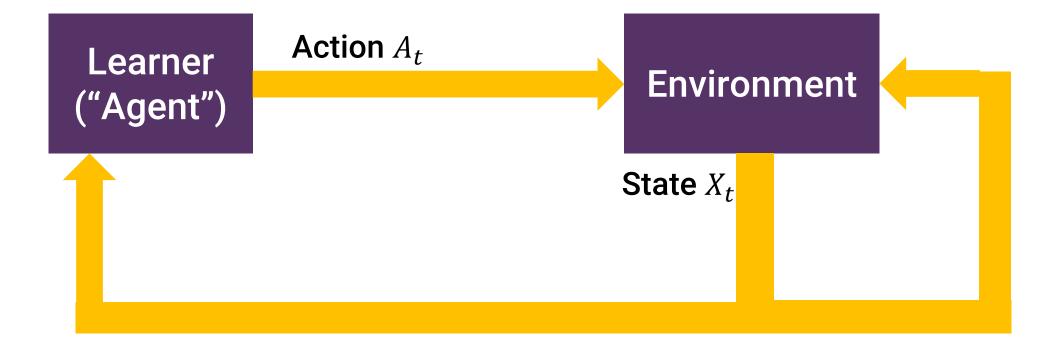
### ONLINE LEARNING IN MDPS PART 2

#### **Gergely Neu** Universitat Pompeu Fabra, Barcelona

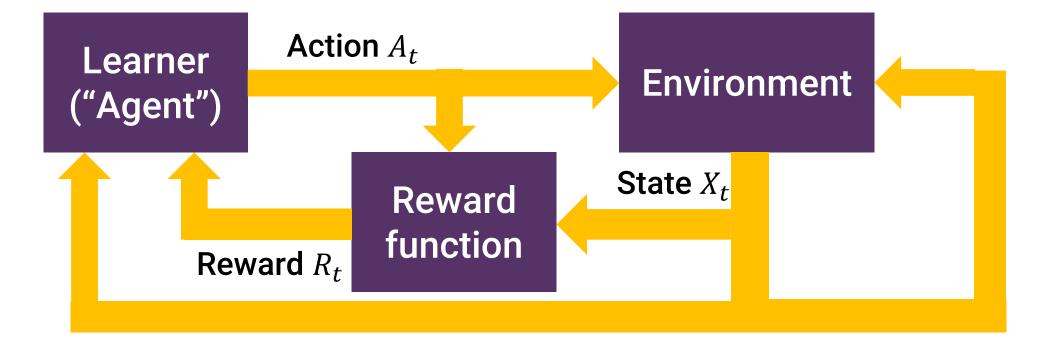
#### ONLINE LEARNING IN MDPS PART 2 ADVERSARIAL MDPS

#### **Gergely Neu** Universitat Pompeu Fabra, Barcelona

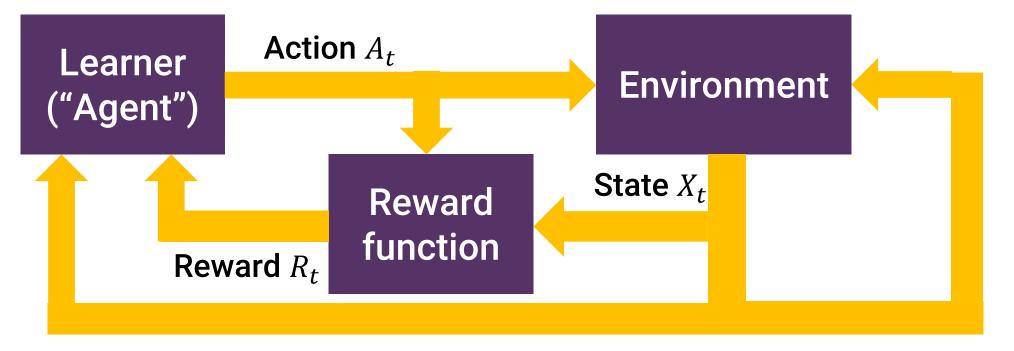
#### **MARKOV DECISION PROCESSES**



#### **MARKOV DECISION PROCESSES**

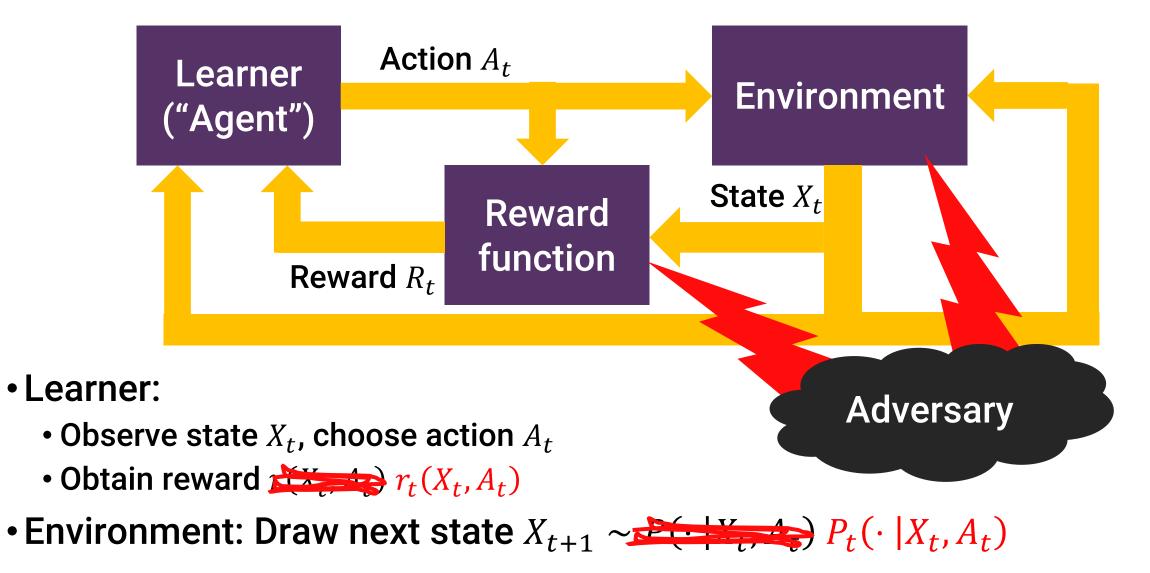


#### **MARKOV DECISION PROCESSES**



- Learner:
  - Observe state  $X_t$ , choose action  $A_t$
  - Obtain reward  $r(X_t, A_t)$
- Environment: Draw next state  $X_{t+1} \sim P(\cdot | X_t, A_t)$

