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I. Efficiency Improvement Techniques

I Suppose that we have two different simulation algorithms for computing α:

αn
a.s.→ α

and
βn

a.s.→ α

I We want to use the algorithm that is computationally more efficient

I Suppose
n1/2(αn − α)⇒ σ1N(0, 1)

and
n1/2(βn − α)⇒ σ2N(0, 1)
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I Then:

αn
D
≈ N(α, σ2

1/n)

βn
D
≈ N(α, σ2

2/n)

I Choose αn over βn if σ2
1 ≤ σ2

2

I Constructing estimators with such a smaller variance is called a variance
reduction technique
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I But each iteration of αn may be more costly than an iteration of βn:

T1(n) = total computer time expended to compute αn

T2(n) = total computer time expended to compute βn
I Then, the estimators available after c units of computer time have been

expended are
α(c) = αN1(c), β(c) = βN2(c),

where
Ni(c) = max{n : Ti(n) ≤ c}
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I If Ni(c)/c→ λi as c→∞, then (typically)

c1/2(α(c)− α)⇒ λ
−1/2
1 σ1N(0, 1)

and
c1/2(β(c)− α)⇒ λ

−1/2
2 σ2N(0, 1)

I Choose α(c) over β(c) if λ−1
1 σ2

1 ≤ λ−1
2 σ2

2

I Constructing estimators with such a smaller work-normalized variance is
called an efficiency improvement technique
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A Philosophical Distinction
Statistics and simulation/Monte Carlo may seem very clearly related

BUT

In statistics, one is sampling because one does not know P

In simulation/Monte Carlo, one samples as a computational vehicle for computing∫
Ω

W (ω)P (dω) (= E[W ])

One knows the associated P , at least implicitly

We can hope to use available problem structure to obtain efficiency improvements
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II. Control Variates
Goal: Compute α = E[W ]

Given: A rv Z with known expectation
I Put C = Z − E[Z] and W (λ) = W − λC
I Then, E[W (λ)] = α for all λ ∈ R
I Var(W (λ)) = Var(W )− 2λCov(W,C) + λ2Var(C)
I Minimizing λ:

λ∗ = Cov(W,C)/Var(C)

I Minimum variance:

Var(W (λ∗)) = Var(W ) · (1− ρ2)

ρ = coefficient of correlation between W and C
I

λ̂n = Ĉov(W,C)/V̂ar(C)

I No asymptotic loss of efficiency
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Markov Chains and Martingale Controls

Goal: Compute α = Ex

[∑∞
j=0 e

−αjr(Xj)
] (

∆
= u∗(x)

)
I It is known that u∗ satisfies

u = r + e−αPu

I Also,

Mn =
n−1∑
j=0

e−αjr(Xj) + e−αnu∗(Xn)

is a martingale adapted to (Xn : n ≥ 0), i.e.,

E [Mn+1 | X0, . . . , Xn]
a.s.
= Mn

I So, Cn =Mn −M0 has mean zero
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I Put λ = 1. Then,
W − λC∞ = u∗(x)

So,
Var(W (λ)) = 0

I We don’t know u∗ ... but if ũ is a good approximation to u∗, use

M̃n =
n−1∑
j=0

e−αj r̃(Xj) + e−αnũ(Xn),

where
r̃

∆
= ũ− e−αPũ
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III. Common Random Numbers

Suppose we have two policies we wish to compare:

κ1 = E[W1] vs κ2 = E[W2]

Goal: Compute α = κ1 − κ2

I EIT 1: Estimate α via

α̂ = W 1(n1)−W 2(n2)

“stratified sampling”
ni ∝ λ

−1/2
i σi, i = 1, 2
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I EIT 2: “Couple” W1 and W2 with a well-chosen joint distribution (not
independent)

W = W1 −W2

Var(W ) = Var(W1)− 2Cov(W1,W2) + Var(W2)

I Want Cov(W1,W2) to be as large as possible
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Suppose

W1 = f̃1(ξ1, . . . , ξd)

W2 = f̃2(ξ1, . . . , ξd)

Guaranteed efficiency improvement if f̃i ↗, i = 1, 2

“common random numbers”
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IV. Importance Sampling

Goal: Compute α = E[W ] = EP [W ]

I Note that

EP [W ] =

∫
Ω

W (ω)P (dω) =

∫
Ω

W (ω)
P (dω)

Q(dω)
Q(dω)

∆
=

∫
Ω

W (ω)L(ω)Q(dω)

= EQ[WL]

I Put Q∗(dω) = |W (ω)|P (dω)/EP [|W |]
I If W ≥ 0, WL∗ = α

I Of course, we do not know Q∗. Instead, we hope to use a Q̃ that
approximates Q∗
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For example, α = EP [r(Xn)]

