Simulation Methodology: An Overview

Peter W. Glynn
Stanford University

Theory of RL Bootcamp, Simons Institute September 4, 2020

Outline:

I. Efficiency Improvement Techniques
II. Control Variates
III. Common Random Numbers
IV. Importance Sampling
V. Gradient Estimation
VI. Stochastic Optimization

I. Efficiency Improvement Techniques

- Suppose that we have two different simulation algorithms for computing α :

$$
\alpha_{n} \xrightarrow{\text { a.s. }} \alpha
$$

and

$$
\beta_{n} \xrightarrow{\text { a.s. }} \alpha
$$

- We want to use the algorithm that is computationally more efficient
- Suppose

$$
n^{1 / 2}\left(\alpha_{n}-\alpha\right) \Rightarrow \sigma_{1} N(0,1)
$$

and

$$
n^{1 / 2}\left(\beta_{n}-\alpha\right) \Rightarrow \sigma_{2} N(0,1)
$$

- Then:

$$
\begin{aligned}
& \alpha_{n} \stackrel{D}{\approx} N\left(\alpha, \sigma_{1}^{2} / n\right) \\
& \beta_{n} \stackrel{D}{\approx} N\left(\alpha, \sigma_{2}^{2} / n\right)
\end{aligned}
$$

- Choose α_{n} over β_{n} if $\sigma_{1}^{2} \leq \sigma_{2}^{2}$
- Constructing estimators with such a smaller variance is called a variance reduction technique
- But each iteration of α_{n} may be more costly than an iteration of β_{n} :

$$
\begin{aligned}
& T_{1}(n)=\text { total computer time expended to compute } \alpha_{n} \\
& T_{2}(n)=\text { total computer time expended to compute } \beta_{n}
\end{aligned}
$$

- Then, the estimators available after c units of computer time have been expended are

$$
\alpha(c)=\alpha_{N_{1}(c)}, \quad \beta(c)=\beta_{N_{2}(c)}
$$

where

$$
N_{i}(c)=\max \left\{n: T_{i}(n) \leq c\right\}
$$

- If $N_{i}(c) / c \rightarrow \lambda_{i}$ as $c \rightarrow \infty$, then (typically)

$$
c^{1 / 2}(\alpha(c)-\alpha) \Rightarrow \lambda_{1}^{-1 / 2} \sigma_{1} N(0,1)
$$

and

$$
c^{1 / 2}(\beta(c)-\alpha) \Rightarrow \lambda_{2}^{-1 / 2} \sigma_{2} N(0,1)
$$

- Choose $\alpha(c)$ over $\beta(c)$ if $\lambda_{1}^{-1} \sigma_{1}^{2} \leq \lambda_{2}^{-1} \sigma_{2}^{2}$
- Constructing estimators with such a smaller work-normalized variance is called an efficiency improvement technique

A Philosophical Distinction

Statistics and simulation/Monte Carlo may seem very clearly related

BUT

In statistics, one is sampling because one does not know P
In simulation/Monte Carlo, one samples as a computational vehicle for computing

$$
\int_{\Omega} W(\omega) P(d \omega)(=E[W])
$$

One knows the associated P, at least implicitly

We can hope to use available problem structure to obtain efficiency improvements

II. Control Variates

Goal: Compute $\alpha=E[W]$
Given: A rv Z with known expectation

- Put $C=Z-E[Z]$ and $W(\lambda)=W-\lambda C$
- Then, $E[W(\lambda)]=\alpha$ for all $\lambda \in \mathbb{R}$
- $\operatorname{Var}(W(\lambda))=\operatorname{Var}(W)-2 \lambda \operatorname{Cov}(W, C)+\lambda^{2} \operatorname{Var}(C)$
- Minimizing λ :

$$
\lambda^{*}=\operatorname{Cov}(W, C) / \operatorname{Var}(C)
$$

- Minimum variance:

$$
\operatorname{Var}\left(W\left(\lambda^{*}\right)\right)=\operatorname{Var}(W) \cdot\left(1-\rho^{2}\right)
$$

