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Real-Time System Optimization

Consider a system described at time t by

y(t) = ht(x(t))

I x(t) ∈ Rn is a vector of controllable inputs

I y(t) ∈ Rm collects the system outputs

I ht(·) : Rn → Rm is a time-varying map representing the
algebraic system model



Example: Power Systems

I Power system
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I x(t) – power injections of

controllable devices

I y(t) – system voltages

I ht(·) – power-flow equations
(Ohm + Kirchhoff)

I Time-varying: load, solar,
topology changes
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Real-Time System Optimization

The desired behaviour of the system is defined via:

min
x∈X (t),y=ht(x)

ft(y)

I X (t) is a convex set of engineering constraints

I ft : Rm → R is a convex function representing performance
goals



Example: Optimal Power Flow (OPF)

I Power system
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I Optimize generation cost
and customer satisfaction

I Subject to device constraints
and physics (power-flow
equations)



Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

min
x∈X (t),y=ht(x)

ft(y) (1)

1. Obtain system model ht and its Jacobian Jht .

2. Solve (1). E.g., projected-gradient method:

x(k+1) =projX (t)

{
x(k) − α(J

(k)
t )T∇yft(ht(x

(k)))
}
, k = 1, 2, . . .

J
(k)
t := Jht (x

(k))

I Stringent real-time requirements... Can we run the above to
convergence?

I Do we have model information in real time? E.g., forecasting
uncontrollable inputs, topology information, etc.
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Model-Based Feedback Optimization

At each (discrete) time step tk :

1. Obtain a measurement ŷ(k) of the system output

2. Run a single optimization iteration:

x(k+1) =projX (k)

{
x(k) − α(J(k))T∇yf

(k)(ŷ(k))
}
, (2)

system

ℎ(𝑥)

𝑥 𝑦

optimization

Still requires model information in the form of J(k)!



Model-Based Feedback Optimization

At each (discrete) time step tk :

1. Obtain a measurement ŷ(k) of the system output
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Model-Free Feedback Optimization

Replace the gradient of F (k)(x) := f (k)(htk (x))

∇F (k)(x) = (Jhtk (x))T∇yf
(k)(htk (x))

with the zero-order approximation.

I Single function evaluation:

∇̂F (k)(x; ξ, ε) :=
1

ε
ξF (k)(x+εξ)

I Two function evaluations:

∇̂F (k)(x; ξ, ε) :=
1

2ε
ξ
[
F (k)(x + εξ)− F (k)(x− εξ)

]
I Multiple evaluations...

I ξ ∈ Rn is an exploration
vector

I ε > 0 is a (small) scalar
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Model-Free Feedback Optimization

This talk focuses on two function evaluation approximation:

∇̂F (k)(x; ξ, ε) :=
1

2ε
ξ
[
F (k)(x + εξ)− F (k)(x− εξ)

]
Motivation:

I Admits approximation:

∇̂F (x; ξ, ε) = ξξT∇F (x) + O(ε2)

with O(ε2) = 0 for quadratic functions.

I Has nicer properties than single-evaluation: smaller variance,
Lipschitz, etc



Related Work

I Le Blanc, 1922 - origin of Extremum Seeking? Kiefer and
Wolfowitz, 1952. One-dimensional algorithm, no constraints.

I Spall, 1992. Stochastic perturbations, two function
evaluations.

I Bhatnagar et al, 2003; Prashanth et al, 2019. Deterministic
perturbations, static problem.

I Duchi et al, 2015; Nesterov and Spokoiny, 2017. Stochastic
exploration, constrained problems.

I Bandit optimization literature (Awerbuch and Kleinberg,
2004, Bubeck and Cesa-Bianchi, 2012, etc): stochastic
exploration, regret analysis.

I Extremum seeking literature (Ariyur and Krstic, 2003, etc):
deterministic exploration, single evaluation

I Hajinezhad et al, 2019. Network optimization with stochastic
exploration.



Our Focus

I Constrained time-varying networked systems optimization

I Using deterministic exploration signals – see Sean Meyn’s talk
for “Why?”

I Online distributed (light) primal-dual methods for real-time
implementation

I Application to real-time optimal power flow in power networks



Networked Systems Optimization

Consider N systems interconnected via a network.