I Then,
α = EQ[r(Xn)Ln]

where

Ln =
n−1∏
i=0

P (Xi, Xi+1)

Q(Xi, Xi+1)

I VarQ(Ln) ∼ aβn, β > 1

I On the other hand,

1

n
logLn →

∑
x,y

log

(
P (x, y)

Q(x, y)

)
Q(x, y)πQ(x) < 0

so Ln → 0, Q a.s.
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I V̂ar(Ln) is highly misleading in many settings

I If

Q− P = O

(
1√
n

)
,

then,
VarQ(Ln) = O(1)
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V. Gradient Estimation
I Suppose that θ is a decision variable:

α(θ) =

∫
Ω

W (θ, ω)P (dω)

or

α(θ) =

∫
Ω

W (ω)Pθ(dω)

I How to efficiently compute ∇α(θ)?
I Why it is of interest:

I Stochastic gradient descent algorithm
I Statistical analysis:

θ̂: statistical estimator for “true” parameter θ0

α(θ̂)− α(θ0) ≈ ∇α(θ0)
(
θ̂ − θ0

)
D
≈ ∇α(θ0)N(0, C)
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One can often move parametric dependence from W (θ) to Pθ and vice versa...
I When W (θ) depends smoothly on θ:

∇α(θ0) = EP [∇W (θ0)]

“infinitesimal perturbation analysis”
I When Pθ depends smoothly on θ:

α(θ) = Eθ0 [WL(θ)]

so
∇α(θ) = Eθ0 [W∇L(θ0)]

where

L(θ, ω) =
Pθ(dω)

Pθ0(dω)

“likelihood ratio gradient estimation”
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Application to Markov Chains

I Compute ∇α(θ0) where α(θ) = Eθ [r(X∞)]

I Here, W = 1
n

∑n
j=1 r(Xj)

I Then,
∇α(θ0) ≈ Eθ0 [W∇Ln(θ0)]

where

∇Ln(θ0) =
n∑
j=1

∇p(θ0, Xj−1, Xj)

p(θ0, Xj−1, Xj)

Remark: (∇Ln(θ0) : n ≥ 1) is a zero-mean martingale adapted to (Xn : n ≥ 0)
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IPA versus Likelihood Ratio Gradient Estimation
IPA:

1

n

n∑
j=1

∇r(θ0, Xj) ≈ ∇α(θ0) +
1√
n
N(0, C)

Likelihood ratio:

1

n

n∑
j=1

r(Xj)∇Ln(θ) =
1

n

n∑
j=1

r(Xj)
n∑
i=1

Di

=
1

n

n∑
j=1

rc(Xj)
n∑
i=1

Di + Eθ0 [r(X∞)]
n∑
i=1

Di

(rc(x) = r(x)− Eθ0 [r(X∞)])
D
≈ ∇α(θ0) +N1(0, σ

2)N2(0, C2) +
√
nEθ0 [r(X∞)]N2(0, C2)

20 / 26



Since the Dj’s are martingale differences,

E [r(Xj)Di] = 0, i > j

Modify estimator:

1

n

n∑
i=1

Di

n∑
j=i

r(Xj)

D
≈
√
nEθ0 [r(X∞)]

∫ 1

0

(1− s)dB(s)
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I If Eθ0 [r(X∞)] = 0, then

1

n

n∑
i=1

Di

n∑
j=i

r(Xj)

D
≈ σ1C

1/2

∫ 1

0

B2(s)d ~B1(s) Olvera-Cravioto + G (2018)

I So, work with rc(x) = r(x)− Eθ0 [r(X∞)]
I Effectively equivalent to using

∑n
j=1Dj as a control variate
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Finite Difference Estimators

I Central differences:

W n(θ0 + h)−W n(θ0 − h)
2h

D
≈ α′(θ0) +

h2

3
α(3)(θ0) +

σ√
nh
N(0, 1)

I To balance bias and variance, put h ≈ cn−1/6

I Convergence rate: n−1/3

I If we use common random numbers, convergence rate ≈ n−2/5
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VI. Stochastic Optimization

I r policies

I Which policy maximizes reward?

“Selection of best system”

Connections to multi-armed bandit literature
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min
θ
α(θ)

I θn+1 = θn − Cn∇̂α(θn)
“stochastic gradient descent”

I Optimal choice of Cn depends on Hessian of α(·), covariance structure of

∇̂α(θ∞)
I Polyak averaging can be effective in implicitly finding Cn
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I Large literature that intersects with many different applications domains

I Many areas not covered in today’s lectures
I Stochastic Simulation: Algorithms and Analysis, Asmussen + G (2007)
I Winter Simulation Conference
I ACM Transactions on Modeling and Computer Simulation
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