Simulation Methodology: An Overview

Peter W. Glynn Stanford University

Theory of RL Bootcamp, Simons Institute September 4, 2020

Outline:

- I. Efficiency Improvement Techniques
- II. Control Variates
- III. Common Random Numbers
- IV. Importance Sampling
- V. Gradient Estimation
- VI. Stochastic Optimization

I. Efficiency Improvement Techniques

Suppose that we have two different simulation algorithms for computing α :

$$\alpha_n \stackrel{a.s.}{\to} \alpha$$

and

$$\beta_n \stackrel{a.s.}{\to} \alpha$$

We want to use the algorithm that is computationally more efficient
 Suppose

$$n^{1/2}(\alpha_n - \alpha) \Rightarrow \sigma_1 N(0, 1)$$

and

$$n^{1/2}(\beta_n - \alpha) \Rightarrow \sigma_2 N(0, 1)$$

$$\alpha_n \stackrel{D}{\approx} N(\alpha, \sigma_1^2/n)$$

 $\beta_n \stackrel{D}{\approx} N(\alpha, \sigma_2^2/n)$

- ▶ Choose α_n over β_n if $\sigma_1^2 \le \sigma_2^2$
- Constructing estimators with such a smaller variance is called a variance reduction technique

• But each iteration of α_n may be more costly than an iteration of β_n :

 $T_1(n) =$ total computer time expended to compute α_n

 $T_2(n) =$ total computer time expended to compute β_n

Then, the estimators available after c units of computer time have been expended are

$$\alpha(c) = \alpha_{N_1(c)}, \quad \beta(c) = \beta_{N_2(c)},$$

where

$$N_i(c) = \max\{n : T_i(n) \le c\}$$

• If
$$N_i(c)/c o \lambda_i$$
 as $c \to \infty$, then (typically)

$$c^{1/2}(\alpha(c) - \alpha) \Rightarrow \lambda_1^{-1/2} \sigma_1 N(0, 1)$$

and

$$c^{1/2}(\beta(c) - \alpha) \Rightarrow \lambda_2^{-1/2} \sigma_2 N(0, 1)$$

- Choose $\alpha(c)$ over $\beta(c)$ if $\lambda_1^{-1}\sigma_1^2 \leq \lambda_2^{-1}\sigma_2^2$
- Constructing estimators with such a smaller work-normalized variance is called an efficiency improvement technique

A Philosophical Distinction

Statistics and simulation/Monte Carlo may seem very clearly related

BUT

In statistics, one is sampling because one does not know \boldsymbol{P}

In simulation/Monte Carlo, one samples as a computational vehicle for computing

$$\int_{\Omega} W(\omega) P(d\omega) \left(= E[W]\right)$$

One knows the associated P, at least implicitly

We can hope to use available problem structure to obtain efficiency improvements

II. Control Variates

Goal: Compute $\alpha = E[W]$

Given: A rv Z with known expectation

▶ Put
$$C = Z - E[Z]$$
 and $W(\lambda) = W - \lambda C$

▶ Then, $E[W(\lambda)] = \alpha$ for all $\lambda \in \mathbb{R}$

- $\operatorname{Var}(W(\lambda)) = \operatorname{Var}(W) 2\lambda \operatorname{Cov}(W, C) + \lambda^2 \operatorname{Var}(C)$
- Minimizing λ :

$$\lambda^* = \mathsf{Cov}(W,C)/\mathsf{Var}(C)$$

Minimum variance:

$$\mathsf{Var}(W(\lambda^*)) = \mathsf{Var}(W) \cdot (1 - \rho^2)$$

 $\rho = {\rm coefficient} ~{\rm of} ~{\rm correlation}$ between W and C

$$\widehat{\lambda}_n = \widehat{\mathsf{Cov}}(W, C) / \widehat{\mathsf{Var}}(C)$$

No asymptotic loss of efficiency

Markov Chains and Martingale Controls

Goal: Compute
$$\alpha = E_x \left[\sum_{j=0}^{\infty} e^{-\alpha j} r(X_j) \right] \left(\stackrel{\Delta}{=} u^*(x) \right)$$

It is known that u* satisfies

$$u = r + e^{-\alpha} P u$$

$$M_n = \sum_{j=0}^{n-1} e^{-\alpha j} r(X_j) + e^{-\alpha n} u^*(X_n)$$

is a martingale adapted to $(X_n : n \ge 0)$, i.e.,

$$E\left[M_{n+1} \mid X_0, \dots, X_n\right] \stackrel{a.s.}{=} M_n$$

▶ So, $C_n = M_n - M_0$ has mean zero

Put
$$\lambda = 1$$
. Then,
 $W - \lambda C_{\infty} = u^*(x)$
 So,
 $Var(W(\lambda)) = 0$