$\rho=$ coefficient of correlation between W and C
-

$$
\widehat{\lambda}_{n}=\widehat{\operatorname{Cov}}(W, C) / \widehat{\operatorname{Var}}(C)
$$

- No asymptotic loss of efficiency

Markov Chains and Martingale Controls

Goal: Compute $\alpha=E_{x}\left[\sum_{j=0}^{\infty} e^{-\alpha j} r\left(X_{j}\right)\right]\left(\triangleq u^{*}(x)\right)$

- It is known that u^{*} satisfies

$$
u=r+e^{-\alpha} P u
$$

- Also,

$$
M_{n}=\sum_{j=0}^{n-1} e^{-\alpha j} r\left(X_{j}\right)+e^{-\alpha n} u^{*}\left(X_{n}\right)
$$

is a martingale adapted to $\left(X_{n}: n \geq 0\right)$, i.e.,

$$
E\left[M_{n+1} \mid X_{0}, \ldots, X_{n}\right] \stackrel{\text { a.s. }}{=} M_{n}
$$

- So, $C_{n}=M_{n}-M_{0}$ has mean zero
- Put $\lambda=1$. Then,

$$
W-\lambda C_{\infty}=u^{*}(x)
$$

So,

$$
\operatorname{Var}(W(\lambda))=0
$$

- We don't know $u^{*} \ldots$ but if \widetilde{u} is a good approximation to u^{*}, use

$$
\widetilde{M}_{n}=\sum_{j=0}^{n-1} e^{-\alpha j} \widetilde{r}\left(X_{j}\right)+e^{-\alpha n} \widetilde{u}\left(X_{n}\right)
$$

where

$$
\widetilde{r} \triangleq \widetilde{u}-e^{-\alpha} P \widetilde{u}
$$

III. Common Random Numbers

Suppose we have two policies we wish to compare:

$$
\kappa_{1}=E\left[W_{1}\right] \quad \text { vs } \quad \kappa_{2}=E\left[W_{2}\right]
$$

Goal: Compute $\alpha=\kappa_{1}-\kappa_{2}$

- EIT 1: Estimate α via

$$
\widehat{\alpha}=\bar{W}_{1}\left(n_{1}\right)-\bar{W}_{2}\left(n_{2}\right)
$$

"stratified sampling"

$$
n_{i} \propto \lambda_{i}^{-1 / 2} \sigma_{i}, \quad i=1,2
$$

- EIT 2: "Couple" W_{1} and W_{2} with a well-chosen joint distribution (not independent)

$$
\begin{aligned}
& W=W_{1}-W_{2} \\
& \operatorname{Var}(W)=\operatorname{Var}\left(W_{1}\right)-2 \operatorname{Cov}\left(W_{1}, W_{2}\right)+\operatorname{Var}\left(W_{2}\right)
\end{aligned}
$$

- Want $\operatorname{Cov}\left(W_{1}, W_{2}\right)$ to be as large as possible

Suppose

$$
\begin{aligned}
W_{1} & =\widetilde{f}_{1}\left(\xi_{1}, \ldots, \xi_{d}\right) \\
W_{2} & =\widetilde{f}_{2}\left(\xi_{1}, \ldots, \xi_{d}\right)
\end{aligned}
$$

Guaranteed efficiency improvement if $\widetilde{f}_{i} \nearrow, i=1,2$
"common random numbers"

IV. Importance Sampling

Goal: Compute $\alpha=E[W]=E_{P}[W]$

- Note that

$$
\begin{aligned}
E_{P}[W]=\int_{\Omega} W(\omega) P(d \omega) & =\int_{\Omega} W(\omega) \frac{P(d \omega)}{Q(d \omega)} Q(d \omega) \\
& \triangleq \int_{\Omega} W(\omega) L(\omega) Q(d \omega) \\
& =E_{Q}[W L]
\end{aligned}
$$

- Put $Q^{*}(d \omega)=|W(\omega)| P(d \omega) / E_{P}[|W|]$
- If $W \geq 0, W L^{*}=\alpha$
- Of course, we do not know Q^{*}. Instead, we hope to use a \widetilde{Q} that approximates Q^{*}

