Paving property for strongly Rayleigh measures

Milad Barzegar (Sharif University of Technology)
Joint work with Kasra Alishahi

Geometry of Polynomials Reunion Workshop

Strong Rayleigh point processes

Borcea, Brändén, Liggett '08:

Strong Rayleighness is the most "natural" notion of negative dependence!

* Relatively easy to check
* Includes almost all of the known examples
* Strong consequences
* Many applications

The idea

The idea

The idea

These are almost independent!

-

Claim

This resembles the paving conjecture!

The paving conjecture (Proved by Marcus, Spielman, Srivastava)

For every $\varepsilon>0$ there is a $r=r(\varepsilon) \in \mathbb{N}$ such that every Hermitian matrix M with zero diagonal can be " (r, ε)-paved".

If M is $n \times n$ then $[n]$ can be partitioned into r sets
S_{1}, \ldots, S_{r} such that

$$
\forall k \in\{1, \ldots, r\}:\left\|M\left[S_{k}\right]\right\| \leq \varepsilon\|M\|
$$

(Discrete) Determinantal point processes

$$
\mathfrak{X} \subseteq[n] \text { random subset }
$$

\mathfrak{X} is determinantal if there is a Hermitian K such that

$$
\begin{gathered}
\mathbb{P}(A \subseteq \mathfrak{X})=\operatorname{det} K[A] \\
\quad \text { for all } A \subseteq[n]
\end{gathered}
$$

Some facts about DPPs

* K is kernel $\Leftrightarrow 0 \preccurlyeq K \preccurlyeq I$
\mathfrak{X} is independent $\Leftrightarrow K$ is diagonal
* $\mathfrak{X} \cap A$ is determinantal with kernel $K[A]$
* Is strongly Rayleigh with PGP $\operatorname{det}(K Z+I-K)$

Paving property for DPP

Apply the paving theorem to $K_{0}=K-D$

$$
\begin{gathered}
\Downarrow \\
\{1, \ldots, n\}=S_{1} \sqcup \cdots \sqcup S_{r} \\
\forall k \in[r]:\left\|K\left[S_{k}\right]-D\left[S_{k}\right]\right\| \leq \varepsilon \\
\Downarrow ?
\end{gathered}
$$

$\mathfrak{X} \cap S_{k}$ is almost independent

Problems

* How to deduce a probabilistic statement?
* How to deal with the strongly Rayleigh case?

Problems

* How to deduce a probabilistic statement?
* How to deal with the strongly Rayleigh case?

Extend the paving theorem to real stable polynomials!

Marcus-Spielman-Srivastava's paper

Interlacing polynomials + multivariate barrier method

$$
\Downarrow
$$

Weaver's vector balancing conjecture

Paving conjecture

Marcus-Spielman-Srivastava's paper

Marcus, Spielman, Srivastava '15

$r \geq 1$ integer. Then for every Hermitian matrix A with zero diagonal there exists a partition $S_{1} \sqcup \cdots \sqcup S_{r^{2}}=[n]$ such that

$$
\forall k \in\left[r^{2}\right]:\left\|A\left[S_{k}\right]\right\| \leq\left(\frac{2 \sqrt{2}}{\sqrt{r}}+\frac{2}{r}\right)\|A\|
$$

A direct proof of the paving conjecture

Leake, Ravichandran '16

$r \geq 4$ integer. Then for every Hermitian matrix A with zero diagonal there exists partition $S_{1} \sqcup \cdots \sqcup S_{r^{2}}=[n]$ such that

$$
\forall k \in\left[r^{2}\right]:\left\|A\left[S_{k}\right]\right\| \leq\left(\frac{r-2}{r(r-1)}+2 \sqrt{\frac{r-2}{r(r-1)}}\right)\|A\|
$$

Notations

$$
\begin{aligned}
& \partial^{A} p:=\left(\prod_{i \in A} \partial_{i}\right) p \\
& \bar{p}(x)=p(x, \ldots, x)
\end{aligned}
$$

$$
\mathrm{M}(q):=\max _{i}\left|\lambda_{i}\right|
$$

Paving real stable polynomials

Alishahi, B. '20
$r \geq 4$ integer. Then for every multi-affine real stable polynomial $p(\mathbf{z})$
$=\sum_{A \subseteq[n]} a_{A} \boldsymbol{z}^{A}$ with $\boldsymbol{a}_{\emptyset}=\mathbf{1}$ and $\boldsymbol{a}_{\{i\}^{c}}=\mathbf{0}$ for all $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}$ there exists a partition $S_{1} \sqcup \cdots \sqcup S_{r^{2}}=[n]$ such that

$$
\forall k \in\left[r^{2}\right]: \mathrm{M}\left(\overline{\partial^{S_{k}^{c}} p}\right) \leq\left(\frac{r-2}{r(r-1)}+2 \sqrt{\frac{r-2}{r(r-1)}}\right) \mathrm{M}(\bar{p})
$$

Paving real stable polynomials

Alishahi, B. '20
$r \geq 4$ integer. Then for every multi-affine real stable polynomial $p(\mathbf{z})=\sum_{A \subseteq[n]} a_{A} \boldsymbol{z}^{A}$ with $\boldsymbol{a}_{\emptyset}=\mathbf{1}$ and $\boldsymbol{a}_{\{i\}^{c}}=\mathbf{0}$ for all $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}$ there exists a partition $S_{1} \sqcup \cdots \sqcup S_{r^{2}}=[n]$ such that

$$
\forall k \in\left[r^{2}\right]: \mathrm{M}\left(\overline{\partial^{S_{k}^{c}}}\right) \leq\left(\frac{r-2}{r(r-1)}+2 \sqrt{\frac{r-2}{r(r-1)}}\right) \mathrm{M}(\bar{p})
$$

$$
p(\mathbf{z})=\operatorname{det}(Z-A) \quad \Longrightarrow \quad \text { Leake-Ravichandran result }
$$

Back to strongly Rayleigh measures

PGP is no good!

