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Outline

A classical model from statistical physics


Some history and a major open problem


Classical results and some analogies to spin systems


New results from ideas of the program


Some manageable open problems 



Some themes of the program

Relationships between approaches to approximate counting: 


Markov chains, correlation decay, polynomial interpolation


Influence of different fields on each other: 


algorithms, geometry, statistical physics, combinatorics



Classical statistical mechanics

Goal: derive the macroscopic properties of fluids (gasses, liquids, solids) 
from their microscopic interactions


This dates back to Maxwell, Boltzmann, Gibbs in the 1800’s


Many foundational mathematical results proved in the 1960’s: Penrose, 
Ruelle, Lebowitz, Groeneveld, Lieb…  and earlier: Mayer, Lee, Yang



Classical statistical mechanics



The model

Energy function H from finite point sets in  to  


 a bounded region


 the activity parameter,  the inverse temperature 

Define the Gibbs point process as the point process on  with density 
 against the Poisson process of intensity  on 

ℝd ℝ ∪ {+∞}

Λ ⊂ ℝd

λ > 0 β > 0

Λ
e−βH(⋅) λ Λ



Pair potentials

Most studied class of energy functions: sum of pairwise interactions 







The potential is repulsive if 

ϕ : ℝd → ℝ ∪ {+∞}

H(x1, …, xk) = ∑
1≤i<j≤k

ϕ(xi − xj)

ϕ ≥ 0



Hard sphere model

Important special case (and our initial motivation)


 if  and 0 otherwise


Only interaction is a hard-core repulsion; the 
point process represents the centers of a packing 
of spheres of radius r/2 


This is a hard-core model on an infinite graph

ϕ(x) = + ∞ ∥x∥ < r



Hard sphere model

Perhaps the original statistical mechanics model, studied mathematically as 
far back as van der Waals and Boltzmann (1890’s)


Long association with computer science: Metropolis algorithm was 
invented to sample from the 2-d hard disk model


Physicists believe it has a crystallization phase transition in dimension 3


Dimension 2 is more subtle, with recent predictions of a `hexatic phase’ 
given by Event-chain Monte Carlo (Bernard-Krauth)



Hard sphere model

Perhaps the original statistical mechanics model, studied mathematically as 
far back as van der Waals and Boltzmann (1890’s)


Long association with computer science: Metropolis algorithm was 
invented to sample from the 2-d hard disk model


Physicists believe it has a crystallization phase transition in dimension 3


Dimension 2 is more subtle, with recent predictions of a `hexatic phase’ 
given by Event-chain Monte Carlo (Bernard-Krauth)



THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087 

instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 
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paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 
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Equation of State Calculations by Fast Computing Machines 
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A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 

Two-Step Melting in Two Dimensions: First-Order Liquid-Hexatic Transition

Etienne P. Bernard* and Werner Krauth†
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Melting in two spatial dimensions, as realized in thin films or at interfaces, represents one of the most

fascinating phase transitions in nature, but it remains poorly understood. Even for the fundamental hard-

disk model, the melting mechanism has not been agreed upon after 50 years of studies. A recent

Monte Carlo algorithm allows us to thermalize systems large enough to access the thermodynamic

regime. We show that melting in hard disks proceeds in two steps with a liquid phase, a hexatic phase, and

a solid. The hexatic-solid transition is continuous while, surprisingly, the liquid-hexatic transition is of

first order. This melting scenario solves one of the fundamental statistical-physics models, which is at the

root of a large body of theoretical, computational, and experimental research.

DOI: 10.1103/PhysRevLett.107.155704 PACS numbers: 64.70.dj, 05.20.Jj

Generic two-dimensional particle systems cannot crys-
tallize at finite temperature [1–3] because of the impor-
tance of fluctuations, yet they may form solids [4]. This
paradox has provided the motivation for elucidating the
fundamental melting transition in two spatial dimensions.
A crystal is characterized by particle positions which fluc-
tuate about the sites of an infinite regular lattice. It has
long-range positional order. Bond orientations are also the
same throughout the lattice. A crystal thus possesses long-
range orientational order. The positional correlations of a
two-dimensional solid decay to zero as a power law at large
distances. Because of the absence of a scale, one speaks of
‘‘quasi–long-range’’ order. In a two-dimensional solid, the
lattice distortions preserve long-range orientational order
[5], while in a liquid both the positional and the orienta-
tional correlations decay exponentially.

