Primal-Dual Methods for Real-Time System Optimization

Andrey Bernstein
National Renewable Energy Laboratory
Theory of Reinforcement Learning Boot Camp, Sep 42020

Acknowledgments

Yue Chen
:NREL
NATIONAL RENEWABLE ENERGY LABORATORY

Adithya Devraj

Sean Meyn

$$
\text { UF } \mid \text { FLIORIDA }
$$

Real-Time System Optimization

Consider a system described at time t by

$$
\mathbf{y}(t)=\mathbf{h}_{t}(\mathbf{x}(t))
$$

- $\mathbf{x}(t) \in \mathbb{R}^{n}$ is a vector of controllable inputs
- $\mathbf{y}(t) \in \mathbb{R}^{m}$ collects the system outputs
- $\mathbf{h}_{t}(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a time-varying map representing the algebraic system model

Example: Power Systems

- Power system

- $\mathbf{x}(t)$ - power injections of controllable devices
- $\mathbf{y}(t)$ - system voltages
- $\mathbf{h}_{t}(\cdot)$ - power-flow equations (Ohm + Kirchhoff)
- Time-varying: load, solar, topology changes

Real-Time System Optimization

The desired behaviour of the system is defined via:

$$
\min _{\mathbf{x} \in \mathcal{X}(t), \mathbf{y}=\mathbf{h}_{t}(\mathbf{x})} f_{t}(\mathbf{y})
$$

- $\mathcal{X}(t)$ is a convex set of engineering constraints
- $f_{t}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a convex function representing performance goals

Example: Optimal Power Flow (OPF)

- Power system

- Optimize generation cost and customer satisfaction
- Subject to device constraints and physics (power-flow equations)

Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}(t), \mathbf{y}=\mathbf{h}_{t}(\mathbf{x})} f_{t}(\mathbf{y}) \tag{1}
\end{equation*}
$$

1. Obtain system model h_{t} and its Jacobian $\mathbf{J}_{\mathbf{h}_{t}}$.
2. Solve (1). E.g., projected-gradient method:

$$
\begin{gathered}
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}(t)}\left\{\mathbf{x}^{(k)}-\alpha\left(\mathbf{J}_{t}^{(k)}\right)^{\top} \nabla_{\mathbf{y}} f_{t}\left(h_{t}\left(\mathbf{x}^{(k)}\right)\right)\right\}, k=1,2, \ldots \\
\mathbf{J}_{t}^{(k)}:=\mathbf{J}_{\mathbf{h}_{t}}\left(\mathbf{x}^{(k)}\right)
\end{gathered}
$$

Model-Based Feedforward Optimization

The desired behaviour of the system is defined via:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}(t), \mathbf{y}=\mathbf{h}_{t}(\mathbf{x})} f_{t}(\mathbf{y}) \tag{1}
\end{equation*}
$$

1. Obtain system model h_{t} and its Jacobian $\mathbf{J}_{\mathbf{h}_{t}}$.
2. Solve (1). E.g., projected-gradient method:

$$
\begin{gathered}
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}(t)}\left\{\mathbf{x}^{(k)}-\alpha\left(\mathbf{J}_{t}^{(k)}\right)^{\top} \nabla_{\mathbf{y}} f_{t}\left(h_{t}\left(\mathbf{x}^{(k)}\right)\right)\right\}, k=1,2, \ldots \\
\mathbf{J}_{t}^{(k)}:=\mathbf{J}_{\mathbf{h}_{t}}\left(\mathbf{x}^{(k)}\right)
\end{gathered}
$$

- Stringent real-time requirements... Can we run the above to convergence?
- Do we have model information in real time? E.g., forecasting uncontrollable inputs, topology information, etc.