Comparison with determinantal measures

$$
\text { Determinantal: } \quad \operatorname{det}(K Z+I-K) \quad \operatorname{det}(Z-K)
$$

Strong Rayleigh:
$p_{\mathfrak{X}}(\mathbf{z})$

Kernel polynomial

$$
\begin{gathered}
\mathscr{P}=g_{\mathfrak{X}}\left(z_{1}, \ldots, z_{n}\right)=z_{1} \ldots z_{n} p_{\mathfrak{X}}\left(1-\frac{1}{z_{1}}, \ldots, 1-\frac{1}{z_{n}}\right) \\
\Downarrow \\
g_{\mathfrak{X}}(\mathbf{z})=\sum_{A \subseteq[n]}(-1)^{|A|} \mathbb{P}(A \subseteq \mathfrak{X}) \mathbf{z}^{A^{c}}
\end{gathered}
$$

Properties of the kernel polynomial

* $g_{\mathfrak{X}}$ is (multi-affine) real stable
* $g_{\mathfrak{X}}$ is kernel \Leftrightarrow the roots of $\overline{g_{\mathfrak{X}}}$ in $[0,1]$
* \& they play an important role (e.g. $|\mathfrak{X}| \sim I_{\lambda_{1}}+\cdots+I_{\lambda_{n}}$)
$\mathfrak{X} \cap A$ is strongly Rayleigh with kernel $\partial^{A^{C}} g_{\mathfrak{X}}$

Proof (Part 1)

$$
f_{\mathfrak{X}}(\mathbf{z}):=g_{\mathfrak{X}}\left(z_{1}+p_{1}, \ldots, z_{n}+p_{n}\right)=\sum_{A \subseteq[n]} a_{A} \mathbf{z}^{A}
$$

$-p_{i}:=-\mathbb{P}(i \in \mathfrak{X})$ is the coefficient of $\boldsymbol{z}^{\{i\}^{c}}$

Proof (Part 1)

$$
f_{\mathfrak{X}}(\mathbf{z}):=g_{\mathfrak{X}}\left(z_{1}+p_{1}, \ldots, z_{n}+p_{n}\right)=\sum_{A \subseteq[n]} a_{A} \mathbf{z}^{A}
$$

- $f_{\mathfrak{X}}$ is multi-affine real stable
- $a_{\emptyset}=1$
* $a_{\{i\}^{c}}=0$ for all $i=1, \ldots, n$
$\mathrm{M}\left(\bar{f}_{\mathfrak{X}}\right) \leq 1$

Proof (Part 1)

Apply the paving theorem to $f_{\mathfrak{X}}$

$$
\downarrow
$$

$$
\left\{\begin{array}{c}
\{1, \ldots, n\}=S_{1} \sqcup \cdots \sqcup S_{r} \\
\forall k \in[r]: \mathrm{M}\left(\overline{f_{\mathfrak{X} \cap S_{k}}}\right) \leq \varepsilon \\
\Downarrow ?
\end{array}\right.
$$

$\mathfrak{X} \cap S_{k}$ is almost independent

Problems

* How to deduce a probabilistic statement?

How to deal with the strongly Rayleigh case?

Connection between the entropy of \mathfrak{X} and the roots of the kernel polynomial!

Entropy

$$
H(X)=-\sum_{x} \mathbb{P}(X=x) \log \mathbb{P}(X=x)
$$

$$
\begin{gathered}
\mathfrak{X}=\left(X_{1}, \ldots, X_{n}\right) \\
\Downarrow \\
H(\mathfrak{X}) \leq \underbrace{H\left(X_{1}\right)+\cdots+H\left(X_{n}\right)}_{H(\widehat{\mathfrak{X}}) \longrightarrow \text { Independent version of } \mathfrak{X}}
\end{gathered}
$$

An entropy lower bound

Alishahi, B. '20

\mathfrak{X} strongly Rayleigh with kernel g and $\lambda_{1}, \ldots, \lambda_{n}$ the roots of g. Then

$$
H(\mathfrak{X}) \geq \sum_{i} h\left(\lambda_{i}\right)
$$

$$
H(\mathfrak{X}) \geq H\left(I_{\lambda_{1}}, \ldots, I_{\lambda_{n}}\right) \geq H(|\mathfrak{X}|)
$$

Paving strongly Rayleigh processes

Alishahi, B. '20

For every $\delta>0$ there exists an integer r such that for every SR process \mathfrak{X} it is possible to partition its underlying space into r subsets S_{1}, \ldots, S_{r} such that

$$
\forall k \in[r]:\left|H\left(\mathfrak{X} \cap S_{k}\right)-H\left(\widehat{\mathfrak{X}} \cap S_{k}\right)\right| \leq\left|S_{k}\right| \delta
$$

$$
\forall k \in[r]:\left|\bar{H}\left(\mathfrak{X} \cap S_{k}\right)-\bar{H}\left(\widehat{\mathfrak{X}} \cap S_{k}\right)\right| \leq \delta
$$

Open Questions

* Applications?
* Is the distribution of \mathfrak{X} majorized by the distribution of $I_{\lambda_{1}}, \ldots, I_{\lambda_{n}}$?
(True for determinantal measure)
* Is there a "fine" probabilistic interpretation for $I_{\lambda_{1}}, \ldots, I_{\lambda_{n}}$?
(We want a mixture like $\mathfrak{X} \sim \mathbb{E}_{I}\left[\mathfrak{X}_{I}\right]$, where \mathfrak{X}_{I} are SR with fixed size and hopefully have a "nice form".)

Thank you!