Besides the solid and the liquid, a third phase, called
‘‘hexatic,’’ has been discussed but never clearly identified
in particle systems. The hexatic phase is characterized by
exponential positional but quasi–long-range orientational
correlations. It has long been discussed whether the melt-
ing transition follows a one-step first-order scenario be-
tween the liquid and the solid (without the hexatic) as in
three spatial dimensions [6], or whether it agrees with the
celebrated Kosterlitz, Thouless, Halperin, Nelson, and
Young [7–9] (KTHNY) two-step scenario with a hexatic
phase separated by continuous transitions from the liquid
and the solid [10–18].

Two-dimensional melting was discovered [4] in the sim-
plest particle system, the hard-disk model. Hard disks (of
radius !) are structureless and all configurations of non-
overlapping disks have zero potential energy. Two isolated
disks only feel the hard-core repulsion, but the other disks
mediate an entropic ‘‘depletion’’ interaction (see, e.g., [19]).
Phase transitions result from an ‘‘order from disorder’’
phenomenon: At high density, ordered configurations can
allow for larger local fluctuations, thus higher entropy, than
the disordered liquid. For hard disks, no difference exists

between the liquid and the gas. At fixed density ", the phase
diagram is independent of temperature T ¼ 1=kB#, and the
pressure is proportional to T, as discovered by D. Bernoulli
in 1738. Even for this basic model, the nature of the melting
transition has not been agreed upon.
The hard-disk model has been simulated with the local

Monte Carlo algorithm since the original work by
Metropolis et al. [20]. A faster collective-move ‘‘event-
chain’’ Monte Carlo algorithm was developed only re-
cently [21] (see [22]). We will use it to show that the
melting transition neither follows the one-step first order
nor the two-step continuous KTHNY scenario.
To quantify orientational order, we express the local

orientation of disk k through the complex vector !k ¼
hexpð6i$klÞi, with hi the average over all the neighbors l
of k. The angle $kl describes the orientation of the bond kl
with respect to a fixed axis. The sample orientation is defined
as ! ¼ 1=N

P
k!k. For a perfect triangular lattice, all the

angles 6$kl are the same and j!kj ¼ j!j ¼ 1 (see [22]).
In Fig. 1, the local orientations of a configuration with

N ¼ 10242 disks at density " ¼ N%!2=V ¼ 0:708 in a
square box of volume V are projected onto the sample
orientation and represented using a color code (see [22]).
Inside this configuration, a vertical stripe with density
$0:716 preserving the orientational order over long dis-
tances coexists with a stripe of disordered liquid of lower
density$0:700. Each stripe corresponds to a different phase.
The two interfaces of length ’

ffiffiffiffi
N

p
close on themselves via

the periodic boundary conditions. Stripe-shaped phases as in
Fig. 1(a) are found in the center of a coexistence interval" 2
½0:700; 0:716&, whereas close to its endpoints, a ‘‘bubble’’ of
the minority phase is present inside the majority phase for
" * 0:700 and " & 0:716 (see Fig. 2). This phase coexis-
tence is the hallmark of a first-order transition.
The first-order transition shows up in the equilibrium

equation of state PðVÞ (see Fig. 2). At finite N, the free
energy is not necessarily convex (as it would be in an infinite
system) and the equilibrium pressure PðVÞ ¼ '@F=@V can
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form a thermodynamically stable loop due to the interface
free energy. The pressure loop in the coexistence window of
a finite system is caused by the curved interface between a
bubble of minority phase and the surroundingmajority phase
[see Fig. 2(b) and 2(d)]. In a system with periodic boundary
conditions, the pressure loop contains a horizontal piece
corresponding to the ‘‘stripe’’ regime, where the interfaces
are flat. This is visible near !! 0:708 for the largest sys-
tems in Fig. 2. In a finite system, the Maxwell construction
suppresses the interface effects. For the equation of state of
Fig. 2(a), this construction confirms the boundary densities
! ¼ 0:700 and ! ¼ 0:716 of Fig. 1 for the coexistence
interval, with very small finite-size effects. The interface
free energy per disk, the hatched area in Fig. 2, depends on
the length /

ffiffiffiffi
N

p
of the interface in the stripe regime so that

!f ¼ !F=N / 1=
ffiffiffiffi
N

p
[see Fig. 2(f)].