 \blacktriangleright We don't know u^* ... but if \widetilde{u} is a good approximation to u^* , use

$$\widetilde{M}_n = \sum_{j=0}^{n-1} e^{-\alpha j} \widetilde{r}(X_j) + e^{-\alpha n} \widetilde{u}(X_n),$$

where

$$\widetilde{r} \stackrel{\Delta}{=} \widetilde{u} - e^{-\alpha} P \widetilde{u}$$

III. Common Random Numbers

Suppose we have two policies we wish to compare:

$$\kappa_1 = E[W_1] \quad \text{vs} \quad \kappa_2 = E[W_2]$$

Goal: Compute $\alpha = \kappa_1 - \kappa_2$

EIT 1: Estimate α via

$$\widehat{\alpha} = \overline{W}_1(n_1) - \overline{W}_2(n_2)$$

"stratified sampling"

$$n_i \propto \lambda_i^{-1/2} \sigma_i, \quad i = 1, 2$$

▶ EIT 2: "Couple" W₁ and W₂ with a well-chosen joint distribution (not independent)

$$\begin{split} W &= W_1 - W_2 \\ \mathsf{Var}(W) &= \mathsf{Var}(W_1) - 2\mathsf{Cov}(W_1, W_2) + \mathsf{Var}(W_2) \end{split}$$

Suppose

$$W_1 = \widetilde{f}_1(\xi_1, \dots, \xi_d)$$
$$W_2 = \widetilde{f}_2(\xi_1, \dots, \xi_d)$$

Guaranteed efficiency improvement if $\widetilde{f_i} \nearrow$, i = 1, 2

"common random numbers"

IV. Importance Sampling

Goal: Compute $\alpha = E[W] = E_P[W]$ Note that

$$E_P[W] = \int_{\Omega} W(\omega) P(d\omega) = \int_{\Omega} W(\omega) \frac{P(d\omega)}{Q(d\omega)} Q(d\omega)$$
$$\stackrel{\Delta}{=} \int_{\Omega} W(\omega) L(\omega) Q(d\omega)$$
$$= E_Q[WL]$$

• Put
$$Q^*(d\omega) = |W(\omega)|P(d\omega)/E_P[|W|$$

• If $W > 0$, $WL^* = \alpha$

 \blacktriangleright Of course, we do not know $Q^*.$ Instead, we hope to use a \widetilde{Q} that approximates Q^*

For example, $\alpha = E_P[r(X_n)]$ \blacktriangleright Then,

$$\alpha = E_Q[r(X_n)L_n]$$

where

$$L_n = \prod_{i=0}^{n-1} \frac{P(X_i, X_{i+1})}{Q(X_i, X_{i+1})}$$

$$\blacktriangleright \operatorname{Var}_Q(L_n) \sim a\beta^n, \ \beta > 1$$

On the other hand,

$$\frac{1}{n}\log L_n \to \sum_{x,y} \log\left(\frac{P(x,y)}{Q(x,y)}\right) Q(x,y)\pi_Q(x) < 0$$

so $L_n \to 0$, Q a.s.

$$Q - P = O\left(\frac{1}{\sqrt{n}}\right),$$

then,

 $\mathsf{Var}_Q(L_n) = O(1)$

V. Gradient Estimation

Suppose that θ is a decision variable:

$$\alpha(\theta) = \int_{\Omega} W(\theta, \omega) P(d\omega)$$

or

$$\alpha(\theta) = \int_{\Omega} W(\omega) P_{\theta}(d\omega)$$

- How to efficiently compute $\nabla \alpha(\theta)$?
- Why it is of interest:
 - Stochastic gradient descent algorithm
 - Statistical analysis:

 $\widehat{\theta}: \text{ statistical estimator for "true" parameter } \theta_0$ $\alpha(\widehat{\theta}) - \alpha(\theta_0) \approx \nabla \alpha(\theta_0) \left(\widehat{\theta} - \theta_0\right)$ $\overset{D}{\approx} \nabla \alpha(\theta_0) N(0, C)$ One can often move parametric dependence from $W(\theta)$ to P_{θ} and vice versa... \blacktriangleright When $W(\theta)$ depends smoothly on θ :

$$\nabla \alpha(\theta_0) = E_P \left[\nabla W(\theta_0) \right]$$

"infinitesimal perturbation analysis"

