
Primal-Dual Methods for Real-Time System
Optimization

Andrey Bernstein
National Renewable Energy Laboratory

Theory of Reinforcement Learning Boot Camp, Sep 4 2020



AcknowledgmentsAcknowledgments 

Yue Chen

1

Adithya Devraj Sean Meyn



Real-Time System Optimization

Consider a system described at time t by

y(t) = ht(x(t))

I x(t) ∈ Rn is a vector of controllable inputs

I y(t) ∈ Rm collects the system outputs

I ht(·) : Rn → Rm is a time-varying map representing the
algebraic system model



Example: Power Systems

I Power system

799

701
742

705 702
720

704713

707
722

703744729

728

727
706

725
718

714

730

731709708732

775733
736

734710

735
737 738 711 741

740

724

712

 
I x(t) – power injections of

controllable devices

I y(t) – system voltages

I ht(·) – power-flow equations
(Ohm + Kirchhoff)

I Time-varying: load, solar,
topology changes

0 6 12 18 24
0

20

40

60

80

M
W

Toal loads

0 6 12 18 24

Time / Hour

0

5

10

15

M
W

Available PV power

Total

Node 705



Real-Time System Optimization

The desired behaviour of the system is defined via:

min
x∈X (t),y=ht(x)

ft(y)

I X (t) is a convex set of engineering constraints

I ft : Rm → R is a convex function representing performance
goals



Example: Optimal Power Flow (OPF)

I Power system

799

701
742

705 702
720

704713

707
722

703744729

728

727
706

725
718

714

730

731709708732

775733
736

734710

735
737 738 711 741

740

724

712

 

I Optimize generation cost
and customer satisfaction

I Subject to device constraints
and physics (power-flow
equations)



Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

min
x∈X (t),y=ht(x)

ft(y) (1)

1. Obtain system model ht and its Jacobian Jht .

2. Solve (1). E.g., projected-gradient method:

x(k+1) =projX (t)

{
x(k) − α(J

(k)
t )T∇yft(ht(x

(k)))
}
, k = 1, 2, . . .

J
(k)
t := Jht (x

(k))

I Stringent real-time requirements... Can we run the above to
convergence?

I Do we have model information in real time? E.g., forecasting
uncontrollable inputs, topology information, etc.



Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

min
x∈X (t),y=ht(x)

ft(y) (1)

1. Obtain system model ht and its Jacobian Jht .

2. Solve (1). E.g., projected-gradient method:

x(k+1) =projX (t)

{
x(k) − α(J

(k)
t )T∇yft(ht(x

(k)))
}
, k = 1, 2, . . .

J
(k)
t := Jht (x

(k))

I Stringent real-time requirements... Can we run the above to
convergence?

I Do we have model information in real time? E.g., forecasting
uncontrollable inputs, topology information, etc.



Model-Based Feedback Optimization

At each (discrete) time step tk :

1. Obtain a measurement ŷ(k) of the system output

2. Run a single optimization iteration:

x(k+1) =projX (k)

{
x(k) − α(J(k))T∇yf

(k)(ŷ(k))
}
, (2)

system

ℎ(𝑥)

𝑥 𝑦

optimization

Still requires model information in the form of J(k)!



Model-Based Feedback Optimization

At each (discrete) time step tk :

1. Obtain a measurement ŷ(k) of the system output

2. Run a single optimization iteration:

x(k+1) =projX (k)

{
x(k) − α(J(k))T∇yf

(k)(ŷ(k))
}
, (2)

system

ℎ(𝑥)

𝑥 𝑦

optimization

Still requires model information in the form of J(k)!



Model-Free Feedback Optimization

Replace the gradient of F (k)(x) := f (k)(htk (x))

∇F (k)(x) = (Jhtk (x))T∇yf
(k)(htk (x))

with the zero-order approximation.

I Single function evaluation:

∇̂F (k)(x; ξ, ε) :=
1

ε
ξF (k)(x+εξ)

I Two function evaluations:

∇̂F (k)(x; ξ, ε) :=
1

2ε
ξ
[
F (k)(x + εξ)− F (k)(x− εξ)

]
I Multiple evaluations...

I ξ ∈ Rn is an exploration
vector

I ε > 0 is a (small) scalar



Model-Free Feedback Optimization

Replace the gradient of F (k)(x) := f (k)(htk (x))

∇F (k)(x) = (Jhtk (x))T∇yf
(k)(htk (x))

with the zero-order approximation.

I Single function evaluation:

∇̂F (k)(x; ξ, ε) :=
1

ε
ξF (k)(x+εξ)

I Two function evaluations:

∇̂F (k)(x; ξ, ε) :=
1

2ε
ξ
[
F (k)(x + εξ)− F (k)(x− εξ)

]
I Multiple evaluations...