For example, $\alpha=E_{P}\left[r\left(X_{n}\right)\right]$

- Then,

$$
\alpha=E_{Q}\left[r\left(X_{n}\right) L_{n}\right]
$$

where

$$
L_{n}=\prod_{i=0}^{n-1} \frac{P\left(X_{i}, X_{i+1}\right)}{Q\left(X_{i}, X_{i+1}\right)}
$$

- $\operatorname{Var}_{Q}\left(L_{n}\right) \sim a \beta^{n}, \beta>1$
- On the other hand,

$$
\frac{1}{n} \log L_{n} \rightarrow \sum_{x, y} \log \left(\frac{P(x, y)}{Q(x, y)}\right) Q(x, y) \pi_{Q}(x)<0
$$

so $L_{n} \rightarrow 0, Q$ a.s.

- $\widehat{\operatorname{Var}}\left(L_{n}\right)$ is highly misleading in many settings
- If

$$
Q-P=O\left(\frac{1}{\sqrt{n}}\right),
$$

then,

$$
\operatorname{Var}_{Q}\left(L_{n}\right)=O(1)
$$

V. Gradient Estimation

- Suppose that θ is a decision variable:

$$
\alpha(\theta)=\int_{\Omega} W(\theta, \omega) P(d \omega)
$$

or

$$
\alpha(\theta)=\int_{\Omega} W(\omega) P_{\theta}(d \omega)
$$

- How to efficiently compute $\nabla \alpha(\theta)$?
- Why it is of interest:
- Stochastic gradient descent algorithm
- Statistical analysis:

$$
\begin{aligned}
& \widehat{\theta}: \text { statistical estimator for "true" parameter } \theta_{0} \\
& \begin{aligned}
\alpha(\widehat{\theta})-\alpha\left(\theta_{0}\right) & \approx \nabla \alpha\left(\theta_{0}\right)\left(\widehat{\theta}-\theta_{0}\right) \\
& \stackrel{D}{\approx} \nabla \alpha\left(\theta_{0}\right) N(0, C)
\end{aligned}
\end{aligned}
$$

One can often move parametric dependence from $W(\theta)$ to P_{θ} and vice versa...

- When $W(\theta)$ depends smoothly on θ :

$$
\nabla \alpha\left(\theta_{0}\right)=E_{P}\left[\nabla W\left(\theta_{0}\right)\right]
$$

"infinitesimal perturbation analysis"

- When P_{θ} depends smoothly on θ :

$$
\alpha(\theta)=E_{\theta_{0}}[W L(\theta)]
$$

so

$$
\nabla \alpha(\theta)=E_{\theta_{0}}\left[W \nabla L\left(\theta_{0}\right)\right]
$$

where

$$
L(\theta, \omega)=\frac{P_{\theta}(d \omega)}{P_{\theta_{0}}(d \omega)}
$$

"likelihood ratio gradient estimation"

Application to Markov Chains

- Compute $\nabla \alpha\left(\theta_{0}\right)$ where $\alpha(\theta)=E_{\theta}\left[r\left(X_{\infty}\right)\right]$
- Here, $W=\frac{1}{n} \sum_{j=1}^{n} r\left(X_{j}\right)$
- Then,

$$
\nabla \alpha\left(\theta_{0}\right) \approx E_{\theta_{0}}\left[W \nabla L_{n}\left(\theta_{0}\right)\right]
$$

where

$$
\nabla L_{n}\left(\theta_{0}\right)=\sum_{j=1}^{n} \frac{\nabla p\left(\theta_{0}, X_{j-1}, X_{j}\right)}{p\left(\theta_{0}, X_{j-1}, X_{j}\right)}
$$

Remark: $\left(\nabla L_{n}\left(\theta_{0}\right): n \geq 1\right)$ is a zero-mean martingale adapted to $\left(X_{n}: n \geq 0\right)$