• When P_{θ} depends smoothly on θ :

$$\alpha(\theta) = E_{\theta_0} \left[WL(\theta) \right]$$

SO

$$\nabla \alpha(\theta) = E_{\theta_0} \left[W \nabla L(\theta_0) \right]$$

where

$$L(\theta,\omega) = \frac{P_{\theta}(d\omega)}{P_{\theta_0}(d\omega)}$$

"likelihood ratio gradient estimation"

Application to Markov Chains

► Compute
$$\nabla \alpha(\theta_0)$$
 where $\alpha(\theta) = E_{\theta} [r(X_{\infty})]$
► Here, $W = \frac{1}{n} \sum_{j=1}^{n} r(X_j)$
► Then,

 $\nabla \alpha(\theta_0) \approx E_{\theta_0} \left[W \nabla L_n(\theta_0) \right]$

where

$$\nabla L_n(\theta_0) = \sum_{j=1}^n \frac{\nabla p(\theta_0, X_{j-1}, X_j)}{p(\theta_0, X_{j-1}, X_j)}$$

Remark: $(\nabla L_n(\theta_0) : n \ge 1)$ is a zero-mean martingale adapted to $(X_n : n \ge 0)$

IPA versus Likelihood Ratio Gradient Estimation

IPA:

$$\frac{1}{n}\sum_{j=1}^{n}\nabla r(\theta_0, X_j) \approx \nabla \alpha(\theta_0) + \frac{1}{\sqrt{n}}N(0, C)$$

Likelihood ratio:

$$\frac{1}{n} \sum_{j=1}^{n} r(X_j) \nabla L_n(\theta) = \frac{1}{n} \sum_{j=1}^{n} r(X_j) \sum_{i=1}^{n} D_i$$

= $\frac{1}{n} \sum_{j=1}^{n} r_c(X_j) \sum_{i=1}^{n} D_i + E_{\theta_0} [r(X_\infty)] \sum_{i=1}^{n} D_i$
 $(r_c(x) = r(x) - E_{\theta_0} [r(X_\infty)])$
 $\stackrel{D}{\approx} \nabla \alpha(\theta_0) + N_1(0, \sigma^2) N_2(0, C_2) + \sqrt{n} E_{\theta_0} [r(X_\infty)] N_2(0, C_2)$

Since the D_j 's are martingale differences,

$$E[r(X_j)D_i] = 0, \quad i > j$$

Modify estimator:

$$\frac{1}{n} \sum_{i=1}^{n} D_i \sum_{j=i}^{n} r(X_j)$$
$$\stackrel{D}{\approx} \sqrt{n} E_{\theta_0} \left[r(X_\infty) \right] \int_0^1 (1-s) dB(s)$$

► If
$$E_{\theta_0}[r(X_\infty)] = 0$$
, then

$$\frac{1}{n} \sum_{i=1}^n D_i \sum_{j=i}^n r(X_j)$$

$$\stackrel{D}{\approx} \sigma_1 C^{1/2} \int_0^1 B_2(s) d\vec{B_1}(s) \qquad \text{Olvera-Cravioto} + \text{G} (2018)$$

▶ So, work with $r_c(x) = r(x) - E_{\theta_0}[r(X_\infty)]$

• Effectively equivalent to using $\sum_{j=1}^{n} D_j$ as a control variate

Finite Difference Estimators

Central differences:

$$\frac{\overline{W}_n(\theta_0+h) - \overline{W}_n(\theta_0-h)}{2h} \stackrel{D}{\approx} \alpha'(\theta_0) + \frac{h^2}{3} \alpha^{(3)}(\theta_0) + \frac{\sigma}{\sqrt{nh}} N(0,1)$$

- ▶ To balance bias and variance, put $h \approx c n^{-1/6}$
- Convergence rate: $n^{-1/3}$
- \blacktriangleright If we use common random numbers, convergence rate $\approx n^{-2/5}$

VI. Stochastic Optimization

Which policy maximizes reward?

"Selection of best system"

Connections to multi-armed bandit literature

$$\min_{\theta} \alpha(\theta)$$

$$\blacktriangleright \ \theta_{n+1} = \theta_n - C_n \widehat{\nabla \alpha}(\theta_n)$$

"stochastic gradient descent"

- Optimal choice of C_n depends on Hessian of $\alpha(\cdot)$, covariance structure of $\widehat{\nabla \alpha}(\theta_{\infty})$
- ▶ Polyak averaging can be effective in implicitly finding C_n

- ► Large literature that intersects with many different applications domains
- Many areas not covered in today's lectures
 - Stochastic Simulation: Algorithms and Analysis, Asmussen + G (2007)
 - Winter Simulation Conference
 - ACM Transactions on Modeling and Computer Simulation