I ξ ∈ Rn is an exploration
vector

I ε > 0 is a (small) scalar



Model-Free Feedback Optimization

This talk focuses on two function evaluation approximation:

∇̂F (k)(x; ξ, ε) :=
1

2ε
ξ
[
F (k)(x + εξ)− F (k)(x− εξ)

]
Motivation:

I Admits approximation:

∇̂F (x; ξ, ε) = ξξT∇F (x) + O(ε2)

with O(ε2) = 0 for quadratic functions.

I Has nicer properties than single-evaluation: smaller variance,
Lipschitz, etc



Related Work

I Le Blanc, 1922 - origin of Extremum Seeking? Kiefer and
Wolfowitz, 1952. One-dimensional algorithm, no constraints.

I Spall, 1992. Stochastic perturbations, two function
evaluations.

I Bhatnagar et al, 2003; Prashanth et al, 2019. Deterministic
perturbations, static problem.

I Duchi et al, 2015; Nesterov and Spokoiny, 2017. Stochastic
exploration, constrained problems.

I Bandit optimization literature (Awerbuch and Kleinberg,
2004, Bubeck and Cesa-Bianchi, 2012, etc): stochastic
exploration, regret analysis.

I Extremum seeking literature (Ariyur and Krstic, 2003, etc):
deterministic exploration, single evaluation

I Hajinezhad et al, 2019. Network optimization with stochastic
exploration.



Our Focus

I Constrained time-varying networked systems optimization

I Using deterministic exploration signals – see Sean Meyn’s talk
for “Why?”

I Online distributed (light) primal-dual methods for real-time
implementation

I Application to real-time optimal power flow in power networks



Networked Systems Optimization

Consider N systems interconnected via a network.

Desired behaviour of the network is defined via a time-varying
convex optimization problem:

min
x∈Rn

f
(k)
0 (y(k)(x)) +

N∑
i=1

f
(k)
i (xi ) (3a)

subject to : xi ∈ X
(k)
i , i = 1, . . . ,N (3b)

g
(k)
j (y(k)(x)) ≤ 0, j = 1, . . . ,M (3c)



Desired Trajectory Formulation

min
x∈Rn

f
(k)
0 (y(k)(x)) +

N∑
i=1

f
(k)
i (xi ) (4a)

subject to : xi ∈ X
(k)
i , i = 1, . . . ,N (4b)

g
(k)
j (y(k)(x)) ≤ 0, j = 1, . . . ,M (4c)

The desired trajectory z(∗,k) := (x(∗,k),λ(∗,k)) is the solution of:

max
λ∈D(k)

min
x∈X (k)

L(k)p,d(x,λ) k ∈ N

L(k)p,d(x,λ) := L(k)(x,λ) +
p

2
‖x‖22 −

d

2
‖λ‖22

I L(k)(x,λ) is the Lagrangian associated with (4)
I λ ∈ RM

+ as the dual variable associated with (4c)
I p ≥ 0, d > 0 are Tikhonov-type regularization parameters



Desired Trajectory Formulation

min
x∈Rn

f
(k)
0 (y(k)(x)) +

N∑
i=1

f
(k)
i (xi ) (4a)

subject to : xi ∈ X
(k)
i , i = 1, . . . ,N (4b)

g
(k)
j (y(k)(x)) ≤ 0, j = 1, . . . ,M (4c)

The desired trajectory z(∗,k) := (x(∗,k),λ(∗,k)) is the solution of:

max
λ∈D(k)

min
x∈X (k)

L(k)p,d(x,λ) k ∈ N

L(k)p,d(x,λ) := L(k)(x,λ) +
p

2
‖x‖22 −

d

2
‖λ‖22

I L(k)(x,λ) is the Lagrangian associated with (4)
I λ ∈ RM

+ as the dual variable associated with (4c)
I p ≥ 0, d > 0 are Tikhonov-type regularization parameters



First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



First-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



First-Order Primal-Dual Algorithm with Feedback
At each time step k , perform the following steps:

[S1] (control application): Apply x(k) to the system, and collect
the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (gradient): Compute

∇L(k) := ∇xf
(k)(x(k)) + (Jk)T∇yf

(k)
0 (ŷ(k))

+ (∇yg
(k)(ŷ(k))Jk)Tλ(k) + px(k).

[S2b] (primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).
[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).
[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).