#### ADVERSARIAL MARKOV DECISION PROCESSES



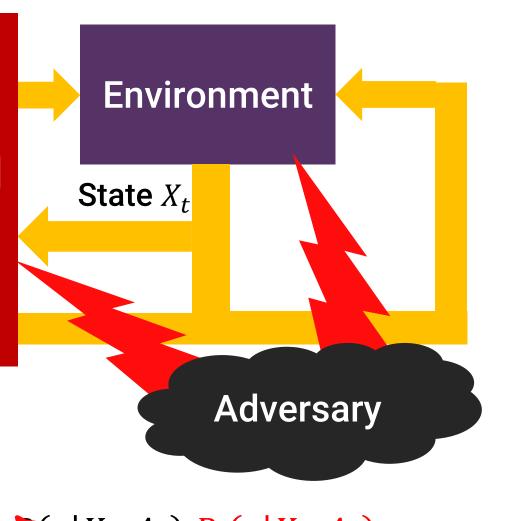
#### ADVERSARIAL MARKOV DECISION PROCESSES

#### This talk:

what is achievable when an external adversary is allowed to change the reward function and the transition function over time?

• Learner:

- Observe state  $X_t$ , choose action  $A_t$
- Obtain reward  $r_t(X_t, A_t)$
- Environment: Draw next state  $X_{t+1} \sim P(\cdot | X_t, A_t)$



#### **PERFORMANCE MEASURE: REGRET**

**Regret**  
$$\Re eg_T(\pi) = \sum_{t=1}^T \mathbb{E}[r_t(X_t^*, \pi(X_t^*)) - r_t(X_t, A_t)],$$
where  $X_1^*, X_2^*, \dots$  is the sequence of states that would have been generated by running comparator policy  $\pi$  through the dynamics  $P_1, P_2, \dots$ 

#### **PERFORMANCE MEASURE: REGRET**

**Regret**  
$$\Re e g_T(\pi) = \sum_{t=1}^T \mathbb{E} [r_t (X_t^*, \pi(X_t^*)) - r_t (X_t, A_t)],$$
where  $X_1^*, X_2^*, \dots$  is the sequence of states that would have been generated by running comparator policy  $\pi$  through the dynamics  $P_1, P_2, \dots$ 

Goal: sublinear regret  $\lim_{T \to \infty} \max_{\pi} \frac{\Re e g_T(\pi)}{T} = 0$ 



#### Hardness results

- Non-oblivious adversaries
- Arbitrarily changing dynamics

#### Arbitrarily changing reward functions

- Some common ideas
- Two algorithm families

### **SOME HARDNESS RESULTS**

### **NON-OBLIVIOUS ADVERSARIES**

Non-oblivious adversary: can take history  $\mathcal{H}_t = X_t, A_{t-1}, X_{t-1}, A_{t-2}, ...$ into account when selecting  $r_t$  and  $P_t$ 



### **NON-OBLIVIOUS ADVERSARIES**

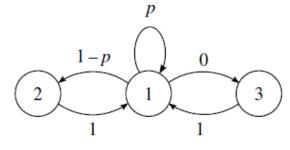
Non-oblivious adversary: can take history  $\mathcal{H}_t = X_t, A_{t-1}, X_{t-1}, A_{t-2}, ...$ into account when selecting  $r_t$  and  $P_t$ 

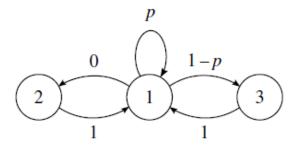


#### Theorem

(Yu, Mannor and Shimkin, 2009) No algorithm can guarantee sublinear regret against a non-oblivious adversary

#### Simple counterexample by Yu, Mannor and Shimkin (2009):





(a) Transition model if the agent chooses to go left.

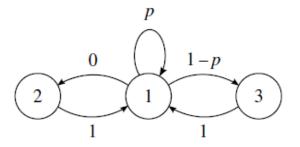
(b) Transition model if the agent chooses to go right.

Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • $r_t$ (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(right) = 1$  if  $A_{t-1} = left$



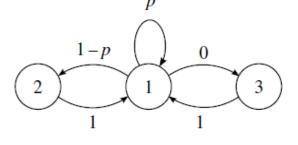
(a) Transition model if the agent chooses to go left.



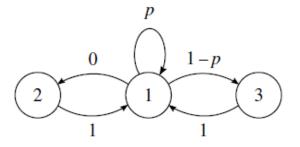
(b) Transition model if the agent chooses to go right.

Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • $r_t$ (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(right) = 1$  if  $A_{t-1} = left$



(a) Transition model if the agent chooses to go left.



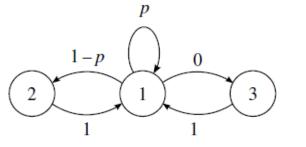
(b) Transition model if the agent chooses to go right.

#### $r_t(X_t) = 0$ for all t!

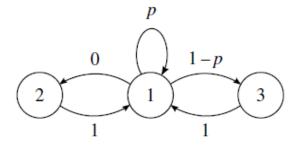
Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • $r_t$ (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(\text{right}) = 1$  if  $A_{t-1} = \text{left}$

 $r_t(X_t) = 0$  for all t!



(a) Transition model if the agent chooses to go left.



(b) Transition model if the agent chooses to go right.

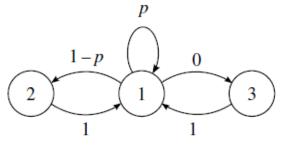
But there is a policy  $\pi$  with  $\mathbb{E}\left[\sum_{t} r_t \left(X_t^*, \pi(X_t^*)\right)\right] \ge \left(\frac{1}{2} - p\right) T$ 

**Either**  $\pi(1) = \text{left or } \pi(1) = \text{right}$ 

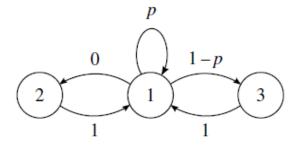
Simple counterexample by Yu, Mannor and Shimkin (2009):

- Reward is function of state
- • $r_t$ (default) = 0
- • $r_t(\text{left}) = 1 \text{ if } A_{t-1} = \text{right}$
- • $r_t(\text{right}) = 1$  if  $A_{t-1} = \text{left}$

 $r_t(X_t) = 0$  for all t!



