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Polynomial Capacity

Given p ∈ R[x1, . . . , xn] with non-negative coefficients:

Cap1(p) := inf
x>0

p(x)

x1
= inf

x1,...,xn>0

p(x1, . . . , xn)

x1x2 · · · xn
.

Applications include bounds/approximations for:

Permanent and mixed discriminant (Gurvits)

Contingency tables and bipartite matchings (Barvinok,
Barvinok-Hartigan, Gurvits, Gurvits-L, Brändén-L-Pak)

Eulerian orientations (Csikvári-Schweitzer)

Counting/optimization on stable matroids (Straszak-Vishnoi,
Anari-Oveis Gharan)

Intersection of two general matroids (Anari-Oveis Gharan-Vinzant)

Operator scaling and invariant theory (combinations of Bürgisser,
Franks, Garg, Gurvits, Oliveira, Walter, Wigderson)
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Real Stable and Log-concave Polynomials

Almost all applications via real stable and log-concave polynomials.

A polynomial p is real stable if

p(z1, . . . , zn) 6= 0 whenever Im(zi ) > 0 for all i .

Newton’s inequalities for coefficients of real-rooted polynomials
generalized by strong Rayleigh inequalities (Brändén).

Log-concave in the positive orthant = Rn
+.

A polynomial p is strongly log-concave (Gurvits) if

∇v1 · · · ∇vkp is log-concave in Rn
+ ∀v1, . . . , vk ∈ Rn

+.

Connects matroids and the Alexandrov-Fenchel inequalities.

Also called completely log-concave (Anari-Liu-
Oveis Gharan-Vinzant) and Lorentzian (Brändén-Huh).
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Probabilistic Interpretation

Given p ∈ R[x1, . . . , xn] with non-negative coefficients:

Cap1(p) := inf
x>0

p(x)

x1
= inf

x1,...,xn>0

p(x1, . . . , xn)

x1x2 · · · xn
.

Let p(1) = 1 and consider probability distribution µ on supp(p) ⊂ Zn:

p(x) =
∑
κ

pκxκ ⇐⇒ P[µ = κ] = pκ,

∇p(1) = E[µ] (“marginals”)

We have 0 ≤ Cap1(p) ≤ 1 and:

Cap1(p) > 0 iff 1 is in the Newton polytope of p = hull(supp(p)).

Cap1(p) = 1 iff marginals = 1 (p is doubly stochastic).

Jonathan Leake (TU Berlin) Capacity Bounds Simons Institute, 2020 6 / 20



Main Result

What if the marginals are only close to 1? (think algos)

Theorem (Gurvits-L ’20)

Let p be an n-variate homogeneous polynomial of degree n with p(1) = 1.
If p is real stable and ‖1−∇p(1)‖1 < 2, then

1 ≥ Cap1(p) = inf
x>0

p(x)

x1
≥
(

1− ‖1−∇p(1)‖1
2

)n

.

Use Gurvits’ original coefficient-capacity bound to get:

Corollary

If p and ∇p(1) are as in the previous theorem, then

p1 ≥
n!

nn
· Cap1(p) ≥ n!

nn

(
1− ‖1−∇p(1)‖1

2

)n

.
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Matrix Scaling: Setup

Goal: Given matrix A with non-negative entries, want to multiply on left
and right by diagonal matrices to make A doubly stochastic (“scaling”).

Idea: Normalize rows, then columns, then rows, then columns, ...

Linial-Samorodnitsky-Wigderson ’00: We can use this method to
deterministically approximate the permanent within en factor.

1 Easy to keep track of changes to permanent (det of diagonal matrix).
2 Have an en approximation of doubly stochastic permanent:

1 ≥ per(A) ≥ n!

nn
(←− vdW bound: Egorychev, Falikman).

3 Need a similar bound when a matrix is “close” to doubly stochastic:

‖1− c‖2 <
1√
n

=⇒ per(M) ≥ n!

nn
(
1−
√
n‖1− c‖2

)n
,

where c are the column sums of A and rows sums are 1.
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Matrix Scaling: Our Bound

To use our bound on per(A):

p(x) :=
n∏

i=1

n∑
j=1

aijxj =⇒ per(A) = p1,

row sums = 1 =⇒ p(1) = 1 and column sums = ∇p(1).

Using our bound: ‖1−∇p(1)‖2 < 2√
n

implies

per(A) ≥ n!

nn

(
1− ‖1−∇p(1)‖1

2

)n

≥ n!

nn

(
1−
√
n‖1−∇p(1)‖2

2

)n

.

Similar inequalities used for more recent operator/tensor scaling.
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Metric TSP: Introduction

Metric TSP: “travelling salesperson problem” assuming the triangle
inequality (NP-hard, even approximation with factor 123

122).

Christofides-Serdyukov (’70s): approximation for TSP with factor 3
2 .

Min spanning tree + min matching on odd degree vertices of tree.

Karlin-Klein-Oveis Gharan (’20): factor improved to ≈ 3
2 − 10−36.