[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).
[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).
[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Zero-Order Primal-Dual Algorithm
At each time step k , perform the following steps:

[S1a] (exploration): Apply x
(k)
+ := x(k) + εξ(k) and

x
(k)
− := x(k) − εξ(k), and collect measurements ŷ

(k)
+ and ŷ

(k)
− .

[S1b] (control application): Apply x(k) to the system, and
collect the measurement ŷ(k) of the output y(k)(x(k)).
[S2a] (approximate gradient): Compute

∇̂L(k) := ∇xf
(k)(x(k))

+
1

2ε
ξ(k)

[
f
(k)
0 (ŷ

(k)
+ )− f

(k)
0 (ŷ

(k)
− )

]
+

1

2ε
ξ(k)(λ(k))T

[
g(k)(ŷ

(k)
+ )− g(k)(ŷ

(k)
− )

]
+ px(k).

[S2b] (approximate primal step): Compute

x(k+1) = projX (k)

{
x(k) − α∇̂L(k)

}
.

[S3] (dual step): Compute

λ(k+1) = projD(k)

{
λ(k) + α[g(k)(ŷ(k))− dλ(k)]

}
.



Assumptions

1. The exploration signal ξ(k) is deterministic, sampled from a
continuous-time signal ξ(t) satisfying

1

T

∫ t+T

t
ξ(τ)ξ(τ)T dτ = I, for some T > 0.

E.g., ξi (t) =
√

2 sin(ωi t), i = 1, . . . , n, ωi 6= ωj ,∀i 6= j .
(T is a common integer multiple of the sinusoidal signal periods.)

2. The projection in the primal step is active every T time units.

3. Variability of the desired trajectory and gradients is bounded:

sup
k≥0
‖z(∗,k+1)−z(∗,k)‖2 ≤ σ, sup

k≥0
‖∇f (k)(x)−∇f (k−1)(x)‖ ≤ ef

and similarly for other functions.

4. Measurement error is bounded by ey .



Assumptions

1. The exploration signal ξ(k) is deterministic, sampled from a
continuous-time signal ξ(t) satisfying

1

T

∫ t+T

t
ξ(τ)ξ(τ)T dτ = I, for some T > 0.

E.g., ξi (t) =
√

2 sin(ωi t), i = 1, . . . , n, ωi 6= ωj ,∀i 6= j .
(T is a common integer multiple of the sinusoidal signal periods.)

2. The projection in the primal step is active every T time units.

3. Variability of the desired trajectory and gradients is bounded:

sup
k≥0
‖z(∗,k+1)−z(∗,k)‖2 ≤ σ, sup

k≥0
‖∇f (k)(x)−∇f (k−1)(x)‖ ≤ ef

and similarly for other functions.

4. Measurement error is bounded by ey .



Assumptions

1. The exploration signal ξ(k) is deterministic, sampled from a
continuous-time signal ξ(t) satisfying

1

T

∫ t+T

t
ξ(τ)ξ(τ)T dτ = I, for some T > 0.

E.g., ξi (t) =
√

2 sin(ωi t), i = 1, . . . , n, ωi 6= ωj ,∀i 6= j .
(T is a common integer multiple of the sinusoidal signal periods.)

2. The projection in the primal step is active every T time units.

3. Variability of the desired trajectory and gradients is bounded:

sup
k≥0
‖z(∗,k+1)−z(∗,k)‖2 ≤ σ, sup

k≥0
‖∇f (k)(x)−∇f (k−1)(x)‖ ≤ ef

and similarly for other functions.

4. Measurement error is bounded by ey .



Assumptions

1. The exploration signal ξ(k) is deterministic, sampled from a
continuous-time signal ξ(t) satisfying

1

T

∫ t+T

t
ξ(τ)ξ(τ)T dτ = I, for some T > 0.

E.g., ξi (t) =
√

2 sin(ωi t), i = 1, . . . , n, ωi 6= ωj ,∀i 6= j .
(T is a common integer multiple of the sinusoidal signal periods.)

2. The projection in the primal step is active every T time units.

3. Variability of the desired trajectory and gradients is bounded:

sup
k≥0
‖z(∗,k+1)−z(∗,k)‖2 ≤ σ, sup

k≥0
‖∇f (k)(x)−∇f (k−1)(x)‖ ≤ ef

and similarly for other functions.

4. Measurement error is bounded by ey .



Assumptions

1. The exploration signal ξ(k) is deterministic, sampled from a
continuous-time signal ξ(t) satisfying

1

T

∫ t+T

t
ξ(τ)ξ(τ)T dτ = I, for some T > 0.

E.g., ξi (t) =
√

2 sin(ωi t), i = 1, . . . , n, ωi 6= ωj ,∀i 6= j .
(T is a common integer multiple of the sinusoidal signal periods.)

