D=\operatorname{Diag}\left(d_{1}, \ldots, d_{n-1}, d_{n}\right)$ such that $d_{1}, \ldots, d_{n-1}>0$ and $d_{n}<0$ and $T=\operatorname{Diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n-1}}, \sqrt{\left|d_{n}\right|}\right) \cdot L^{T}$.
- Let $g \in \mathbb{C}[\mathbf{z}]$ and $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then, $\mathcal{I}(g(S \mathbf{z}))=S^{-1} \mathcal{I}(g(\mathbf{z}))$.

Computational Algorithm:continuation

- $\mathcal{I}(g)^{\mathrm{C}}$ has the two unbounded conic components
- These are the open Lorentz cone and its negative.
- Their closures are exactly the closures of the hyperbolicity cones of the initial form in (g) of g.
- Open Lorentz cone has the spectrahedral representation

$$
L(\mathbf{z}):=\left(\begin{array}{ccc|c}
& & & z_{1} \\
& z_{n} I & & \vdots \\
& & & z_{n-1} \\
\hline z_{1} & \cdots & z_{n-1} & z_{n}
\end{array}\right) \succ 0
$$

- Note that $z_{n}^{n-2} \operatorname{in}(g)=-\operatorname{det}(L(\mathbf{z}))$
- $(T \mathbf{z})_{n}$ provides $\ell(\mathbf{z})$.
- $-\operatorname{det} F(\mathbf{z})=\left((T \mathbf{z})_{n}\right)^{n-2} \operatorname{in}(f)$

Key Idea: Spectrahedral Representations

The cone K and the conic components of $\mathcal{I}(f)^{\text {c }}$ are spectrahedral, conic stability turns into a problem of spectrahedral containment.

$$
\text { Why? and How? int } K \subseteq C(\operatorname{in}(f))
$$

Usual stability: K non-negative orthant, is the positive semidefiniteness region of the linear matrix pencil

$$
M^{\geq 0}(\mathbf{x})=\sum_{j=1}^{n} M_{j}^{\geq 0} x_{j}
$$

with $M_{j}^{\geq 0}=E_{j j}$, where $E_{i j}$ is the matrix with a one in position (i, j) and zeros elsewhere.
PSD-stability: K is the cone of psd matrices. The matrix pencil is

$$
M^{\mathrm{psd}}(X)=\sum_{i, j=1}^{n} M_{i j}^{\mathrm{psd}} x_{i j}
$$

with symmetric matrix variables $X=\left(x_{i j}\right)$ and $M_{i j}^{\text {psd }}=\frac{1}{2}\left(E_{i j}+E_{j i}\right)=\frac{1}{2}\left(e_{i} e_{j}^{T}+e_{j} e_{i}^{T}\right)$

Positive maps

Set-Up

- Let $U(\mathbf{x})=\sum_{j=1}^{n} U_{j} x_{j}$ and $V(\mathbf{x})=\sum_{j=1}^{n} V_{j} x_{j}$
- The spectrahedra $S_{U}:=\left\{x \in \mathbb{R}^{n}: U(\mathbf{x}) \succeq 0\right\}$, and $S_{V}:=\left\{x \in \mathbb{R}^{n}: V(\mathbf{x}) \succeq 0\right\}$ are cones.
- Let $\mathcal{U}=\operatorname{span}\left(U_{1}, \ldots, U_{n}\right) \subseteq \operatorname{Herm}_{k}\left(\right.$ or $\left.\operatorname{sym}_{k}\right)$ and $\mathcal{V}=\operatorname{span}\left(V_{1}, \ldots, V_{n}\right) \subseteq \operatorname{Herm}_{k}$ (or sym $_{l}$).
- If U_{1}, \ldots, U_{n} are linearly independent, then the linear mapping $\Phi_{U V}: \mathcal{U} \rightarrow \mathcal{V}$, $\Phi_{U V}\left(U_{i}\right):=V_{i}, 1 \leq i \leq n$, is well defined.
- A linear map $\Phi: \mathcal{U} \rightarrow \mathcal{V}$ is called positive if $\Phi(U) \succeq 0$ for any $U \in \mathcal{U}$ with $U \succeq 0$ for given two linear subspaces $\mathcal{U} \subseteq \operatorname{Herm}_{k}$ and $\mathcal{V} \subseteq \operatorname{Herm}_{l}$ (or $\mathcal{U} \subseteq \mathcal{S}_{k}$ and $\mathcal{V} \subseteq \mathcal{S}_{l}$).
- The d-multiplicity map Φ_{d} on the set of all Hermitian $d \times d$ block matrices with symmetric $n \times n$-matrix entries is defined by

$$
\left(A_{i j}\right)_{i, j=1}^{d} \mapsto\left(\Phi\left(A_{i j}\right)\right)_{i, j=1}^{d}
$$

- The map Φ is called d-positive if the d-multiplicity map Φ_{d} (viewed as a map on a Hermitian matrix space) is a positive map.
- Φ is called completely positive if Φ_{d} is a positive map for all $d \geq 1$.