Instead: Random spanning tree based on linear relaxation.

Significant improvements for many special cases, but this is the first
general improvement.

We now discuss connections to our bound. For more discussion about the
algorithm itself, see the talk on Friday by Nathan Klein.
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Metric TSP: Setup

Let ν be a distribution on 2[m] (random subset of [m]), and associate to ν
the (non-homogeneous) polynomial q, as above:

q(y) :=
∑

S⊆[m]

P[ν = S ]yS .

E.g.: uniform distribution on spanning trees =⇒ q(y) real stable.
E.g.: spanning tree T sampled according to λT =⇒ q(y) real stable.

Given disjoint sets S1 t · · · t Sn = [m], construct random variables:

Ai :=
∑
j∈Si

νj , ∀i ∈ [n].

That is: if X ⊆ [m] is drawn from ν, then Ai = |X ∩ Si |.
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Metric TSP: Translation

Their paper: “Roughly speaking, (when q is real stable) we show that

‖1− E[A]‖1 < 1− ε =⇒ P[A = 1] ≥ f (ε, n),

where f (ε, n) ∼ ε2n has no dependence on m.”

Now consider: p̃(x) := q(y)
∣∣
yj=xi for j∈Si

p̃(x) has n variables, and deg(p̃) = deg(q).

p̃(1) = 1 and marginals = ∇p̃(1) = E[A].

p̃1 = P[A = 1].

Translation: “Roughly speaking, (when p̃ is real stable) we show that

‖1−∇p̃(1)‖1 < 1− ε =⇒ p̃1 ≥ f (ε, n),

where f (ε, n) ∼ ε2n has no dependence on m.”
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Metric TSP: Our Bound

Recall our bound, for ‖1−∇p(1)‖1 < 2:

p1 ≥
n!

nn
· Cap1(p) ≥ n!

nn

(
1− ‖1−∇p(1)‖1

2

)n

.

How can we apply this? Want:

‖1−∇p̃(1)‖1 < 1− ε =⇒ p̃1 ≥ f (ε, n),

Need to homogenize and transform to make degree = # variables.

Discrepancy between 1− ε and 2 is reconciled in homogenization.

Implies: P[A = 1] = p̃1 ≥ e−nεd .

Problem: It could be that d = m =⇒ dependence on m.

However: Our bounds are tight for the case of homog. deg. = # vars.
Similar situation to Gurvits’ original capacity bound?
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Proof Outline

A product polynomial is a polynomial coming from a matrix A:

pA(x) :=
n∏

i=1

n∑
j=1

aijxj .

When row sums are 1 and column sums are α, we say pA ∈ Prodn(α).

Theorem (Bound for product polynomials)

If ‖1−α‖1 < 2, then min
pA∈Prodn(α)

Cap1(pA) ≥
(

1− ‖1−α‖1
2

)n

.

Theorem (Productization)

Let p be real stable, n-variate, n-homogeneous, and set α := ∇p(1).
For all x > 0, there is an pA ∈ Prodn(α) such that pA(x) = p(x).
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Bound for Product Polynomials: Proof Sketch

We first need a lemma:

Lemma

For α ∈ Rn
+ with α1 + · · ·αn = n, the following are equivalent.

1 ‖1−α‖1 < 2.

2 min
pA∈Prodn(α)

per(A) > 0

(
⇐⇒ min

pA∈Prodn(α)
Cap1(pA) > 0

)
.

3
∑

i∈F αi > |F | − 1 for all F ⊆ [n].

Proof of bound for pA ∈ Prodn(α):

(1) Find doubly stochastic matrix D for which M := A−γD
1−γ ≥ 0 entrywise,

and such that γ ≥ 0 is maximal.
(2) Maximality of γ implies per(M) = 0.

(3) Use the Lemma and rearrange to obtain γ ≥ 1− ‖1−α‖12 .
(4) Finally, Cap1(pA) ≥ Cap1(pγD) = γn.
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Productization of Real Stable Polynomials

We first need a lemma:

Lemma (Brändén)

Let p be real stable, n-variate, n-homogeneous, p(1) = 1, and ∇p(1) = 1.
Let λ(x) denote the roots of p(1t − x). Then x majorizes λ(x) for all x .

Proof of productization result:

(1) First for rational α = (k1N , . . . ,
kn
N ), define:

q(z) := p

(
z1,1 + · · ·+ z1,k1

k1
, . . . ,

zn,1 + · · ·+ zn,kn
kn

)N

.

(2) q(1) = 1 and ∇q(1) = 1 =⇒ Lemma gives pD ∈ Prodn(1) for q.
(3) Summing blocks of the matrix D gives pA ∈ Prodn(α) for p.
(4) For irrational α, use the fact that r 7→ ∇ log p(rx)|x=1 maps the strict
positive orthant onto the interior of Newt(p) and limit.
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Open Questions

1 Can our techniques be used to improve the metric TSP bound in
general?

2 Can the productization result be extended to strongly log-concave
polynomials (even log-concave)?

3 Other applications?
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