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Outline

A classical model from statistical physics

Some history and a major open problem

and some analogies to spin systems

New results from ideas of the program

Some manageable open problems



Some themes of the program

Relationships between approaches to approximate counting:
Markov chains, correlation decay, polynomial interpolation
Influence of different fields on each other:

algorithms, geometry, statistical physics, combinatorics



Classical statistical mechanics

Goal: derive the macroscopic properties of fluids (gasses, liquids, solids)
from their microscopic interactions

This dates back to , , in the 1800’s

Many foundational mathematical results proved in the 1960’s:
.. and earlier:



Classical statistical mechanics




The model

Energy function H from finite point sets in | Y10 R U {+00}

A C R? a bounded region
A > 0the , # > 0 the inverse temperature

Define the Gibbs point process as the point process on A with density
e~ PH0) against the Poisson process of intensity A on A



Pair potentials

Most studied class of energy functions: sum of pairwise interactions

d:RY— RU{+00)

The potential is repulsive if ¢ > 0



Hard sphere model

Important special case (and our initial motivation)

d(x) = + oo if [|x]|| < r and 0 otherwise

Only interaction is a hard-core repulsion; the
point process represents the centers of a packing
of spheres of radius r/2

This is a hard-core model on an infinite graph




Hard sphere model

Perhaps the original statistical mechanics model, studied mathematically as
far back as and (1890°s)

Long association with computer science: Metropolis algorithm was
invented to sample from the 2-d hard disk model

Physicists believe It has a crystallization phase transition in dimension 3

Dimension 2 is more subtle, with recent predictions of a hexatic phase’
given by Event-chain Monte Carlo ( )
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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general

method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics 1s assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number V may be as high as
several hundred. Our system consists of a squaref con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
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Melting in two spatial dimensions, as realized in thin films or at interfaces, represents one of the most
fascinating phase transitions in nature, but it remains poorly understood. Even for the fundamental hard-
disk model, the melting mechanism has not been agreed upon after 50 years of studies. A recent
Monte Carlo algorithm allows us to thermalize systems large enough to access the thermodynamic
regime. We show that melting in hard disks proceeds in two steps with a liquid phase, a hexatic phase, and
a solid. The hexatic-solid transition is continuous while, surprisingly, the liquid-hexatic transition is of
first order. This melting scenario solves one of the fundamental statistical-physics models, which is at the
root of a large body of theoretical, computational, and experimental research.
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Questions

Is the Gibbs point process a reasonably accurate model of a fluid? Does it
exhibit the phase transitions real fluids do (gas/liquid/solid)

What choices of pair potentials are physically realistic? ( et)

What mathematical properties of the model define the different states of
matter? Correlation decay, mixing times,...

Can these properties be proved rigorously?



Classical results

Mathematically, phase transitions only happen in the infinite volume limit

ﬂk
Partition function: Z,(1) = Z —{ e PRy dx oo dx,
k! J A
k>0 A
Infinite volume :p(A) = Iim log Z\(4)
A—R¢ | A ‘

Non-analyticities of p(1) on the positive real axis mark phase transitions



Phase transitions

Believed that a large class of pair potentials ¢ exhibit phase transitions - the
Crystallization Conjecture

No phase transition is proved in any monatomic classical gas interacting
via a pair potential!

Some special multi-type or multi-body models have been proved to have a
phase transition (e.qg. model)



Phase transitions

Major Open Problem

Prove the existence of a phase transition in a classical continuum model of a gas.

Failure to prove this (along with computational issues) led to the popularity of
lattice models (Ising model, hard-core lattice gas, monomer-dimer model etc.).
For many of these models the (1936) can be used to prove
the existence of a phase transition

Most results about continuum models pertain to the gaseous state (absence of
phase transition at low activity / high temperature)



Classical results
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Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation

C. N. Yanc axp T. D. LEE
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A theory of equations of state and phase transitions is developed that deecrlbes the condensed as well as
the gas phases and the transition regions. The thermodynamlc properties of an mﬁmte sample are studied
rigorously and Mayer’s theory is re-examined.

L. INTRODUCTION | difference lay, not in the difference of the models, but
in the inadequacy of Mayer’s method for dealing with
a condensed phase. This led to a study of the analytical
behavior of the grand partition function of an assembly
of interacting atoms, and we were able, as in the special

HIS and a subsequent paper will be concerned with
~the problem of a statistical theory of equations of
state and phase transitions. This problem has always
interested physicists both from the practical viewpoint

Zero-free regions imply the absence of phase transition



Classical results

Realistic potentials are strongly repulsive at short range, weakly attractive
at long range

Stable: 2 d(x —y) > — B|A| for some constant B > 0. Can take

X,yEA
B = 0 for repulsive potentials.