(a) Transition model if the agent chooses to go left.



(b) Transition model if the agent chooses to go right.

But there is a policy  $\pi$  with  $\mathbb{E}\left[\sum_{t} r_t(X_t^*, \pi(X_t^*))\right] \ge \left(\frac{1}{2} - p\right) T$ 

**Either**  $\pi(1) = \text{left or } \pi(1) = \text{right}$ 

$$\Re \operatorname{eg}_T(\pi) \ge \left(\frac{1}{2} - p\right)T$$

**Regret**  
$$\Re eg_T(\pi) = \sum_{t=1}^T \mathbb{E} [r_t(X_t^*, \pi(X_t^*)) - r_t(X_t, A_t)],$$
where  $X_1^*, X_2^*, \dots$  is the sequence of states that would have been generated by running comparator policy  $\pi$  through the dynamics  $P_1, P_2, \dots$ 

$$\begin{array}{l} \textbf{Regret} \\ \Re eg_{T}(\pi) = \sum_{t=1}^{T} \mathbb{E} \big[ r_{t} \big( X_{t}^{*}, \pi(X_{t}^{*}) \big) - r_{t} (X_{t}, A_{t}) \big], \\ \text{The reward } r_{t} \text{ was chosen in response to} \\ \textbf{real state history } \mathcal{H}_{t} \text{ and not in response to} \\ \textbf{comparator history} \\ \mathcal{H}_{t}^{*} = X_{t}^{*}, A_{t-1}^{*}, X_{t-1}^{*}, A_{t-2}^{*}, \dots, X_{1}^{*} \big] \end{array}$$

$$\begin{array}{l} \textbf{Regret} \\ \Re eg_{T}(\pi) = \sum_{t=1}^{T} \mathbb{E} \big[ r_{t} \big( X_{t}^{*}, \pi(X_{t}^{*}) \big) - r_{t} (X_{t}, A_{t}) \big], \\ \text{The reward } r_{t} \text{ was chosen in response to} \\ \textbf{real state history } \mathcal{H}_{t} \text{ and not in response to} \\ \textbf{comparator history} \\ \mathcal{H}_{t}^{*} = X_{t}^{*}, A_{t-1}^{*}, X_{t-1}^{*}, A_{t-2}^{*}, \dots, X_{1}^{*} \big]. \end{array}$$

#### **Possible solutions:**

- Consider "policy regret": redefine comparator to take the effect  $\mathcal{H}_t \rightarrow r_t$  into account
- Consider oblivious adversaries

$$\begin{array}{l} \textbf{Regret} \\ \Re eg_{T}(\pi) = \sum_{t=1}^{T} \mathbb{E} \big[ r_{t} \big( X_{t}^{*}, \pi(X_{t}^{*}) \big) - r_{t} (X_{t}, A_{t}) \big], \\ \text{The reward } r_{t} \text{ was chosen in response to} \\ \textbf{real state history } \mathcal{H}_{t} \text{ and not in response to} \\ \textbf{comparator history} \\ \mathcal{H}_{t}^{*} = X_{t}^{*}, A_{t-1}^{*}, X_{t-1}^{*}, A_{t-2}^{*}, \dots, X_{1}^{*} \big]. \end{array}$$

#### **Possible solutions:**

- Consider "policy regret": redefine comparator to take the effect  $\mathcal{H}_t \rightarrow r_t$  into account
- Consider oblivious adversaries

### **OBLIVIOUS ADVERSARIES**

Non-oblivious adversary: can take history  $\mathcal{H}_t = X_t, A_{t-1}, X_{t-1}, A_{t-2}, ...$ into account when selecting  $r_t$  and  $P_t$ 



### **OBLIVIOUS ADVERSARIES**

Adversary

Oblivious adversary: cannot take history  $\mathcal{H}_t$  into account when selecting  $r_t$  and  $P_t$ 

"Adversary ≈ nature": it can (mis)behave arbitrarily, but doesn't care about what you do

### **OBLIVIOUS ADVERSARIES**

Oblivious adversary: cannot take history  $\mathcal{H}_t$  into account when selecting  $r_t$  and  $P_t$ 

"Adversary ≈ nature": it can (mis)behave arbitrarily, but doesn't care about what you do

# Can we guarantee sublinear regret now?

**Adversary** 

#### LEARNING WITH CHANGING TRANSITIONS IS HARD

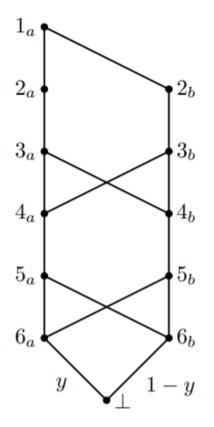
Learning against an oblivious adversary can still be computationally hard when the transition function is allowed to change!

#### Theorem

(Abbasi-Yadkori et al., 2013) There is an adversarial MDP where achieving sublinear regret is computationally hard.

# **PROOF CONSTRUCTION**

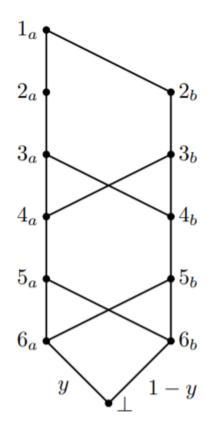
- Idea: learning of noisy parities can be formulated as an MDP with changing transition functions & rewards!
- $O(\text{poly}(n)T^{1-\alpha})$  regret  $\Rightarrow O\left(\frac{poly(n)}{\varepsilon^{1/\alpha}}\right)$  excess risk, conjectured to be computationally hard to achieve
- Construction: an instance  $x \in \{0,1\}^n$  corresponds to a deterministic transition graph with rewards determined by the label y



# **PROOF CONSTRUCTION**

- Idea: learning of noisy parities can be formulated as an MDP with changing transition functions & rewards!
- $O(\text{poly}(n)T^{1-\alpha})$  regret  $\Rightarrow O\left(\frac{poly(n)}{\varepsilon^{1/\alpha}}\right)$  excess risk, conjectured to be computationally hard to achieve
- Construction: an instance  $x \in \{0,1\}^n$  corresponds to a deterministic transition graph with rewards determined by the label y

Corresponds to an oblivious adversary that picks  $(P_t, r_t)$  jointly!