The first-order nature of the transition involving the
liquid is thus established by (i) the visual evidence of phase
coexistence in Fig. 1, (ii) the / 1=

ffiffiffiffi
N

p
scaling of the inter-

face free energy per disk [23], and (iii) the characteristic
shape of the equation of state in a finite periodic system
[24–26]. We stress that the system size is larger than the
physical length scales so that the results hold in the ther-
modynamic limit (see [22]).
In the coexistence interval, the individual phases are

difficult to analyze at large length scales because of the
fluctuating interface, and only the low-density coexisting
phase is identified as a liquid with orientational correlations
below a scale of !100" [see Figs. 1(a) and 1(d)]. Unlike
constant NV simulations, Gibbs ensemble simulations can
have phase coexistence without interfaces, but these

FIG. 2 (color). Equilibrium equation of state for hard disks.
The pressure is plotted vs volume per particle [v ¼ V=N) (lower
scale) and density ! (upper scale)]. In the coexistence region, the
strong system-size dependence stems from the interface free
energy. The Maxwell constructions (horizontal lines) suppress
the interface effects (with a convex free energy) for each N.
Stripe [(c), for N ¼ 10242] and bubble configurations (b), (d) are
shown in the coexistence region, together with two single-phase
configurations (a), (e). The interface free energy per disk #!f
(hatched area) scales as 1=

ffiffiffiffi
N

p
(f).

FIG. 1 (color). Phase coexistence for 10242 thermalized hard disks at density ! ¼ 0:708. (a) Color-coded local orientations "k

showing long orientational correlations [blue region, see (b), (c)] coexisting with short-range correlations [see (d)]. (e) Local densities
(averaged over a radius of 50"), demonstrating the connection between density and local orientation (see [22]). In (b), (c), and (d),
disks with five (seven) neighbors are colored in gray (black).
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Questions

Is the Gibbs point process a reasonably accurate model of a fluid?  Does it 
exhibit the phase transitions real fluids do (gas/liquid/solid)


What choices of pair potentials are physically realistic?  (Lennard-Jones,…)


What mathematical properties of the model define the different states of 
matter? Correlation decay, mixing times,…


Can these properties be proved rigorously?



Classical results
Mathematically, phase transitions only happen in the infinite volume limit


Partition function: 


Infinite volume pressure: 


Non-analyticities of  on the positive real axis mark phase transitions

ZΛ(λ) = ∑
k≥0

λk

k! ∫Λk

e−βHϕ(x1,…,xk) dx1⋯dxk

p(λ) = lim
Λ→ℝd

1
|Λ |

log ZΛ(λ)

p(λ)



Phase transitions

Believed that a large class of pair potentials  exhibit phase transitions - the 
Crystallization Conjecture


No phase transition is proved in any monatomic classical gas interacting 
via a pair potential!


Some special multi-type or multi-body models have been proved to have a 
phase transition (e.g. Widom-Rowlinson model)

ϕ



Phase transitions
Major Open Problem 

Prove the existence of a phase transition in a classical continuum model of a gas.

Failure to prove this (along with computational issues) led to the popularity of 
lattice models (Ising model, hard-core lattice gas, monomer-dimer model etc.).  
For many of these models the Peierls’ argument (1936) can be used to prove 
the existence of a phase transition

Most results about continuum models pertain to the gaseous state (absence of 
phase transition at low activity / high temperature)



Classical results
PH YSI CAL REVIEW VOLUM E 87, NUM BER 3 AUGUST 1, 1952

Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation
C. N. YANG AND T. D. LEE

Institute for Advanced Study, Princeton, Kern Jersey
(Received March 31, 1952)

A theory of equations of state and phase transitions is developed that describes the condensed as well as
the gas phases and the transition regions. The thermodynamic properties of an infiriite sample are studied
rigorously and Mayer's theory is re-examined.

I. INTRODUCTION difference lay, not in the difference of the models, but
in the inadequacy of Mayer's method for dealing with
a condensed phase. This led to a study of the analytical
behavior of the grand partition function of an assembly
of interacting atoms, and we were able, as in the special
case mentioned above, to identify and characterize
quite generally the condensation phenomena. These
general conclusions will. be presented in the present
paper.
The problem is approached by allowing the fugacity

to take on complex values. Although only real values of
the fugacity are of any physical interest, the analytical
behavior of the thermodynamic functions can only be
completely revealed by going into the complex plane,
whereby one is able to obtain a description of the con-
densed phases as well as the gas phase and the transition
regions. This approach is of a very general nature and.
can be applied to other problems of phase transitions
such as ferromagnetism, order disorder transition, etc.
It will be emphasized that also this approach can lead
to practical approximation methods for the description
of systems undergoing transitions. These points will be
discussed in paper II.
Thephysical conclusions of this paper derive from some

mathematical results which we shall state in the form
of two theorems. Due to the nature of the problem
(which involves a double limiting process) it is im-
perative to have mathematical rigor preserved through-
out. The proofs are necessarily of a mathematical nature
and will be given in the appendix.