Model-Based Feedback Optimization

At each (discrete) time step t_{k} :

1. Obtain a measurement $\widehat{\boldsymbol{y}}^{(k)}$ of the system output
2. Run a single optimization iteration:

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}}(k)\left\{\mathbf{x}^{(k)}-\alpha\left(\mathbf{J}^{(k)}\right)^{\top} \nabla_{\mathbf{y}} f^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right)\right\} \tag{2}
\end{equation*}
$$

Model-Based Feedback Optimization

At each (discrete) time step t_{k} :

1. Obtain a measurement $\widehat{\mathbf{y}}^{(k)}$ of the system output
2. Run a single optimization iteration:

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}}(k)\left\{\mathbf{x}^{(k)}-\alpha\left(\mathbf{J}^{(k)}\right)^{\top} \nabla_{\mathbf{y}} f^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right)\right\} \tag{2}
\end{equation*}
$$

Still requires model information in the form of $\mathbf{J}^{(k)}$!

Model-Free Feedback Optimization

Replace the gradient of $F^{(k)}(\mathbf{x}):=f^{(k)}\left(\mathbf{h}_{t_{k}}(\mathbf{x})\right)$

$$
\nabla F^{(k)}(\mathbf{x})=\left(\mathbf{J}_{\mathbf{h}_{t_{k}}}(\mathbf{x})\right)^{\top} \nabla_{\mathbf{y}} f^{(k)}\left(\mathbf{h}_{t_{k}}(\mathbf{x})\right)
$$

with the zero-order approximation.

Model-Free Feedback Optimization

Replace the gradient of $F^{(k)}(\mathbf{x}):=f^{(k)}\left(\mathbf{h}_{t_{k}}(\mathbf{x})\right)$

$$
\nabla F^{(k)}(\mathbf{x})=\left(\mathbf{J}_{\mathbf{h}_{t_{k}}}(\mathbf{x})\right)^{\top} \nabla_{\mathbf{y}} f^{(k)}\left(\mathbf{h}_{t_{k}}(\mathbf{x})\right)
$$

with the zero-order approximation.

- Single function evaluation:

$$
\widehat{\nabla} F^{(k)}(\mathbf{x} ; \boldsymbol{\xi}, \epsilon):=\frac{1}{\epsilon} \boldsymbol{\xi} F^{(k)}(\mathbf{x}+\epsilon \boldsymbol{\xi}) \quad \epsilon \quad \begin{gathered}
\text { vector } \\
>
\end{gathered}
$$

- Two function evaluations:

$$
\widehat{\nabla} F^{(k)}(\mathbf{x} ; \boldsymbol{\xi}, \epsilon):=\frac{1}{2 \epsilon} \boldsymbol{\xi}\left[F^{(k)}(\mathbf{x}+\epsilon \boldsymbol{\xi})-F^{(k)}(\mathbf{x}-\epsilon \boldsymbol{\xi})\right]
$$

- Multiple evaluations...

Model-Free Feedback Optimization

This talk focuses on two function evaluation approximation:

$$
\widehat{\nabla} F^{(k)}(\mathbf{x} ; \boldsymbol{\xi}, \epsilon):=\frac{1}{2 \epsilon} \boldsymbol{\xi}\left[F^{(k)}(\mathbf{x}+\epsilon \boldsymbol{\xi})-F^{(k)}(\mathbf{x}-\epsilon \boldsymbol{\xi})\right]
$$

Motivation:

- Admits approximation:

$$
\widehat{\nabla} F(\mathbf{x} ; \boldsymbol{\xi}, \epsilon)=\boldsymbol{\xi} \boldsymbol{\xi}^{\top} \nabla F(\mathbf{x})+O\left(\epsilon^{2}\right)
$$

with $O\left(\epsilon^{2}\right)=0$ for quadratic functions.

- Has nicer properties than single-evaluation: smaller variance, Lipschitz, etc

Related Work

- Le Blanc, 1922-origin of Extremum Seeking? Kiefer and Wolfowitz, 1952. One-dimensional algorithm, no constraints.
- Spall, 1992. Stochastic perturbations, two function evaluations.
- Bhatnagar et al, 2003; Prashanth et al, 2019. Deterministic perturbations, static problem.
- Duchi et al, 2015; Nesterov and Spokoiny, 2017. Stochastic exploration, constrained problems.
- Bandit optimization literature (Awerbuch and Kleinberg, 2004, Bubeck and Cesa-Bianchi, 2012, etc): stochastic exploration, regret analysis.
- Extremum seeking literature (Ariyur and Krstic, 2003, etc): deterministic exploration, single evaluation
- Hajinezhad et al, 2019. Network optimization with stochastic exploration.

