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What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [59]

2 / 28



What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [59]

2 / 28



What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [59]

2 / 28



What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [59]

2 / 28



What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [59]

2 / 28



What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
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2 / 28



What is Stochastic Approximation? ODEs for Root Finding

What is Stochastic Approximation? f̄(θ) = E[f(θ,W )]

A simple goal: find solution to f̄(θ∗) = 0

ODE algorithm:
d

dt
ϑt = f̄(ϑt)

If stable: ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Under very general conditions:
the ODE, the Euler approximation, and SA are all convergent to θ∗

[Robbins and Monro, 1951] see Borkar’s monograph [59]

2 / 28



What is Stochastic Approximation? ODEs for Root Finding

Algorithm Design f̄(θ) = E[f(θ,W )]

Stochastic Approximation

θn+1 = θn + αn+1f(θn,Wn+1)

= θn + αn+1

{
f̄(θn) + “NOISE”

}

Step 1: Design d
dtϑt = f̄(ϑt) so that ϑt → θ∗ and f̄(ϑt)→ f̄(θ∗) = 0.

:

0 = [I + gA∗]Σθ + Σθ[I + gA∗]T + g2Σ“NOISE”

=⇒ CLT, etc
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d

dt
Θt = atf(Θt,ξt)

Θt

ξt

Quasi Stochastic Approximation



Quasi Stochastic Approximation What and Why?

Algorithm Design f̄(θ) = E[f(θ,W )]

Applications of interest:
TD, Q, gradient-free optimization, policy-gradient RL, ...

We create the noise!

Why would we settle for this crappy convergence rate?

E[‖θn − θ∗‖2] ≈ n−1 trace (Σθ)

QSA to the rescue: E[‖θn − θ∗‖2] ≈ n−2 trace (sΣθ)

d

dt
sΘt = atf̄(sΘt) ⇐= Design for your goals

d

dt
Θt = atf(Θt,ξt) ⇐= QSA (cts time is simplest)

θn+1 = θn + an+1f(θn,ξn+1) ⇐= Euler/Runge-Kutta
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Quasi Stochastic Approximation How?

Deterministic Markovian Noise d
dtΘt = atf(Θt, ξt)

Canonical choice is a mixture of sinusoids. Generalization:

ξt = [exp(jω1t), . . . , exp(jωKt)]
T

Final generalization Deterministic Markovian probing process:

d

dt
ξt = H(ξt) H : Ω→ Ω continuous.

Poisson’s equation: center of CLT theory, and central here:

ĝ(ξt0) =

∫ t1

t0

[g(ξt)− g] dt+ ĝ(ξt1)

=⇒ optimal rate in ergodic theorem, and more
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Gradient-Free Optimization

Kiefer-Wolfowitz to Extremum Seeking Control min
θ∈Rd

L(θ)

• Kiefer-Wolfowitz: θn+1 = θn + αn+1f(θn,Wn+1) [63, 43]

Simplest formulation:

f(θn,Wn+1) = − 1

2ε
GWn+1{L(θn + εWn+1)− L(θn − εWn+1)}

• Extremum seeking control: d
dtΘt = −at∇̃L(t) [91, 90, 92]

• qSGD:
d

dt
Θt = −at

1

2ε
Gξt

{
L(Θt + εξt)− L(Θt − εξt)

}

L(θ)

θ t

∗

θ∗θs-2 0 2 0 25 50

Θ(t)

θ
sθ

-4

0

2

-2

First seen in applications to finance: [77, 78]

What’s new? Complete theory for convergence and convergence rate
Results today from [76]
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d

dt
Θt = atf(Θt,ξt)

Θt

ξt

Θt = θ∗ + at[Ȳ + ΞI
t] + o(at)

QSA Theory



Some Theory Finite-t bounds

Scaling and Linearization
d

dt
Θt = atf(Θt,ξt) ≈ at{A∗Θ̃t + Ξt}

Comparison:
d

dt
sΘt = atf̄(sΘt), with sΘt0 = Θt0

Step 1: Stability of ODE (by design): lim
t→∞

Θt = lim
t→∞

sΘt = θ∗

Interesting fact: for at = g/(1 + t),
Rate of convergence of sΘt is 1/t if and only if I + gA∗ is Hurwitz

Step 2: ODE for Zt = 1
at

(
Θt − sΘt

)

A bit of calculus:

d

dt
Zt =

[
rtI + atA

∗]Zt + Ξ̃t , Zt0 = 0

Step 3: Change of variables, Yt
def
= Zt − ΞI

t

d

dt
Yt = atA

∗ [Yt − Ȳ + ΞI
t + o(1)

]
+ rt[Yt + ΞI

t]

Step 4: QSA 101: Yt = Ȳ + o(1) meaning ...

Emergency Exit
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Some Theory Assumptions are required

Refinements and Warnings

Amazing conclusion: using at = 1/(1 + t)ρ,

Θt = θ∗ + at[Ȳ + ΞI
t + o(1)]

For ρ < 1 requires A∗ Hurwitz

Ruppert-Polyak averaging for optimal rate?

ΘRP
T =

1

T

∫ T

0
Θt dt estimates {Θt} obtained using ρ < 1

Nope! This gives 1/T convergence rate if and only if Ȳ = 0
(a mysterious condition)

ΞI
t = ΞI

0 +

∫ t

0

f(θ∗,ξr) dr = f̂(θ∗,ξ0)− f̂(θ∗,ξt) zero mean, bounded

Ȳ = [A∗]−1

∫

Ω

∂θf̂(θ∗, z)f(θ∗, z)π(dz) !
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Some Theory Assumptions are required

Refinements and Warnings

Global convergence requires Lipschitz continuity of f

This qSGD algorithm has nearly identical f̄ :

d

dt
Θt = −at

1

ε
GξtL(Θt + εξt)

subject to zero-mean + symmetry assumption
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*Awful performance because f is not Lipschitz
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Conclusions

Conclusions

Don’t introduce volatility if you don’t have to!

What’s next?

What is the best way to translate QSA ODE to algorithm?
Shall we call our quasi Monte Carlo friends?

Applications to constrained optimization (remember convex Q?)

Applications to RL ... stay tuned ...

Thank you, Simons Institute and organizers of 2018 program on RTDM!
During this time at Berkeley, Panayotis Mertikopoulos@CNRS engaged me and
Adithya Devraj to work on

Reinforcement learning in continuous games
with the main goal: rates of convergence for Kiefer and Wolfowitz!

The “quasi-theory” is so simple. I leave refinements of stochastic theory to others.
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