### **SLOWLY CHANGING MDPS**

Very recent work by Gajane et al. (2019), Cheung et al. (2020):
define reward and transition variation as

$$V_T^r = \sum_{\substack{t=\bar{T}^1 \\ x,a}} \max_{\substack{x,a}} |r_t(x,a) - r_{t+1}(x,a)|$$
$$V_T^P = \sum_{\substack{t=1}} \max_{\substack{x,a}} ||P_t(\cdot |x,a) - P_{t+1}(\cdot |x,a)||_1$$

• regret bounds of  $O\left((V_T^P + V_T^r)^{1/3}T^{2/3}\right)$  are possible

algorithm: UCRL + forgetting old data

# ALGORITHMS FOR MDPS WITH ADVERSARIAL REWARDS

#### WHERE IT ALL STARTED...

#### **Experts in a Markov Decision Process**

#### NeurIPS 2005

Eyal Even-Dar Computer Science Tel-Aviv University evend@post.tau.ac.il Sham M. Kakade Computer and Information Science University of Pennsylvania skakade@linc.cis.upenn.edu Yishay Mansour \* Computer Science Tel-Aviv University mansour@post.tau.ac.il

#### MATHEMATICS OF OPERATIONS RESEARCH

Vol. 34, No. 3, August 2009, pp. 726–736 ISSN 0364-765X | EISSN 1526-5471 | 09 | 3403 | 0726 inf<mark>orms</mark><sub>®</sub>

DOI 10.1287/moor.1090.0396 © 2009 INFORMS

#### **Online Markov Decision Processes**

Eyal Even-Dar Google Research, New York, New York 10011, evendar@google.com

Sham. M. Kakade Toyota Technological Institute, Chicago, Illinois 60637, sham@tti-c.org

Yishay Mansour School of Computer Science, Tel-Aviv University, 69978 Tel-Aviv, Israel, mansour@post.tau.ac.il

#### Math of OR 2009

### FORMAL PROTOCOL

#### **Online learning in a fixed MDP**

For each round t = 1, 2, ..., T

- Learner observes state  $X_t \in \mathcal{X}$
- Learner takes action  $A_t \in \mathcal{A}$
- Adversary selects reward function  $r_t: \mathcal{X} \times \mathcal{A} \rightarrow [0,1]$
- Learner earns reward  $R_t = r_t(X_t, A_t)$
- Learner observes feedback
  - Full information:  $r_t$
  - Bandit feedback: R<sub>t</sub>
- Environment produces new state  $X_{t+1} \sim P(\cdot | X_t, A_t)$

# FORMAL PROTOCOL

#### **Online learning in a fixed MDP**

For each round t = 1, 2, ..., T

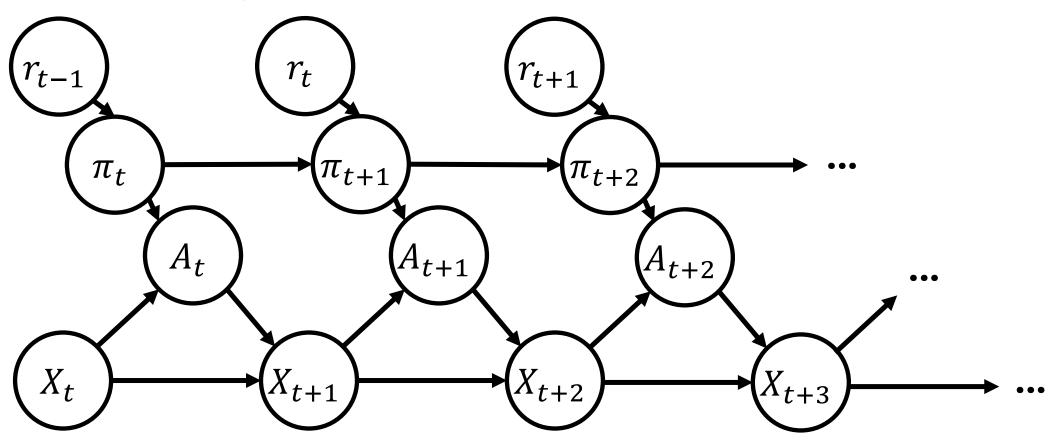
- Learner observes state  $X_t \in \mathcal{X}$
- Learner selects stochastic policy  $\pi_t$
- Learner takes action  $A_t \sim \pi_t(\cdot | X_t)$
- Adversary selects reward function  $r_t: \mathcal{X} \times \mathcal{A} \rightarrow [0,1]$
- Learner earns reward  $R_t = r_t(X_t, A_t)$
- Learner observes feedback
  - Full information:  $r_t$
  - Bandit feedback: R<sub>t</sub>

• Environment produces new state  $X_{t+1} \sim P(\cdot | X_t, A_t)$ 

**Stochastic policy:**  $\pi(a|x) = \mathbb{P}[A_t = a|X_t = x]$ 

### **TEMPORAL DEPENDENCES**

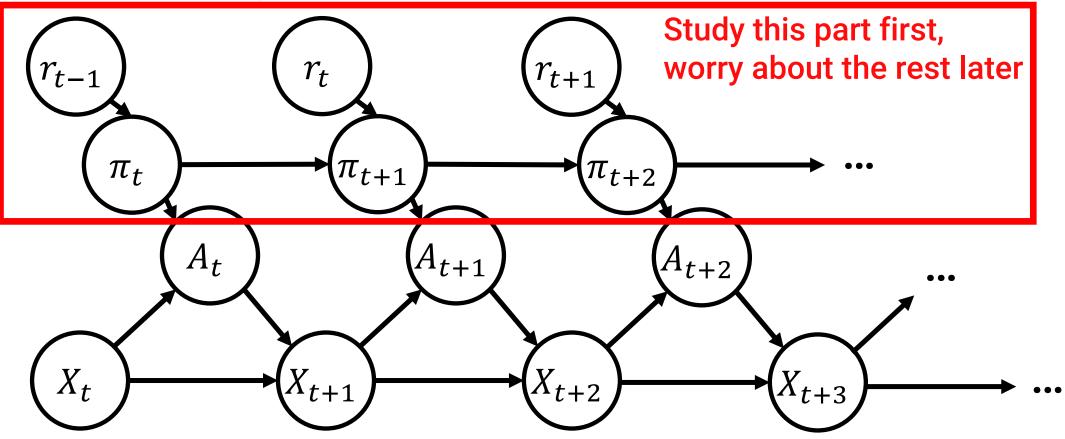
Main challenge: dependence between consecutive time steps