Our Focus

- Constrained time-varying networked systems optimization
- Using deterministic exploration signals - see Sean Meyn's talk for "Why?"
- Online distributed (light) primal-dual methods for real-time implementation
- Application to real-time optimal power flow in power networks

Networked Systems Optimization

Consider N systems interconnected via a network.
Desired behaviour of the network is defined via a time-varying convex optimization problem:

$$
\begin{align*}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f_{0}^{(k)}\left(\mathbf{y}^{(k)}(\mathbf{x})\right)+\sum_{i=1}^{N} f_{i}^{(k)}\left(\mathbf{x}_{i}\right) \tag{3a}\\
& \text { subject to: } \quad \mathbf{x}_{i} \in \mathcal{X}_{i}^{(k)}, i=1, \ldots, N \tag{3b}\\
& \qquad g_{j}^{(k)}\left(\mathbf{y}^{(k)}(\mathbf{x})\right) \leq 0, j=1, \ldots, M \tag{3c}
\end{align*}
$$

Desired Trajectory Formulation

$$
\begin{align*}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f_{0}^{(k)}\left(\mathbf{y}^{(k)}(\mathbf{x})\right)+\sum_{i=1}^{N} f_{i}^{(k)}\left(\mathbf{x}_{i}\right) \tag{4a}\\
& \text { subject to : } \quad \mathbf{x}_{i} \in \mathcal{X}_{i}^{(k)}, i=1, \ldots, N \tag{4b}\\
& \qquad g_{j}^{(k)}\left(\mathbf{y}^{(k)}(\mathbf{x})\right) \leq 0, j=1, \ldots, M \tag{4c}
\end{align*}
$$

The desired trajectory $\mathbf{z}^{(*, k)}:=\left(\mathbf{x}^{(*, k)}, \boldsymbol{\lambda}^{(*, k)}\right)$ is the solution of:

$$
\max _{\boldsymbol{\lambda} \in \mathcal{D}^{(k)}} \min _{\mathbf{x} \in \mathcal{X}^{(k)}} \mathcal{L}_{p, d}^{(k)}(\mathbf{x}, \boldsymbol{\lambda}) \quad k \in \mathbb{N}
$$

Desired Trajectory Formulation

$$
\begin{align*}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f_{0}^{(k)}\left(\mathbf{y}^{(k)}(\mathbf{x})\right)+\sum_{i=1}^{N} f_{i}^{(k)}\left(\mathbf{x}_{i}\right) \tag{4a}\\
& \text { subject to : } \quad \mathbf{x}_{i} \in \mathcal{X}_{i}^{(k)}, i=1, \ldots, N \tag{4b}\\
& \qquad g_{j}^{(k)}\left(\mathbf{y}^{(k)}(\mathbf{x})\right) \leq 0, j=1, \ldots, M \tag{4c}
\end{align*}
$$

The desired trajectory $\mathbf{z}^{(*, k)}:=\left(\mathbf{x}^{(*, k)}, \boldsymbol{\lambda}^{(*, k)}\right)$ is the solution of:

$$
\max _{\boldsymbol{\lambda} \in \mathcal{D}^{(k)}} \min _{\mathbf{x} \in \mathcal{X}^{(k)}} \mathcal{L}_{p, d}^{(k)}(\mathbf{x}, \boldsymbol{\lambda}) \quad k \in \mathbb{N}
$$

$$
\mathcal{L}_{p, d}^{(k)}(\mathbf{x}, \boldsymbol{\lambda}):=\mathcal{L}^{(k)}(\mathbf{x}, \boldsymbol{\lambda})+\frac{p}{2}\|\mathbf{x}\|_{2}^{2}-\frac{d}{2}\|\boldsymbol{\lambda}\|_{2}^{2}
$$

$-\mathcal{L}^{(k)}(\mathbf{x}, \boldsymbol{\lambda})$ is the Lagrangian associated with (4)

- $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{M}$ as the dual variable associated with (4c)
- $p \geq 0, d>0$ are Tikhonov-type regularization parameters

First-Order Primal-Dual Algorithm

At each time step k, perform the following steps:

First-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.