Desired behaviour of the network is defined via a time-varying
convex optimization problem:

min
x∈Rn

f
(k)
0 (y(k)(x)) +

N∑
i=1

f
(k)
i (xi ) (3a)

subject to : xi ∈ X
(k)
i , i = 1, . . . ,N (3b)

g
(k)
j (y(k)(x)) ≤ 0, j = 1, . . . ,M (3c)



Desired Trajectory Formulation

min
x∈Rn

f
(k)
0 (y(k)(x)) +

N∑
i=1

f
(k)
i (xi ) (4a)

subject to : xi ∈ X
(k)
i , i = 1, . . . ,N (4b)

g
(k)
j (y(k)(x)) ≤ 0, j = 1, . . . ,M (4c)

The desired trajectory z(∗,k) := (x(∗,k),λ(∗,k)) is the solution of:

max
λ∈D(k)

min
x∈X (k)

L(k)p,d(x,λ) k ∈ N

L(k)p,d(x,λ) := L(k)(x,λ) +
p

2
‖x‖22 −

d

2
‖λ‖22

I L(k)(x,λ) is the Lagrangian associated with (4)
I λ ∈ RM

+ as the dual variable associated with (4c)
I p ≥ 0, d > 0 are Tikhonov-type regularization parameters
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First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
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First-Order Primal-Dual Algorithm with Feedback
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Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).
[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.
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(k)
+ )− f

(k)
0 (ŷ
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Assumptions

1. The exploration signal ξ(k) is deterministic, sampled from a
continuous-time signal ξ(t) satisfying

1

T

∫ t+T

t
ξ(τ)ξ(τ)T dτ = I, for some T > 0.

E.g., ξi (t) =
√

2 sin(ωi t), i = 1, . . . , n, ωi 6= ωj ,∀i 6= j .
(T is a common integer multiple of the sinusoidal signal periods.)

2. The projection in the primal step is active every T time units.

3. Variability of the desired trajectory and gradients is bounded:

sup
k≥0
‖z(∗,k+1)−z(∗,k)‖2 ≤ σ, sup

k≥0
‖∇f (k)(x)−∇f (k−1)(x)‖ ≤ ef

and similarly for other functions.

4. Measurement error is bounded by ey .
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and similarly for other functions.

4. Measurement error is bounded by ey .



Tracking Result

Theorem
There exist α > 0, ε = O(α + ε2 + ef + ey ), and c < 1 such that
the sequence {z(k)} converges Q-linearly to {z(∗,k)} up to an
asymptotic error bound given by:

lim sup
k→∞

‖z(k) − z(∗,k)‖2 ≤
αε+ σ

1− c
.
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Proof Idea

I Use QSA (Sean Meyn’s talk) – currently works mostly with
diminishing step size and no projection; or

I Prove directly – see:
Y. Chen, A. Bernstein, A. Devraj, S. Meyn, “Model-free primal-dual

methods for network optimization with application to real-time optimal

power flow,” 2020 American Control Conference (ACC), 3140-3147.



Application: Optimal Power Flow

Real-time optimization of the power injections of distributed
energy resources (DERs) in a power system.

I IEEE 123-node test feeder

I 8 solar (PV) systems

I 3 battery systems

I Two possible network
configurations

I Total load and available PV
generation:
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Application: Optimal Power Flow

Real-time optimization of the power injections of distributed
energy resources (DERs) in a power system.

I Control variables
x ∈ R2Nder : active and reactive power injection of DERs; xi = {xi,p, xi,q}

I Output variables
y ∈ RNbuses+1: voltages and feeder head power; y = {v,P0}

I Objectives

Feeder head power following: f0(y) =(P0 − P•
0 )2

Local DER objective: fi (xi ) =ci (xi,p − x•
i,p)2

I Constraints

Node voltage: V i ≤ vi (x) ≤ V i

Battery system: X i,p ≤ xi,p ≤ X i,p, x2
i,p + x2

i,q ≤ (S bt
i )2

SOC i ≤ SOCi ≤ SOC i

PV system: 0 ≤ xi,p ≤ X pv
i , x2

i,p + x2
i,q ≤ (S pv

i )2



Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

Real-time model-free optimization:



Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

Real-time model-free optimization:



Numerical Study: Sensitivity to Noise

I Performance metric

NRMSE =

√√√√√ 1

K

K∑
k=1

P
(k)
0 − P

•(k)
0

P
•(k)
0

2

AVV =
1

NK

N∑
i=1

K∑
k=1

(
[v

(k)
i − V i ]+ + [V i − v

(k)
i ]+

)

I Sensitivity to measurement noise

ŷ
(k)
i = y

(k)
i +Wy

(k)
i , W ∼ N (0, σ2)
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Conclusion

I Real-time primal-dual methods to track desired trajectories of
networked systems

I Zero-order deterministic feedback-based approximations

I Stability and tracking results

I Application to OPF
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