NB this graph is accurate for full information feedback; bandit is a bit more complicated

### **TEMPORAL DEPENDENCES**

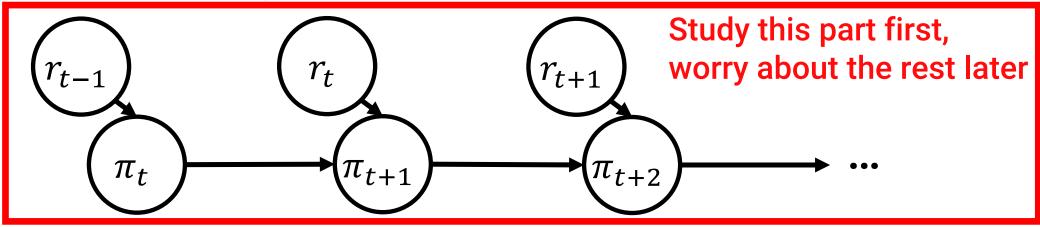
Main challenge: dependence between consecutive time steps



NB this graph is accurate for full information feedback; bandit is a bit more complicated

### **TEMPORAL DEPENDENCES**

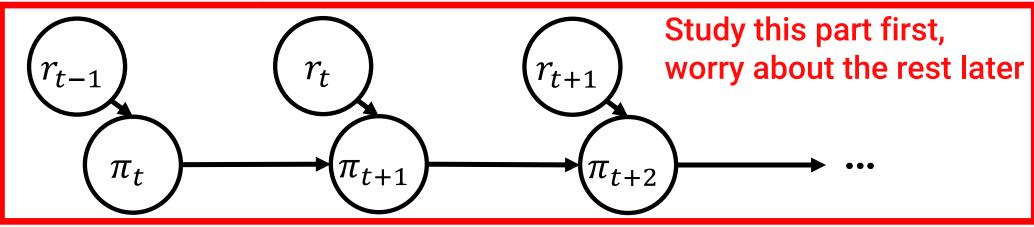
Main challenge: dependence between consecutive time steps



"Pretend that every policy reaches its stationary distribution immediately!"

## **TEMPORAL DEPENDENCES**

Main challenge: dependence between consecutive time steps

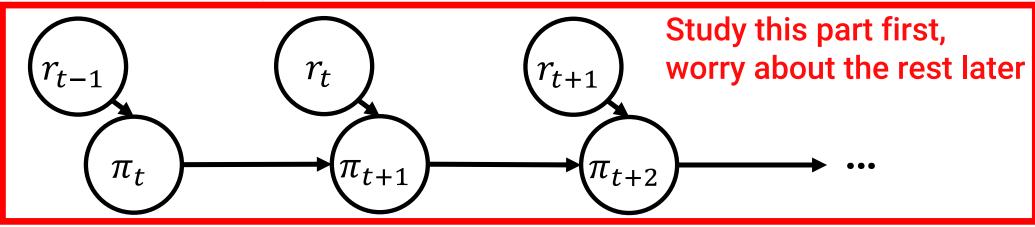


"Pretend that every policy reaches its stationary distribution immediately!"

**Def:** stationary distribution of policy  $\pi$ :  $\mu_{\pi}(x, a) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}_{\{X_k = x, A_k = a\}}$ 

## **TEMPORAL DEPENDENCES**

Main challenge: dependence between consecutive time steps



"Pretend that every policy reaches its stationary distribution immediately!"

**Def:** stationary distribution of policy  $\pi$ :  $\mu_{\pi}(x, a) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I}_{\{X_k = x, A_k = a\}}$ 

**Assumption:** 1-step mixing  $\forall \pi$  $\|(\nu - \nu')P_{\pi}\|_{1} \le e^{1/\tau} \|\nu - \nu'\|_{1}$ 

#### • Define

 $v_t(x, a) = \mathbb{P}[X_t = x, A_t = a]$  and  $v_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$  $\mu_t = \mu_{\pi_t}$ , stationary distribution induced by policy  $\pi_t$  $\mu^* = \mu_{\pi^*}$ , stationary distribution induced by policy  $\pi^*$ 

#### • Define

 $u_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } \nu_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$   $\mu_t = \mu_{\pi_t}$ , stationary distribution induced by policy  $\pi_t$  $\mu^* = \mu_{\pi^*}$ , stationary distribution induced by policy  $\pi^*$ 

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \Big[ r_t \big( X_t^*, \pi^*(X_t^*) \big) - r_t (X_t, A_t) \Big] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$

#### • Define

 $u_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } \nu_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$   $\mu_t = \mu_{\pi_t}$ , stationary distribution induced by policy  $\pi_t$  $\mu^* = \mu_{\pi^*}$ , stationary distribution induced by policy  $\pi^*$ 

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \left[ r_t \left( X_t^*, \pi^*(X_t^*) \right) - r_t (X_t, A_t) \right] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$
$$= \sum_{t=1}^T \langle v_t^* - \mu^*, r_t \rangle + \sum_{t=1}^T \langle \mu^* - \mu_t, r_t \rangle + \sum_{t=1}^T \langle \mu_t - v_t, r_t \rangle$$

#### • Define

 $u_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } \nu_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$   $\mu_t = \mu_{\pi_t}$ , stationary distribution induced by policy  $\pi_t$  $\mu^* = \mu_{\pi^*}$ , stationary distribution induced by policy  $\pi^*$ 

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \Big[ r_t \big( X_t^*, \pi^*(X_t^*) \big) - r_t (X_t, A_t) \Big] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$
$$= \sum_{t=1}^T \langle v_t^* - \mu^*, r_t \rangle + \sum_{t=1}^T \langle \mu^* - \mu_t, r_t \rangle + \sum_{t=1}^T \langle \mu_t - v_t, r_t \rangle$$

"stationarized regret"