First-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (gradient): Compute

$$
\begin{aligned}
\nabla \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right)+\left(\mathbf{J}^{k}\right)^{\top} \nabla_{\mathbf{y}} f_{0}^{(k)}\left(\hat{\mathbf{y}}^{(k)}\right) \\
& +\left(\nabla_{\mathbf{y}} \mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right) \mathbf{J}^{k}\right)^{\top} \boldsymbol{\lambda}^{(k)}+p \mathbf{x}^{(k)}
\end{aligned}
$$

First-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (gradient): Compute

$$
\begin{aligned}
\nabla \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right)+\left(\mathbf{J}^{k}\right)^{\top} \nabla_{\mathbf{y}} f_{0}^{(k)}\left(\hat{\mathbf{y}}^{(k)}\right) \\
& +\left(\nabla_{\mathbf{y}} \mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right) \mathbf{J}^{k}\right)^{\top} \boldsymbol{\lambda}^{(k)}+p \mathbf{x}^{(k)}
\end{aligned}
$$

[S2b] (primal step): Compute

$$
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}^{(k)}}\left\{\mathbf{x}^{(k)}-\alpha \widehat{\nabla} \mathcal{L}^{(k)}\right\}
$$

First-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (gradient): Compute

$$
\begin{aligned}
\nabla \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right)+\left(\mathbf{J}^{k}\right)^{\top} \nabla_{\mathbf{y}} f_{0}^{(k)}\left(\hat{\mathbf{y}}^{(k)}\right) \\
& +\left(\nabla_{\mathbf{y}} \mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right) \mathbf{J}^{k}\right)^{\top} \boldsymbol{\lambda}^{(k)}+p \mathbf{x}^{(k)}
\end{aligned}
$$

[S2b] (primal step): Compute

$$
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}}{ }^{(k)}\left\{\mathbf{x}^{(k)}-\alpha \widehat{\nabla} \mathcal{L}^{(k)}\right\}
$$

[S3] (dual step): Compute

$$
\boldsymbol{\lambda}^{(k+1)}=\operatorname{proj}_{\mathcal{D}^{(k)}}\left\{\boldsymbol{\lambda}^{(k)}+\alpha\left[\mathbf{g}^{(k)}\left(\widehat{\boldsymbol{y}}^{(k)}\right)-d \boldsymbol{\lambda}^{(k)}\right]\right\}
$$

First-Order Primal-Dual Algorithm with Feedback

At each time step k, perform the following steps:
[S1] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (gradient): Compute

$$
\begin{aligned}
\nabla \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right)+\left(\mathbf{J}^{k}\right)^{\top} \nabla_{\mathbf{y}} f_{0}^{(k)}\left(\hat{\mathbf{y}}^{(k)}\right) \\
& +\left(\nabla_{\mathbf{y}} \mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right) \mathbf{J}^{k}\right)^{\top} \boldsymbol{\lambda}^{(k)}+p \mathbf{x}^{(k)}
\end{aligned}
$$

[S2b] (primal step): Compute

$$
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}^{(k)}}\left\{\mathbf{x}^{(k)}-\alpha \widehat{\nabla} \mathcal{L}^{(k)}\right\}
$$

[S3] (dual step): Compute

$$
\boldsymbol{\lambda}^{(k+1)}=\operatorname{proj}_{\mathcal{D}^{(k)}}\left\{\boldsymbol{\lambda}^{(k)}+\alpha\left[\mathbf{g}^{(k)}\left(\widehat{\boldsymbol{y}}^{(k)}\right)-d \boldsymbol{\lambda}^{(k)}\right]\right\} .
$$

Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:

Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1a] (exploration): Apply $\mathbf{x}_{+}^{(k)}:=\mathbf{x}^{(k)}+\epsilon \boldsymbol{\xi}^{(k)}$ and $\mathbf{x}_{-}^{(k)}:=\mathbf{x}^{(k)}-\epsilon \boldsymbol{\xi}^{(k)}$, and collect measurements $\widehat{\mathbf{y}}_{+}^{(k)}$ and $\widehat{\mathbf{y}}_{-}^{(k)}$.

Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1a] (exploration): Apply $\mathbf{x}_{+}^{(k)}:=\mathbf{x}^{(k)}+\epsilon \boldsymbol{\xi}^{(k)}$ and $\mathbf{x}_{-}^{(k)}:=\mathbf{x}^{(k)}-\epsilon \boldsymbol{\xi}^{(k)}$, and collect measurements $\widehat{\mathbf{y}}_{+}^{(k)}$ and $\widehat{\mathbf{y}}_{-}^{(k)}$. [S1b] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.

Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1a] (exploration): Apply $\mathbf{x}_{+}^{(k)}:=\mathbf{x}^{(k)}+\epsilon \boldsymbol{\xi}^{(k)}$ and $\mathbf{x}_{-}^{(k)}:=\mathbf{x}^{(k)}-\epsilon \boldsymbol{\xi}^{(k)}$, and collect measurements $\widehat{\mathbf{y}}_{+}^{(k)}$ and $\widehat{\mathbf{y}}_{-}^{(k)}$.
[S1b] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\boldsymbol{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (approximate gradient): Compute

$$
\begin{aligned}
\widehat{\nabla} \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right) \\
& +\frac{1}{2 \epsilon} \boldsymbol{\xi}^{(k)}\left[f_{0}^{(k)}\left(\widehat{\mathbf{y}}_{+}^{(k)}\right)-f_{0}^{(k)}\left(\widehat{\mathbf{y}}_{-}^{(k)}\right)\right] \\
& +\frac{1}{2 \epsilon} \boldsymbol{\xi}^{(k)}\left(\boldsymbol{\lambda}^{(k)}\right)^{\top}\left[\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}_{+}^{(k)}\right)-\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}_{-}^{(k)}\right)\right]+p \mathbf{x}^{(k)}
\end{aligned}
$$

Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1a] (exploration): Apply $\mathbf{x}_{+}^{(k)}:=\mathbf{x}^{(k)}+\epsilon \boldsymbol{\xi}^{(k)}$ and $\mathbf{x}_{-}^{(k)}:=\mathbf{x}^{(k)}-\epsilon \boldsymbol{\xi}^{(k)}$, and collect measurements $\widehat{\mathbf{y}}_{+}^{(k)}$ and $\widehat{\mathbf{y}}_{-}^{(k)}$.
[S1b] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\boldsymbol{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (approximate gradient): Compute

$$
\begin{aligned}
\widehat{\nabla} \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right) \\
& +\frac{1}{2 \epsilon} \boldsymbol{\xi}^{(k)}\left[f_{0}^{(k)}\left(\widehat{\mathbf{y}}_{+}^{(k)}\right)-f_{0}^{(k)}\left(\widehat{\mathbf{y}}_{-}^{(k)}\right)\right] \\
& +\frac{1}{2 \epsilon} \boldsymbol{\xi}^{(k)}\left(\boldsymbol{\lambda}^{(k)}\right)^{\top}\left[\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}_{+}^{(k)}\right)-\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}_{-}^{(k)}\right)\right]+p \mathbf{x}^{(k)} .
\end{aligned}
$$

[S2b] (approximate primal step): Compute

$$
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}^{(k)}}\left\{\mathbf{x}^{(k)}-\alpha \widehat{\nabla} \mathcal{L}^{(k)}\right\}
$$