IPA versus Likelihood Ratio Gradient Estimation

 IPA:$$
\frac{1}{n} \sum_{j=1}^{n} \nabla r\left(\theta_{0}, X_{j}\right) \approx \nabla \alpha\left(\theta_{0}\right)+\frac{1}{\sqrt{n}} N(0, C)
$$

Likelihood ratio:

$$
\begin{aligned}
\frac{1}{n} \sum_{j=1}^{n} r\left(X_{j}\right) \nabla L_{n}(\theta) & =\frac{1}{n} \sum_{j=1}^{n} r\left(X_{j}\right) \sum_{i=1}^{n} D_{i} \\
= & \frac{1}{n} \sum_{j=1}^{n} r_{c}\left(X_{j}\right) \sum_{i=1}^{n} D_{i}+E_{\theta_{0}}\left[r\left(X_{\infty}\right)\right] \sum_{i=1}^{n} D_{i} \\
& \left(r_{c}(x)=r(x)-E_{\theta_{0}}\left[r\left(X_{\infty}\right)\right]\right) \\
& \stackrel{D}{\approx} \nabla \alpha\left(\theta_{0}\right)+N_{1}\left(0, \sigma^{2}\right) N_{2}\left(0, C_{2}\right)+\sqrt{n} E_{\theta_{0}}\left[r\left(X_{\infty}\right)\right] N_{2}\left(0, C_{2}\right)
\end{aligned}
$$

Since the D_{j} 's are martingale differences,

$$
E\left[r\left(X_{j}\right) D_{i}\right]=0, \quad i>j
$$

Modify estimator:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} D_{i} \sum_{j=i}^{n} r\left(X_{j}\right) \\
& \stackrel{D}{\approx} \sqrt{n} E_{\theta_{0}}\left[r\left(X_{\infty}\right)\right] \int_{0}^{1}(1-s) d B(s)
\end{aligned}
$$

- If $E_{\theta_{0}}\left[r\left(X_{\infty}\right)\right]=0$, then

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} D_{i} \sum_{j=i}^{n} r\left(X_{j}\right) \\
& \stackrel{D}{\approx} \sigma_{1} C^{1 / 2} \int_{0}^{1} B_{2}(s) d \vec{B}_{1}(s) \quad \text { Olvera-Cravioto + G (2018) }
\end{aligned}
$$

- So, work with $r_{c}(x)=r(x)-E_{\theta_{0}}\left[r\left(X_{\infty}\right)\right]$
- Effectively equivalent to using $\sum_{j=1}^{n} D_{j}$ as a control variate

Finite Difference Estimators

- Central differences:

$$
\frac{\bar{W}_{n}\left(\theta_{0}+h\right)-\bar{W}_{n}\left(\theta_{0}-h\right)}{2 h} \stackrel{D}{\approx} \alpha^{\prime}\left(\theta_{0}\right)+\frac{h^{2}}{3} \alpha^{(3)}\left(\theta_{0}\right)+\frac{\sigma}{\sqrt{n} h} N(0,1)
$$

- To balance bias and variance, put $h \approx c n^{-1 / 6}$
- Convergence rate: $n^{-1 / 3}$
- If we use common random numbers, convergence rate $\approx n^{-2 / 5}$

VI. Stochastic Optimization

-r policies

- Which policy maximizes reward?
"Selection of best system"
Connections to multi-armed bandit literature

$$
\min _{\theta} \alpha(\theta)
$$

- $\theta_{n+1}=\theta_{n}-C_{n} \widehat{\nabla \alpha}\left(\theta_{n}\right)$
"stochastic gradient descent"
- Optimal choice of C_{n} depends on Hessian of $\alpha(\cdot)$, covariance structure of $\widehat{\nabla \alpha}\left(\theta_{\infty}\right)$
- Polyak averaging can be effective in implicitly finding C_{n}
- Large literature that intersects with many different applications domains
- Many areas not covered in today's lectures
- Stochastic Simulation: Algorithms and Analysis, Asmussen + G (2007)
- Winter Simulation Conference
- ACM Transactions on Modeling and Computer Simulation