#### • Define

 $u_t(x, a) = \mathbb{P}[X_t = x, A_t = a] \text{ and } \nu_t^*(x, a) = \mathbb{P}[X_t^* = x, A_t^* = a]$   $\mu_t = \mu_{\pi_t}$ , stationary distribution induced by policy  $\pi_t$  $\mu^* = \mu_{\pi^*}$ , stationary distribution induced by policy  $\pi^*$ 

Rewrite regret as

$$\Re eg_T(\pi^*) = \sum_{t=1}^T \mathbb{E} \left[ r_t (X_t^*, \pi^*(X_t^*)) - r_t (X_t, A_t) \right] = \sum_{t=1}^T \langle v_t^* - v_t, r_t \rangle$$
$$= \sum_{t=1}^T \langle v_t^* - \mu^*, r_t \rangle + \sum_{t=1}^T \langle \mu^* - \mu_t, r_t \rangle + \sum_{t=1}^T \langle \mu_t - v_t, r_t \rangle$$

"comparator drift"

"stationarized regret"

"learner drift"

### THE DRIFT TERMS

• For the comparator, fast mixing is guaranteed by assumption:

$$\sum_{t=1}^{T} \langle v_t^* - \mu^*, r_t \rangle \le \sum_{t=1}^{T} \|v_t^* - \mu^*\|_1 \le \sum_{t=1}^{T} e^{-t/\tau} \|v_1^* - \mu^*\|_1 \le 2\tau + 2$$

## THE DRIFT TERMS

• For the comparator, fast mixing is guaranteed by assumption:

$$\sum_{t=1}^{T} \langle v_t^* - \mu^*, r_t \rangle \le \sum_{t=1}^{T} \|v_t^* - \mu^*\|_1 \le \sum_{t=1}^{T} e^{-t/\tau} \|v_1^* - \mu^*\|_1 \le 2\tau + 2$$

• The other term is small if the policies change slowly:

**Lemma** If  $\max_{x} \|\pi_t(\cdot |x) - \pi_{t-1}(\cdot |x)\|_1 \le \varepsilon$  for all t, then  $\sum_{t=1}^{T} \|\mu_t - \nu_t\|_1 \le (\tau + 1)^2 \varepsilon T + 2e^{-T/\tau}$ 

" $v_t$  tracks  $\mu_t$  if policies change slowly"

Local-to-global regret decomposition Reduction to online linear optimization

Local-to-global regret decomposition Reduction to online linear optimization

 Idea by Even-Dar, Kakade and Mansour (2005,2009) based on the performance difference lemma:

### Lemma

Let  $\pi, \pi'$  be two arbitrary policies, r a reward function and  $Q^{\pi}$  and  $V^{\pi}$  be the value functions corresponding to r and  $\pi$ . Then,  $\langle \mu_{\pi'} - \mu_{\pi}, r \rangle = \langle \mu_{\pi'}, Q^{\pi} - V^{\pi} \rangle$ 

Apply with  $r = r_t$ ,  $\pi = \pi_t$  and  $\pi' = \pi^*$ :  $\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$ 

Apply with  $r = r_t$ ,  $\pi = \pi_t$  and  $\pi' = \pi^*$ :

Q-function of  $\pi_t$  with reward function  $r_t$ 

 $\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$ 

Q-function of  $\pi_t$  with reward function  $r_t$ 

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with  $r = r_t$ ,  $\pi = \pi_t$  and  $\pi' = \pi^*$ :

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_{t=1}^{T} \sum_x \mu^*(x) \sum_a \left( \pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Q-function of  $\pi_t$  with reward function  $r_t$ 

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with  $r = r_t$ ,  $\pi = \pi_t$  and  $\pi' = \pi^*$ :

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_{t=1}^{T} \sum_a \left( \pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Q-function of  $\pi_t$  with reward function  $r_t$ 

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with  $r = r_t$ ,  $\pi = \pi_t$  and  $\pi' = \pi^*$ :

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_{t=1}^{T} \sum_a \left( \pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Local regret in state x with reward function  $Q_t(x,\cdot)$ 

Q-function of  $\pi_t$  with reward function  $r_t$ 

$$\langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_a (\pi^*(a|x) - \pi_t(a|x)) Q_t(x,a)$$

Stationarized regret can be written as:

Apply with  $r = r_t$ ,  $\pi = \pi_t$  and  $\pi' = \pi^*$ :

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle = \sum_x \mu^*(x) \sum_{t=1}^{T} \sum_a \left( \pi^*(a|x) - \pi_t(a|x) \right) Q_t(x,a)$$

Algorithm idea: run a local regret-minimization algorithm in each state x with reward function  $Q_t(x,\cdot)$ !

Local regret in state x with reward function  $Q_t(x,\cdot)$ 

### THE MDP-EXPERT ALGORITHM

#### **MDP-E**

#### For each round t = 1, 2, ..., T

- Observe state X<sub>t</sub>
- Take action  $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function  $r_t$
- Calculate value functions as solution to  $Q_t(x, a) = r_t - \langle \mu_t, r_t \rangle + \sum_{x'} P(x'|x, a) V_t(x')$
- For all x, feed  $Q_t(x,\cdot)$  to expert algorithm  $\mathfrak{Alg}(x)$

### THE MDP-EXPERT ALGORITHM

#### MDP-E

#### For each round t = 1, 2, ..., T

- Observe state X<sub>t</sub>
- Take action  $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function  $r_t$
- Calculate value functions as solution to  $Q_t(x, a) = r_t - \langle \mu_t, r_t \rangle + \sum_{x'} P(x'|x, a) V_t(x')$
- For all x, feed  $Q_t(x,\cdot)$  to expert algorithm  $\mathfrak{Alg}(x)$
- **Example:**  $\mathfrak{Alg} = \mathbf{Exponential weights}$  $\pi_{t+1}(a|x) \propto \pi_t(a|x) \cdot e^{\eta Q_t(x,a)}$

## **GUARANTEES FOR MDP-E**

### Theorem

(Even-Dar et al., 2009, Neu et al., 2014) If  $\mathfrak{M}\mathfrak{g}(x)$  guarantees a regret bound of  $B_T$  for rewards bounded in [0,1], the stationarized regret of MDP-E satisfies  $\sum_{T} \langle \mu^* - \mu_t, r \rangle \leq \tau B_T$ 