Zero-Order Primal-Dual Algorithm

At each time step k, perform the following steps:
[S1a] (exploration): Apply $\mathbf{x}_{+}^{(k)}:=\mathbf{x}^{(k)}+\epsilon \boldsymbol{\xi}^{(k)}$ and $\mathbf{x}_{-}^{(k)}:=\mathbf{x}^{(k)}-\epsilon \boldsymbol{\xi}^{(k)}$, and collect measurements $\widehat{\mathbf{y}}_{+}^{(k)}$ and $\widehat{\mathbf{y}}_{-}^{(k)}$.
[S1b] (control application): Apply $\mathbf{x}^{(k)}$ to the system, and collect the measurement $\widehat{\mathbf{y}}^{(k)}$ of the output $\mathbf{y}^{(k)}\left(\mathbf{x}^{(k)}\right)$.
[S2a] (approximate gradient): Compute

$$
\begin{aligned}
\widehat{\nabla} \mathcal{L}^{(k)}:= & \nabla_{\mathbf{x}} f^{(k)}\left(\mathbf{x}^{(k)}\right) \\
& +\frac{1}{2 \epsilon} \boldsymbol{\xi}^{(k)}\left[f_{0}^{(k)}\left(\widehat{\mathbf{y}}_{+}^{(k)}\right)-f_{0}^{(k)}\left(\widehat{\mathbf{y}}_{-}^{(k)}\right)\right] \\
& +\frac{1}{2 \epsilon} \boldsymbol{\xi}^{(k)}\left(\boldsymbol{\lambda}^{(k)}\right)^{\top}\left[\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}_{+}^{(k)}\right)-\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}_{-}^{(k)}\right)\right]+p \mathbf{x}^{(k)}
\end{aligned}
$$

[S2b] (approximate primal step): Compute

$$
\mathbf{x}^{(k+1)}=\operatorname{proj}_{\mathcal{X}^{(k)}}\left\{\mathbf{x}^{(k)}-\alpha \widehat{\nabla} \mathcal{L}^{(k)}\right\}
$$

[S3] (dual step): Compute

$$
\boldsymbol{\lambda}^{(k+1)}=\operatorname{proj}_{\mathcal{D}^{(k)}}\left\{\boldsymbol{\lambda}^{(k)}+\alpha\left[\mathbf{g}^{(k)}\left(\widehat{\mathbf{y}}^{(k)}\right)-d \boldsymbol{\lambda}^{(k)}\right]\right\} .
$$

Assumptions

1. The exploration signal $\boldsymbol{\xi}^{(k)}$ is deterministic, sampled from a continuous-time signal $\boldsymbol{\xi}(t)$ satisfying

$$
\frac{1}{T} \int_{t}^{t+T} \boldsymbol{\xi}(\tau) \boldsymbol{\xi}(\tau)^{\top} d \tau=\mathbf{I}, \quad \text { for some } T>0
$$

Assumptions

1. The exploration signal $\boldsymbol{\xi}^{(k)}$ is deterministic, sampled from a continuous-time signal $\boldsymbol{\xi}(t)$ satisfying

$$
\frac{1}{T} \int_{t}^{t+T} \boldsymbol{\xi}(\tau) \boldsymbol{\xi}(\tau)^{\top} d \tau=\mathbf{I}, \quad \text { for some } T>0
$$

E.g., $\boldsymbol{\xi}_{i}(t)=\sqrt{2} \sin \left(\omega_{i} t\right), \quad i=1, \ldots, n, \omega_{i} \neq \omega_{j}, \forall i \neq j$. (T is a common integer multiple of the sinusoidal signal periods.)

Assumptions

1. The exploration signal $\boldsymbol{\xi}^{(k)}$ is deterministic, sampled from a continuous-time signal $\boldsymbol{\xi}(t)$ satisfying

$$
\frac{1}{T} \int_{t}^{t+T} \boldsymbol{\xi}(\tau) \boldsymbol{\xi}(\tau)^{\top} d \tau=\mathbf{I}, \quad \text { for some } T>0
$$

E.g., $\boldsymbol{\xi}_{i}(t)=\sqrt{2} \sin \left(\omega_{i} t\right), \quad i=1, \ldots, n, \omega_{i} \neq \omega_{j}, \forall i \neq j$.
(T is a common integer multiple of the sinusoidal signal periods.)
2. The projection in the primal step is active every T time units.