'HIS and a subsequent paper will be concerned, with
. the problem of a statistical theory of equations of

state and phase transitions. This problem has always
interested physicists both from the practical viewpoint
of seeking for a workable theory of properties of matter
(such as a theory of liquids) and also from the more
academic viewpoint of understanding the occurrence of
the discontinuities associated with phase transitions in
the thermodynamic functions.
The work reported in this paper is quite general and

fairly abstract. We are returning in a subsequent paper
to the illustration and application of the methods here
outlined. In order to present the work of this present
paper in its proper perspective, it may be helpful if we
outline briefly the history of our own thinking on the
subject.
About a year ago one of us was able to make progress'

with the problem of the spontaneous magnetization of
the Ising model, taking advantage of some special
properties of this problem when treated by the Onsager-
Kaufman method. ' We then noted that the solution
there obtained was also the solution of another, physi-
cally quite difterent, but formally identical, problem.
This is the problem of a lattice gas with attractive
interaction between nearest neighbors. We were thus
able to follow in detail the behavior of such a lattice
gas, which in many ways should reveal the features of
an actual gas. In particular, we were able to study and
characterize the condensation phenonenon, and to
identify the liquid, gas, and transition regions in the
p—v diagram. The isotherms thus obtained are flat in
the transition region and rise very rapidly with in-
creasing density in the liquid phase. At this point, we
were led to compare the specific solution with the well-
known work' of Mayer on the theory of condensation of
gases. In particular we were led to inquire as to why, in
Mayer's theory, the isotherms stay Rat beyond the con-
densation point and do not give the equation of state
for the liquid phase. It soon became apparent that this

II. INTERACTION
We consider a monatomic gas with the interaction

U=P u(r, ;),
where r,; is the distance between the ith and jth atoms.
The following assumptions are made about the nature
of these interactions':
(1) The atoms have a finite impenetrable core of

diameter a, so that u(r) =+ ~ for r=a.
(2) The interaction has a finite range b so that' C. N. Yang, Phys. Rev. 85, 808 (1952).

~ L. Onsager, Phys. Rev. 65, 117 (1944); B. Kaufman, Phys.
Rev. 76, 1232 (1949).

3 J. E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and
Ph. G. Ackermann, J. Chem. Phys. 5, 74 (1937);J. E. Mayer an
S. F. Harrison, J. Chem. Phys. 6, 87, 101 (1938); B. Kahn an
G. E. Uhlenbeck, Physica 5, 399 (1938).M. Born and K, Fuchs
Proc. Roy. Soc. (London) A166, 391 (1938).

u(r) =0 for r=b
d (3) u(r) is nowhere minus infinity.

The theory can be easily generalized to include many
body forces and forces with a weak long tail such as

404

Zero-free regions imply the absence of phase transition



Classical results

Realistic potentials are strongly repulsive at short range, weakly attractive 
at long range


Stable:   for some constant .  Can take 

 for repulsive potentials. 


Tempered: 

∑
x,y∈A

ϕ(x − y) ≥ − B |A | B ≥ 0

B = 0

Cϕ := ∫ℝd

1 − e−ϕ(x) dx < ∞



Classical results

Many results and proofs collected in Ruelle’s classic 
book, mostly still up-to-date!


(Though statisticians have since studied sampling from 
these processes)



Classical results

Most general result on analyticity and uniqueness: Penrose, Ruelle: for any 

stable, tempered potential,  is analytic when  .


For repulsive potentials ( ) this is , proved by Groeneveld 

p(λ) |λ | <
1

e2B+1Cϕ

B = 0 |λ | <
1

eCϕ



Classical results

Proofs via convergence of the cluster expansion (power series for log Z 
around ) and Kirkwood-Salsberg equations


For repulsive potentials, Groeneveld showed that cluster expansion cannot 

converge for 


Closest singularity is on the negative real axis and thus not physical.  How 
to avoid this?