**Proof** is obvious given the regret decomposition.

## **GUARANTEES FOR MDP-E**

### Theorem

(Even-Dar et al., 2009, Neu et al., 2014) If  $\mathfrak{AIg}(x)$  guarantees a regret bound of  $B_T$  for rewards bounded in [0,1], the stationarized regret of MDP-E satisfies

$$\sum_{t=1}^{r} \langle \mu^* - \mu_t, r \rangle \leq \tau B_T$$

### **Theorem**

If  $\mathfrak{Alg}(x)$ =EWA, the regret of MDP-E satisfies  $\Re eg_T = O\left(\sqrt{\tau^3 T \log |\mathcal{A}|}\right)$ 

**Proof** is obvious given the regret decomposition.

Addressed in Neu, György, Szepesvári and Antos (2010,2014): replace  $r_t$  by an unbiased estimator

$$\hat{r}_{t}(x,a) = \frac{r_{t}(x,a)}{\mu_{t}^{N}(x,a)} \mathbb{I}\{(X_{t},A_{t}) = (x,a)\},$$
  
with  $\mu_{t}^{N}(x,a) = \mathbb{P}[(X_{t},A_{t}) = (x,a)|\mathcal{H}_{t-N}]$ 

Addressed in Neu, György, Szepesvári and Antos (2010,2014):replace  $r_t$  by an unbiased estimatorRemember Exp3?

$$\hat{r}_{t}(x,a) = \frac{r_{t}(x,a)}{\mu_{t}^{N}(x,a)} \mathbb{I}\{(X_{t},A_{t}) = (x,a)\},$$
  
with  $\mu_{t}^{N}(x,a) = \mathbb{P}[(X_{t},A_{t}) = (x,a)|\mathcal{H}_{t-N}]$ 



Addressed in Neu, György, Szepesvári and Antos (2010,2014): replace  $r_t$  by an unbiased estimator **Remember Exp3?** 

$$\hat{r}_{t}(x,a) = \frac{r_{t}(x,a)}{\mu_{t}^{N}(x,a)} \mathbb{I}\{(X_{t},A_{t}) = (x,a)\}$$
  
with  $\mu_{t}^{N}(x,a) = \mathbb{P}[(X_{t},A_{t}) = (x,a)|\mathcal{H}_{t-N}]$ 



### Theorem

If  $\mathfrak{Alg}(x)$ =EWA, the regret of MDP-Exp3 satisfies  $\Re eg_T = O\left(\sqrt{\tau^3 T |\mathcal{A}| \log |\mathcal{A}| / \beta}\right)$ 

Assumption:  $\mu_{\pi}(x) \geq \beta$  for all  $\pi, x$ 

Local-to-global regret decomposition Reduction to online linear optimization

## **ONLINE LINEAR OPTIMIZATION**

**Notice:** stationarized regret = regret in an OLO problem!

$$\sum_{t=1}^{T} \langle \mu^* - \mu_t, r_t \rangle$$

## **ONLINE LINEAR OPTIMIZATION**

**Notice:** stationarized regret = regret in an OLO problem!

$$\sum_{t=1}^{r} \langle \mu^* - \mu_t, r_t \rangle$$



Algorithm idea: run an OLO algorithm with the set of all stationary distributions as decision set!  $\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} : \sum_{a} \mu(x, a) = \sum_{x', a'} P(x|x', a') \mu(x', a') \right\}$ 

### **ONLINE MIRROR DESCENT**

In each round, update stationary distribution

$$\mu_{t+1} = \arg \max_{\mu \in \mathcal{U}} \left\{ \langle \mu, r_t \rangle - \frac{1}{\eta} D(\mu | \mu_t) \right\}$$
  
and extract policy  $\pi_{t+1}(a | x) \propto \mu_{t+1}(x, a)$ 

## **ONLINE MIRROR DESCENT**

In each round, update stationary distribution

$$\mu_{t+1} = \arg \max_{\mu \in \mathcal{U}} \left\{ \langle \mu, r_t \rangle - \frac{1}{\eta} D(\mu | \mu_t) \right\}$$
  
and extract policy  $\pi_{t+1}(a | x) \propto \mu_{t+1}(x, a)$ 

- Choosing the regularizer:
  - **Relative entropy:**  $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\nu(x,a)}$

 $\Rightarrow$  "Online Relative Entropy Policy Search" (Zimin and Neu, 2013, Dick, György and Szepesvári, 2014)

- Conditional relative entropy:  $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\pi_{\mu}(a|x)}{\pi_{\nu}(a|x)}$ 
  - $\Rightarrow$  "Regularized Bellman updates" (Neu, Jonsson and Gómez, 2017)

## **ONLINE MIRROR DESCENT**

In each round, update stationary distribution

$$\mu_{t+1} = \arg \max_{\mu \in \mathcal{U}} \left\{ \langle \mu, r_t \rangle - \frac{1}{\eta} D(\mu | \mu_t) \right\}$$
  
and extract policy  $\pi_{t+1}(a | x) \propto \mu_{t+1}(x, a)$ 

- Choosing the regularizer:
  - Relative entropy:  $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\mu(x,a)}{\nu(x,a)}$

 $\Rightarrow$  "Online Relative Entropy Policy Search" (Zimin and Neu, 2013, Dick, György and Szepesvári, 2014)

• Conditional relative entropy:  $D(\mu|\nu) = \sum_{x,a} \mu(x,a) \log \frac{\pi_{\mu}(a|x)}{\pi_{\nu}(a|x)}$ 

 $\Rightarrow$  "Regularized Bellman updates" (Neu, Jonsson and Gómez, 2017)

## THE ONLINE REPS ALGORITHM

#### **O-REPS**

#### For each round t = 1, 2, ..., T

- Observe state X<sub>t</sub>
- Take action  $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function  $r_t$
- Calculate value functions as solution to  $\min_{V} \log \sum_{x,a} \mu_t(x,a) e^{\eta \left( r_t(x,a) + \sum_{x'} P(x'|x,a)V(x') - V(x) \right)}$
- Update stationary distribution as

 $\mu_{t+1}(x,a) = \mu_t(x,a) e^{\eta \left( r_t(x,a) + \sum_{x'} P(x'|x,a) V(x') - V(x) \right)}$ 

Algorithm inspired by Peters, Mülling and Altün (2010)