Assumptions

1. The exploration signal $\boldsymbol{\xi}^{(k)}$ is deterministic, sampled from a continuous-time signal $\boldsymbol{\xi}(t)$ satisfying

$$
\frac{1}{T} \int_{t}^{t+T} \boldsymbol{\xi}(\tau) \boldsymbol{\xi}(\tau)^{\top} d \tau=\mathbf{I}, \quad \text { for some } T>0
$$

E.g., $\boldsymbol{\xi}_{i}(t)=\sqrt{2} \sin \left(\omega_{i} t\right), \quad i=1, \ldots, n, \omega_{i} \neq \omega_{j}, \forall i \neq j$.
(T is a common integer multiple of the sinusoidal signal periods.)
2. The projection in the primal step is active every T time units.
3. Variability of the desired trajectory and gradients is bounded:

$$
\sup _{k \geq 0}\left\|\mathbf{z}^{(*, k+1)}-\mathbf{z}^{(*, k)}\right\|_{2} \leq \sigma, \sup _{k \geq 0}\left\|\nabla f^{(k)}(\mathbf{x})-\nabla f^{(k-1)}(\mathbf{x})\right\| \leq e_{f}
$$

and similarly for other functions.

Assumptions

1. The exploration signal $\boldsymbol{\xi}^{(k)}$ is deterministic, sampled from a continuous-time signal $\boldsymbol{\xi}(t)$ satisfying

$$
\frac{1}{T} \int_{t}^{t+T} \boldsymbol{\xi}(\tau) \boldsymbol{\xi}(\tau)^{\top} d \tau=\mathbf{I}, \quad \text { for some } T>0
$$

E.g., $\boldsymbol{\xi}_{i}(t)=\sqrt{2} \sin \left(\omega_{i} t\right), \quad i=1, \ldots, n, \omega_{i} \neq \omega_{j}, \forall i \neq j$.
(T is a common integer multiple of the sinusoidal signal periods.)
2. The projection in the primal step is active every T time units.
3. Variability of the desired trajectory and gradients is bounded:

$$
\sup _{k \geq 0}\left\|\mathbf{z}^{(*, k+1)}-\mathbf{z}^{(*, k)}\right\|_{2} \leq \sigma, \sup _{k \geq 0}\left\|\nabla f^{(k)}(\mathbf{x})-\nabla f^{(k-1)}(\mathbf{x})\right\| \leq e_{f}
$$

and similarly for other functions.
4. Measurement error is bounded by e_{y}.

Tracking Result

Theorem
There exist $\alpha>0, \varepsilon=O\left(\alpha+\epsilon^{2}+e_{f}+e_{y}\right)$, and $c<1$ such that the sequence $\left\{\mathbf{z}^{(k)}\right\}$ converges Q-linearly to $\left\{\mathbf{z}^{(*, k)}\right\}$ up to an asymptotic error bound given by:

$$
\limsup _{k \rightarrow \infty}\left\|\mathbf{z}^{(k)}-\mathbf{z}^{(*, k)}\right\|_{2} \leq \frac{\alpha \varepsilon+\sigma}{1-c} .
$$

Proof Idea

- Use QSA (Sean Meyn's talk) - currently works mostly with diminishing step size and no projection; or
- Prove directly - see:
Y. Chen, A. Bernstein, A. Devraj, S. Meyn, "Model-free primal-dual methods for network optimization with application to real-time optimal power flow," 2020 American Control Conference (ACC), 3140-3147.

Application: Optimal Power Flow

Real-time optimization of the power injections of distributed energy resources (DERs) in a power system.