λ = 0

|λ | >
1

Cϕ



Recent results

Probabilistic approaches (for hard spheres): 


Disagreement percolation (Hofer-Temmel, Dereudre)


Markov Chain mixing (Kannan-Mahoney-Montenegro, Hayes-Moore, 
Guo-Jerrum, Helmuth-P.-Petti after Vigoda)


The last improves the classical bound for analyticity by a factor , but only 
for hard spheres

2e



Analogies to discrete models
Discrete 
2-spin model

Hard-core model


Shearer disk, 


Anti-ferromagnetic

Ferromagnetic


hard-core on -regular graph


Path coupling, 


Optimized metric, 


Weitz, 

1/(eΔ)

2d

1/Δ

2/Δ

e/Δ

Continuous 
Monatomic gas

Hard-sphere model


Cluster expansion convergence, 


Repulsive

??

d-dimensional hard sphere


Path coupling,  (hard spheres)


Optimized metric,  (hard spheres)


???

1/(eCϕ)

1/Cϕ

2/Cϕ



New result

Theorem (Michelen-P. ‘20+) A classical gas with a repulsive, tempered 
potential  exhibits uniqueness and analyticity for .


Beats the known limit of cluster expansion convergence by factor  and the 
previous best for the special case of hard spheres by a factor 

ϕ λ <
e

Cϕ

e
e/2



Ideas

Adapt the Weitz argument to the continuous setting (strong spatial mixing?)


For infinite-range potentials we needed to go via zero-freeness: connection 
between correlation decay on the infinite tree and zeroes (Peters-Regts, 
Liu-Sinclair-Srivastava (x2), Shao-Sun)




Difficulties

The building block of correlation decay is the recursion for ratios of spin 
probabilities.  Is there an analogue for continuous models?


What is the `infinite tree’ for a continuous model?


How to do an inductive argument?



Tools

Work in the multivariate setting: activity function , 




Work with densities : the function that computes the expected number 
of points in a region when integrated


Need 1) a connection between the partition function and densities and          
2) a recursion for densities

λ : ℝd → [0,∞)
ZΛ(λ) = ∑

k≥0

1
k! ∫Λk

λ(x1)⋯λ(xk)e−βH(x1,…xk)dx1⋯dxk

ρλ(x)



Densities

Several ways to define densities (and k-point densities) but we want one 
that can be generalized to complex activity functions


  


Definition works for complex  if 

ρλ(x) = λ(x) ⋅
Z(λe−ϕ(x−⋅))

Z(λ)

λ Z(λ) ≠ 0



Totally zero-free

We say an activity function  is totally zero-free if  for all , 
 (pointwise contractions)


We will prove that if  lies in a small neighborhood of  then  
is totally zero-free.

λ Z(λ′ ) ≠ 0 λ′ = λα
α ∈ [0,1]

λ(x) [0,e/Cϕ − ϵ) λ



Integral identity for log Z

Lemma. If  is totally zero-free, then  

  


where   and 


λ

log Z(λ) = ∫ℝd

ρ ̂λx
(x) dx

̂λx(y) = {0 if y ∈ Λx

λ(y) if y ∉ Λx
Λx = {y ∈ ℝd : ∥y∥ < ∥x∥}



Discrete recursion

Recall the basic building block of the Weitz argument:


 where  is the probability v is occupied.


On a tree, 


Rv =
ρv

1 − ρv
ρv

Rv =
λ

∏Δ
i=1 (1 + RTi

vi
)



Continuous recursion

Theorem.  Suppose  is totally zero-free. Then for all x, 

, 


where     

λ

ρλ(x) = λ(x) ⋅ exp (−∫ℝd

ρλx→w
(w)(1 − e−ϕ(x−w)) dw)

λx→w(y) = {λ(y)e−ϕ(x−y) if ∥x − y∥ < ∥x − w∥
λ(y) if ∥x − y∥ ≥ ∥x − w∥



Contraction

The recursion defines a functional:  




This is contractive (after applying a potential function) for 

F(λ, ρ) = λ ⋅ exp (−∫ ρ(x)(1 − e−ϕ(x)) dx)
λ < e/Cϕ



Zero-freeness

The contraction tells us that if densities and activity lie in a certain complex 
neighborhood, applying the functional keeps us in this neighborhood (just as 
in Peters-Regts).


Our `induction’ starts with the identically 0 activity function and moves up to 
show that  is totally zero-free if it pointwise lies in a complex 
neighborhood of .

λ
[0,e/Cϕ − ϵ)



Open Problems
Extend to stable, tempered potentials.  Includes e.g. Lennard-Jones. (Not 
clear what to aim for, but the identities go through)


Deterministic algorithms?  


Algorithmic applications of Kirkwood-Salsberg equations?


Analogue of a random graph for continuous particle models?

Thank you!



Thank you!


