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Policy Gradient Methods in Control

Extremum seeking from 1922 to 2010 [86]

In his 1922 paper, or invention disclosure, Leblanc [88]

describes a mechanism to transfer power from an

overhead electrical transmission line to a tram car using

an ingenious non-contact solution. In order to maintain

an efficient power transfer in what is essentially a linear,

air-core, transformer/ capacitor arrangement with

variable inductance, due to the changing air-gap, he

identifies the need to adjust a (tram based) inductance

(the input) so as to maintain a resonant circuit, or

maximum power (the output). Leblanc explains a
control mechanism of how to maintain the desirable
maximum power transfer using what is essentially an
extremum seeking solution.

More history in 1962 and the 1980s: [87, 89, 88], and enormous activity from then
until today.
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(the input) so as to maintain a resonant circuit, or

maximum power (the output). Leblanc explains a
control mechanism of how to maintain the desirable
maximum power transfer using what is essentially an
extremum seeking solution.

More history in 1962 and the 1980s: [87, 89, 88], and enormous activity from then
until today.

Iven, are you sure? Response on Sunday: [that is at the heart of] what ESC is, non
model based gradient descent...and that is what this circuit does, non model based,
gradient descent by using forces that are proportional to finding the maximal energy
transfer...
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Policy Gradient Methods in Control

Self Tuning

Theory and applications of adaptive control—a survey Åström, 1983 [5]

Karl Åström has been an inspiration from the
start—for early history, see [5, 6, 3].

Adaptive Control Up To 1960 Åström, 1996 [6]

See also
Literature geared towards Lyapunov techniques:

Liberzon’s lecture notes: http:

//liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

Kokotovic et al [4]
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circa 2000

∇L(θ) = E
[
∇cθ(Xk) + Sθ(Xk, Xk+1)hθ(Xk+1)

]
Policy Gradient Methods in RL



Policy Gradient Methods in RL Actor Only Method

1968 Origins [32, 33, 34] L(θ) = lim
k→∞

E[cθ(Xk)]

Markov model: {Pθ, cθ : θ ∈ Rd} Goal: minimize L(θ), the average cost

Approach: gradient descent ⊕ our beloved Poisson equation [56, 57, 27]

cθ(x) +
∑
x′

Pθ(x, x
′)hθ(x

′) = hθ(x) + L(θ)

Details: Take the gradient of each side:

∇cθ(x) +
∑
x′

{
[∇Pθ(x, x′)]hθ(x′) + Pθ(x, x

′)∇hθ (x′)
}

= ∇hθ(x) +∇L(θ)

∇cθ(x) +
∑
x′

Pθ(x, x
′)
{
Sθ(x, x

′)hθ(x
′) +∇hθ (x′)

}
= ∇hθ(x′) +∇L(θ)

Denote Sθ(x, x
′) = ∇ log(Pθ(x, x

′))

E
[
∇cθ(Xk) + Sθ(Xk, Xk+1)hθ(Xk+1) +∇hθ (Xk+1)

]
= E

[
∇hθ (Xk)

]
+∇L(θ)

Early Actor Only category: Williams 1992, REINFORCE [35]
Recent revival of AO, following Mania et al, 2018 [43]
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Policy Gradient Methods in RL Actors, Critics and Compatible Features

Actor Critic Methods L(θ) = lim
k→∞

E[cθ(Xk)]

∇L(θ) = E
[
∇cθ(Xk) + Sθ(Xk, Xk+1)hθ(Xk+1)

]
Follow design principle:

ODE :
d

dt
ϑt = −∇L(ϑt)

SA: θn+1 = θn + αn+1

[
∇cθ(Xn) + Sθ(Xn, Xn+1)hθ(Xn+1)

]

SA: θn+1 = θn + αn+1

[
Qθn(Xn, Un)∇ log φ̃θ(Un | Xn)

]
We need a critic! Key: only need approximation Q̂θ to satisfy

E
[
Qθ(Xn, Un)∇ log φ̃θ(Un | Xn)

]
= E

[
Q̂θ(Xn, Un)∇ log φ̃θ(Un | Xn)

]
=⇒ Compatible features
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qSGD and Policy Gradient RL

MountainCar

Rich’s car has a very weak engine

Go
al

3,747 m
Elevation  

The only way to reach the goal is to go backwards

Example policies (focusing on a single valley):
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qSGD and Policy Gradient RL

MountainCar

Goal: minimize travel time to destination J(x)

Approach: create a parameterized family of policies: Uk = φθ(Xk)

Minimize average loss: L(θ) = lim
N→∞

1

N

N∑
n=1

min{Jmax, Jθ(X
k
0 )}

{Xk
0 : k ≥ 1} are initial conditions, most likely created by choice

Jθ(x) is the cost (perhaps average cost) from initial condition x

Let’s try QSA:

d

dt
sΘt = at{−∇L(Θt)} ⇐= Design for your goals

d

dt
Θt = atf(Θt,ξt) ⇐= qSGD approximation

θn+1 = θn + an+1f(θn,ξn+1) ⇐= Euler/Runge-Kutta
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qSGD and Policy Gradient RL

MountainCar

State space continuous, x = (z, v) position and velocity, input zero or one

Model: Zk+1 = Zk + Vk +Dz
k

Vk+1 = Vk + γUk +Dv
k D means disturbance

Policy: Uk =

{
1 if Zk + Vk ≤ θ
sign(Vk) else

The policy φθ “panics” (accelerates the car towards the goal)
whenever the estimate of Zk+1 is at or below the threshold θ
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qSGD and Policy Gradient RL

MountainCar
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Policy: Uk =

{
1 if Zk + Vk ≤ θ
sign(Vk) else

The policy φθ “panics” (accelerates the car towards the goal)
whenever the estimate of Zk+1 is at or below the threshold θ

Goal: Find best policy in this class
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qSGD and Policy Gradient RL

MountainCar
qSGD: d

dt
Θt = −at 1

2ε
Gξt

{
L(Θt + εξt)− L(Θt − εξt)

}
In discrete time:

(1) θn+1 = θn + αn+1

[
− 1

2εξn
{
L(θn + εξn)− L(θn − εξn)

}]
(1a) θn+1 = θn − αn+1

1
εξnL(θn + εξn) recall danger with this one
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Slight extension:

L(θn + εξn) = Jθ(x) , θ = θn + εξ1n , x = x0 + εξ2n
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Conclusions

Conclusions
Probability Theory, Control, Reinforcement Learning: A Happy Marriage

I believe this, even after all the effort to replace Wn with ξt!

Theory for QSA and qSGD adapts/steals theory for SA:
Easier in part because of zero covariance, Σξ = 0

There is of course lots of exploration to do:

Testing qSGD in more volatile environments

Tackling dimension, θ ∈ R106

Other forms of acceleration (revisit classical and recent [54])

Optimizing the wind farms in Colorado

On to you, Andrey!
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