- IEEE 123 -node test feeder
- 8 solar (PV) systems
- 3 battery systems

- Two possible network configurations
- Total load and available PV generation:

Application: Optimal Power Flow

Real-time optimization of the power injections of distributed energy resources (DERs) in a power system.

- Control variables
$\mathbf{x} \in \mathbb{R}^{2 N_{\text {der }}}:$ active and reactive power injection of DERs; $\mathbf{x}_{i}=\left\{x_{i, p}, x_{i, q}\right\}$
- Output variables $\mathbf{y} \in \mathbb{R}^{N_{\text {buses }}+1}$: voltages and feeder head power; $\mathbf{y}=\left\{\mathbf{v}, P_{0}\right\}$
- Objectives

Feeder head power following: $f_{0}(\mathbf{y})=\left(P_{0}-P_{0}^{\bullet}\right)^{2}$
Local DER objective: $f_{i}\left(\mathbf{x}_{i}\right)=c_{i}\left(x_{i, p}-x_{i, p}^{\bullet}\right)^{2}$

- Constraints

$$
\begin{aligned}
\text { Node voltage: } & \underline{V}_{i} \leq v_{i}(\mathbf{x}) \leq \bar{V}_{i} \\
\text { Battery system: } & \underline{X}_{i, p} \leq x_{i, p} \leq \bar{X}_{i, p}, \quad x_{i, p}^{2}+x_{i, q}^{2} \leq\left(\bar{S}_{i}^{b t}\right)^{2} \\
& \underline{S O C_{i}} \leq S O C_{i} \leq \overline{S O C}_{i} \\
\text { PV system: } & 0 \leq x_{i, p} \leq \bar{X}_{i}^{p v}, \quad x_{i, p}^{2}+x_{i, q}^{2} \leq\left(\bar{S}_{i}^{p v}\right)^{2}
\end{aligned}
$$

Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

Numerical Study: Results

Uncontrolled behavior (no battery control and PV curtailment)

Real-time model-free optimization:

Numerical Study: Sensitivity to Noise

- Performance metric

$$
\begin{aligned}
\text { NRMSE } & =\sqrt{\frac{1}{K} \sum_{k=1}^{K}\left(\frac{P_{0}^{(k)}-P_{0}^{\bullet(k)}}{P_{0}^{\bullet(k)}}\right)^{2}} \\
\text { AVV } & =\frac{1}{N K} \sum_{i=1}^{N} \sum_{k=1}^{K}\left(\left[v_{i}^{(k)}-\bar{V}_{i}\right]_{+}+\left[\underline{V}_{i}-v_{i}^{(k)}\right]_{+}\right)
\end{aligned}
$$

- Sensitivity to measurement noise

$$
\widehat{y}_{i}^{(k)}=y_{i}^{(k)}+W y_{i}^{(k)}, \quad W \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Conclusion

- Real-time primal-dual methods to track desired trajectories of networked systems
- Zero-order deterministic feedback-based approximations
- Stability and tracking results
- Application to OPF

References

Y. Chen, A. Bernstein, A. Devraj, S. Meyn, "Model-free primal-dual methods for network optimization with application to real-time optimal power flow," 2020 American Control Conference (ACC), 3140-3147.
A. Bernstein, E. Dall'Anese, A. Simonetto, "Online primal-dual methods with measurement feedback for time-varying convex optimization," IEEE Transactions on Signal Processing 67 (8), 1978-1991, 2019.
M. Colombino, J.W. Simpson-Porco, A. Bernstein, "Towards robustness guarantees for feedback-based optimization," 2019 IEEE 58th Conference on Decision and Control (CDC), 6207-6214.
M. Colombino, E. Dall'Anese, A. Bernstein, "Online optimization as a feedback controller: Stability and tracking," IEEE Transactions on Control of Network Systems 7 (1), 422-432, 2019
C.Y. Chang, M. Colombino, J. Cortes, E. Dall'Anese, "Saddle-flow dynamics for distributed feedback-based optimization," IEEE Control Systems Letters 3 (4), 948-953, 2019.