2. The projection in the primal step is active every T time units.

3. Variability of the desired trajectory and gradients is bounded:

sup
k≥0
‖z(∗,k+1)−z(∗,k)‖2 ≤ σ, sup

k≥0
‖∇f (k)(x)−∇f (k−1)(x)‖ ≤ ef

and similarly for other functions.

4. Measurement error is bounded by ey .



Tracking Result

Theorem
There exist α > 0, ε = O(α + ε2 + ef + ey ), and c < 1 such that
the sequence {z(k)} converges Q-linearly to {z(∗,k)} up to an
asymptotic error bound given by:

lim sup
k→∞

‖z(k) − z(∗,k)‖2 ≤
αε+ σ

1− c
.

Sy
st

em
 tr

aj
ec

to
ry

Time 

desired
actual



Proof Idea

I Use QSA (Sean Meyn’s talk) – currently works mostly with
diminishing step size and no projection; or

I Prove directly – see:
Y. Chen, A. Bernstein, A. Devraj, S. Meyn, “Model-free primal-dual

methods for network optimization with application to real-time optimal

power flow,” 2020 American Control Conference (ACC), 3140-3147.



Application: Optimal Power Flow

Real-time optimization of the power injections of distributed
energy resources (DERs) in a power system.

I IEEE 123-node test feeder

I 8 solar (PV) systems

I 3 battery systems

I Two possible network
configurations

I Total load and available PV
generation:

0 6 12 18 24
0

20

40

60

80

M
W

Toal loads

0 6 12 18 24

Time / Hour

0

5

10

15

M
W

Available PV power

Total

Node 705



Application: Optimal Power Flow

Real-time optimization of the power injections of distributed
energy resources (DERs) in a power system.

I Control variables
x ∈ R2Nder : active and reactive power injection of DERs; xi = {xi,p, xi,q}

I Output variables
y ∈ RNbuses+1: voltages and feeder head power; y = {v,P0}

I Objectives

Feeder head power following: f0(y) =(P0 − P•
0 )2

Local DER objective: fi (xi ) =ci (xi,p − x•
i,p)2

I Constraints

Node voltage: V i ≤ vi (x) ≤ V i

Battery system: X i,p ≤ xi,p ≤ X i,p, x2
i,p + x2

i,q ≤ (S bt
i )2

SOC i ≤ SOCi ≤ SOC i

PV system: 0 ≤ xi,p ≤ X pv
i , x2

i,p + x2
i,q ≤ (S pv

i )2



Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

Real-time model-free optimization:



Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

Real-time model-free optimization:



Numerical Study: Sensitivity to Noise

I Performance metric

NRMSE =

√√√√√ 1

K

K∑
k=1

P
(k)
0 − P

•(k)
0

P
•(k)
0

2

AVV =
1

NK

N∑
i=1

K∑
k=1

(
[v

(k)
i − V i ]+ + [V i − v

(k)
i ]+

)

I Sensitivity to measurement noise

ŷ
(k)
i = y

(k)
i +Wy

(k)
i , W ∼ N (0, σ2)

0 0.5 1 1.5 2 2.5

Standard deviation of noise, σ ×10
-3

0

0.1

0.2

0.30.3

N
R

M
S

E

0

0.5

1

1.5

A
V

V
 (
×

 1
0

-3
 p

.u
.)

Power tracking error
Voltage violation



Conclusion

I Real-time primal-dual methods to track desired trajectories of
networked systems

I Zero-order deterministic feedback-based approximations

I Stability and tracking results

I Application to OPF



References

Y. Chen, A. Bernstein, A. Devraj, S. Meyn, “Model-free primal-dual methods
for network optimization with application to real-time optimal power flow,”
2020 American Control Conference (ACC), 3140-3147.

A. Bernstein, E. Dall’Anese, A. Simonetto, “Online primal-dual methods with
measurement feedback for time-varying convex optimization,” IEEE
Transactions on Signal Processing 67 (8), 1978-1991, 2019.

M. Colombino, J.W. Simpson-Porco, A. Bernstein, “Towards robustness
guarantees for feedback-based optimization,” 2019 IEEE 58th Conference on
Decision and Control (CDC), 6207-6214.

M. Colombino, E. Dall’Anese, A. Bernstein, “Online optimization as a feedback
controller: Stability and tracking,” IEEE Transactions on Control of Network
Systems 7 (1), 422-432, 2019

C.Y. Chang, M. Colombino, J. Cortes, E. Dall’Anese, “Saddle-flow dynamics
for distributed feedback-based optimization,” IEEE Control Systems Letters 3
(4), 948-953, 2019.