Spectrahedral Containment

Let $U_{1}, \ldots, U_{n} \subset \operatorname{Herm}_{k}$ (or, $U_{1}, \ldots, U_{n} \subset$ sym $_{k}$, respectively) be linearly independent and $S_{U} \neq \emptyset$. Then for the properties
(1) the semidefinite feasibility problem

$$
\begin{equation*}
C=\left(C_{i j}\right)_{i, j=1}^{k} \succeq 0 \text { and } V_{p}=\sum_{i, j=1}^{k}\left(U_{p}\right)_{i j} C_{i j} \text { for } p=1, \ldots, n \tag{3}
\end{equation*}
$$

has a solution with Hermitian (respectively symmetric) matrix C,
(2) $\Phi_{U V}$ is completely positive,
(3) $\Phi_{U V}$ is positive,
(1) $S_{U} \subseteq S_{V}$ (containment problem for spectrahedra), the implications and equivalences $(1) \Longrightarrow(2) \Longrightarrow(3) \Longleftrightarrow(4)$ hold, and if \mathcal{U} contains a positive definite matrix, $(1) \Longleftrightarrow(2)$.

Determinantal polynomials

Main Result

Let $f=\operatorname{det}\left(A_{0}+\sum_{j=1}^{n} A_{j} z_{j}\right)$ with Hermitian matrices A_{0}, \ldots, A_{n} be a degree d determinantal polynomial such that

- in (f) is irreducible and
- there exists $\mathbf{e} \in \mathbb{R}^{n}$ with $\sum_{j=1}^{n} A_{j} e_{j} \succ 0$.

Let $M(\mathbf{x})=\sum_{j=1}^{n} M_{j} x_{j}$ with symmetric $l \times l$-matrices be a pencil of the cone K. If there exists a Hermitian block matrix $C=\left(C_{i j}\right)_{i, j=1}^{l}$ with blocks $C_{i j}$ of size $d \times d$ and

$$
\begin{equation*}
C=\left(C_{i j}\right)_{i, j=1}^{l} \succeq 0, \quad \forall p=1, \ldots, n: \sigma A_{p}=\sum_{i, j=1}^{l}\left(M_{p}\right)_{i j} C_{i j} \tag{4}
\end{equation*}
$$

for some $\sigma \in\{-1,1\}$, then f is K-stable.

Idea:

$$
A^{h}(\mathbf{x})=(I \cdots I)(M(\mathbf{x}) * C)\left(\begin{array}{c}
I \\
\vdots \\
I
\end{array}\right)
$$

Deciding whether such a block matrix C exists is a semidefinite feasibility problem.

Borcea-Brändén stability criterion

Revisit: the stability criterion for a determinantal polynomial.

- View Choi matrix C as a block diagonal matrix $C=\left(C_{i j}\right)_{i=1}^{l}$ with diagonal blocks $C_{i i}$ of size $d \times d$ and vanishing non-diagonal blocks $C_{i j}(i \neq j)$.
- such that

$$
A_{p}=C_{p p} \quad \text { for } p=1, \ldots, n
$$

- stability criterion in main Theorem is satisfied if and only if the matrices A_{1}, \ldots, A_{n} are positive semidefinite

The determinantal polynomial $f(\mathbf{z})=\operatorname{det}\left(A_{0}+\sum_{j=1}^{n} A_{j} z_{j}\right)$ is real stable or the zero polynomial if and only if the matrices A_{1}, \ldots, A_{n} are positive semidefinite.

Example

- Let $g\left(z_{1}, z_{2}, z_{3}\right):=31 z_{1}^{2}+32 z_{1} z_{3}+8 z_{3}^{2}-8 z_{1} z_{2}-16 z_{2}^{2}$.
- A determinantal representation of g is given by $\operatorname{det}\left(\begin{array}{cc}4 z_{1}+2 z_{3} & z_{1}+4 z_{2} \\ z_{1}+4 z_{2} & 8 z_{1}+4 z_{3}\end{array}\right)$, and
- at $\mathbf{z}=(0,0,1)^{T}$, the matrix polynomial is positive definite.
- Let $M(\mathbf{x})$ denote the linear matrix pencil of the psd cone $\operatorname{sym}_{2}^{+}$.
- Then the psd-stability of g follows from the above Theorem
- by the Choi matrix

$$
C=\left(\begin{array}{llll}
4 & 1 & 0 & 2 \\
1 & 8 & 2 & 0 \\
0 & 2 & 2 & 0 \\
2 & 0 & 0 & 4
\end{array}\right) \succeq 0
$$

Open problems

- Characterization (includes certification)
- Closure property:operations which preserve conic stability)
- Connection with log-concave (Lorentzian) polynomials
- generalize Hyperbolic programming?

Thank You for your attention!

Definition

Let f be a degree n polynomial with real roots $\left\{\alpha_{i}\right\}$, and let g be degree n or $n-1$ with real roots $\left\{\beta_{i}\right\}$ (ignoring β_{n} in the degree $n-1$ case). We say that g interlaces f if their roots alternate, i.e.,

$$
\beta_{n} \leq \alpha_{n} \leq \beta_{n-1} \leq \ldots \beta_{1} \leq \alpha_{1}
$$

and the largest root belongs to f.
If there is a single g which interlaces a family of polynomials f_{1}, \ldots, f_{m}, we say that they have a common interlacing. Back to there

Theorem

Let f_{1}, \ldots, f_{m} be degree n polynomials. All of their convex combinations $\sum_{i=1}^{m} \mu_{i} f_{i}$ have real roots if and only if they have a common interlacing.

- For example, $f \ll g$, if the univariate polynomials $f(x+t \mathbf{e}), g(x+t \mathbf{e})$ are in proper position for all $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{e} \in \mathbb{R}_{\geq 0}^{n} \backslash\{0\}$.