] —e Y| dx < oo

Tempered: C¢ 1= J
Rd



Classical results

5tatl§twat Many results and proofs collected in Ruelle’s classic
20lA / book, mostly still up-to-date!

(Though statisticians have since studied sampling from
these processes)




Classical results

Most general result on analyticity and uniqueness: , . for any
stable, tempered potential, p(A) is analytic when |[A| < m.
For repulsive potentials (B = 0) thisis |A| < ——, proved by

€C¢



Classical results

Proofs via convergence of the cluster expansion (power series for log Z
around A = () and Kirkwood-Salsberg equations

For repulsive potentials, showed that cluster expansion cannot

converge for [A| > —

Cy

Closest singularity is on the negative real axis and thus not physical. How
to avoid this?



Recent results

Probabilistic approaches (for hard spheres):
Disagreement percolation ( , )

Markov Chain mixing ( :
| after )

The last improves the classical bound for analyticity by a factor 2e, but only
for hard spheres



Analogies to discrete models

Discrete Continuous

2-spin model Monatomic gas

Hard-core model Hard-sphere model

Shearer disk, 1/(eA) Cluster expansion convergence, 1/(eC )
Anti-ferromagnetic Repulsive

Ferromagnetic 27

hard-core on 2d-regular graph d-dimensional hard sphere

Path coupling, 1/A Path coupling, 1/C,, (hard spheres)

Optimized metric, 2/ A Optimized metric, 2/C,, (hard spheres)

299
Weitz, ¢/ A PR



New result

Theorem ( '20+) A classical gas with a repulsive, tempered
e
potential ¢ exhibits uniqueness and analyticity for 4 < o
¢

Beats the known limit of cluster expansion convergence by factor e and the
previous best for the special case of hard spheres by a factor e¢/2



ldeas

Adapt the Weitz argument to the continuous setting (strong spatial mixing?)

For infinite-range potentials we needed to go via zero-freeness:. connection
between correlation decay on the infinite tree and zeroes ( ,

(x2), )



Difficulties

The building block of correlation decay is the for ratios of spin
probabilities. Is there an analogue for continuous models?

What is the 'infinite tree’ for a continuous model?

How to do an inductive argument?



Tools

Work in the multivariate setting: activity function A : R? — [0,00),

1
Z\(A) = Z F[ A(x()++ A(xk)e—ﬂH(xp---xk)dxl...dxk
>0 YA

Work with densities p,(x): the function that computes the expected number
of points in a region when integrated

Need 1) a connection between the and and
2) a recursion for densities



Densities

Several ways to define densities (and k-point densities) but we want one
that can be generalized to complex activity functions

Z(Ae™P07)

pi(x) = A(x) - 70

Definition works for complex A if Z(A) # O



Totally zero-free

We say an activity function A is totally zero-free if Z(4') # O for all A’ = A«
a € [0,1] (pointwise contractions)

We will prove that if A(x) lies in a small neighborhood of [0,e/C — €) then A
Is totally zero-free.



Integral identity for log £

Lemma. If A is totally zero-free, then

log Z(A) = J p/fx(x) dx
Rd

Oify € A,
AY) ity € A,

where £.(y) = { and A, = (y € RY: [lyl < [lxl}



Discrete recursion

Recall the basic building block of the argument:

R

Vv

= 1 where p,, Is the probability v is occupied.
— Py

A

On a tree, Rv — A—T
1_[i=1 (1 T RVii)



Continuous recursion

Theorem. Suppose A is totally zero-free. Then for all x,

pA(x) = A(X) - exp (—J P (W) — e M) dW),

Rd

AW)e= PV if [lx — |l < [lx — w|

where A, (V) = |
{A(y) fllx =yl 2 flx = wl



Contraction

The recursion defines a functional:

F(A,p) =1 -exp (— Jp(x)(l — e~y dx)

This is contractive (after applying a potential function) for 4 < e/C,,



Zero-freeness

The contraction tells us that if densities and activity lie in a certain complex
neighborhood, applying the functional keeps us in this neighborhood (just as

Ig ).

Our induction’ starts with the identically 0 activity function and moves up to
show that A is totally zero-free if it pointwise lies in a complex

neighborhood of [0,e/ Cy— €).



Open Problems

Extend to stable, tempered potentials. Includes e.g. Lennard-Jones. (Not
clear what to aim for, but the identities go through)

Deterministic algorithms?
Algorithmic applications of equations?

Analogue of a random graph for continuous particle models”?



Thank you!