## THE ONLINE REPS ALGORITHM

#### **O-REPS**

#### For each round t = 1, 2, ..., T

- Observe state X<sub>t</sub>
- Take action  $A_t \sim \pi_t(\cdot | X_t)$
- Observe reward function  $r_t$

## Unconstrained convex minimization

 $\min_{V} \log \sum_{x,a} \mu_t(x,a) e^{\eta \left( r_t(x,a) + \sum_{x'} P(x'|x,a) V(x') - V(x) \right)}$ 

Update stationary distribution as

$$\mu_{t+1}(x,a) = \mu_t(x,a) e^{\eta \left( r_t(x,a) + \sum_{x'} P(x'|x,a) V(x') - V(x) \right)}$$

Algorithm inspired by Peters, Mülling and Altün (2010)

## **GUARANTEES FOR O-REPS**

### Theorem

(Zimin and Neu, 2013, Dick et al. 2014) The stationarized regret of O-REPS satisfies  $\sum_{t=1}^{T} \langle \mu^* - \mu_t, r \rangle \leq \sqrt{T \log |\mathcal{X}|} |\mathcal{A}|$ 

> **Theorem** The regret of O-REPS satisfies  $\Re eg_T = O\left(\sqrt{\tau T \log |\mathcal{X}||\mathcal{A}|}\right)$

**Proof** is based on standard OLO analysis.

Addressed in Zimin and Neu (2013) in episodic MDPs: replace  $r_t$  by an unbiased estimator

$$\hat{r}_t(x,a) = \frac{r_t(x,a)}{q_t(x,a)} \mathbb{I}\{(x,a) \text{ visited in episode } t\},$$
  
with  $q_t(x,a) = \mathbb{P}[(x,a) \text{ visited in episode } t | \mathcal{H}_{t-1}]$ 

# **BANDIT FEEDBACK**

Addressed in Zimin and Neu (2013) in episodic MDPs: replace  $r_t$  by an unbiased estimator

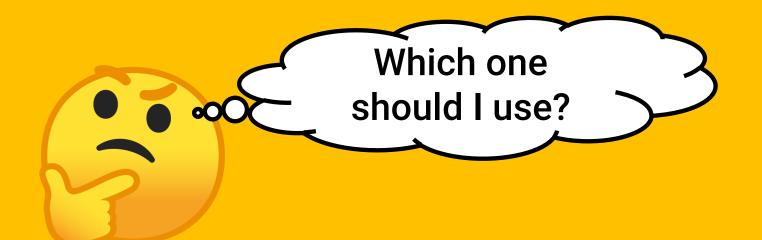
$$\hat{r}_t(x,a) = \frac{r_t(x,a)}{q_t(x,a)} \mathbb{I}\{(x,a) \text{ visited in episode } t\},$$
  
with  $q_t(x,a) = \mathbb{P}[(x,a) \text{ visited in episode } t | \mathcal{H}_{t-1}]$ 

### **Theorem**

If  $\mathfrak{AIg}(x)$ =EWA, the regret of MDP-Exp3 satisfies  $\mathfrak{Reg}_T = O\left(H\sqrt{T|\mathcal{X}||\mathcal{A}|\log|\mathcal{X}||\mathcal{A}|}\right)$ 

# ALGORITHMS FOR MDPS WITH ADVERSARIAL REWARDS

Local-to-global regret decomposition Reduction to online linear optimization



# ALGORITHMS FOR MDPS WITH ADVERSARIAL REWARDS

Local-to-global regret decomposition Reduction to online linear optimization

# **COMPARISON OF GUARANTEES**

|                                    | MDP-E                                                      | O-REPS                                                              |
|------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| Full information                   | $\sqrt{\tau^3 T \log  \mathcal{A} }$                       | $\sqrt{\tau T \log  \mathcal{X}   \mathcal{A} }$                    |
| Bandit feedback                    | $\sqrt{\tau^3  \mathcal{A}  T \log  \mathcal{A}  / \beta}$ | ???                                                                 |
| Full information (episodic case)   | $H^2\sqrt{T\log \mathcal{A} }$                             | $H\sqrt{T\log \mathcal{X}  \mathcal{A} }$                           |
| Bandit feedback<br>(episodic case) | $H^2\sqrt{ \mathcal{A} T\log \mathcal{A} /\beta}$          | $\sqrt{H \mathcal{X}  \mathcal{A} T\log \mathcal{X}  \mathcal{A} }$ |

# **COMPARISON OF GUARANTEES**

|                                    | MDP-E                                                      | O-REPS                                                              |
|------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|
| Full information                   | $\sqrt{\tau^3 T \log  \mathcal{A} }$                       | $\sqrt{\tau T \log  \mathcal{X}   \mathcal{A} }$                    |
| Bandit feedback                    | $\sqrt{\tau^3  \mathcal{A}  T \log  \mathcal{A}  / \beta}$ | ???                                                                 |
| Full information (episodic case)   | $H^2\sqrt{T\log \mathcal{A} }$                             | $H\sqrt{T\log \mathcal{X}  \mathcal{A} }$                           |
| Bandit feedback<br>(episodic case) | $H^2\sqrt{ \mathcal{A} T\log \mathcal{A} /\beta}$          | $\sqrt{H \mathcal{X}  \mathcal{A} T\log \mathcal{X}  \mathcal{A} }$ |

+ MDP-E works well with function approximation for Q-function + O-REPS can easily handle model constraints and extensions

# MDP-E WITH FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value function  $\hat{Q}_t \approx Q^{\pi_t}$  to define its policy

$$\pi_{t+1}(a|x) \propto \exp\left(\eta \sum_{k=1}^{t} \hat{Q}_k(x,a)\right)$$

# MDP-E WITH FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value function  $\hat{Q}_t \approx Q^{\pi_t}$  to define its policy

$$\pi_{t+1}(a|x) \propto \exp\left(\eta \sum_{k=1}^{t} \hat{Q}_k(x,a)\right)$$

- POLITEX (Abbasi-Yadkori et al., 2019): use LSPE to estimate  $Q^{\pi_t}$  with linear FA regret =  $O(T^{3/4} + \varepsilon_0 T)$
- OPPO (Cai et al., 2019) use LSPE to estimate  $Q^{\pi_t}$  with realizable linear FA regret =  $O(\sqrt{T})$

## MDP-E WITH FUNCTION APPROXIMATION

MDP-E only needs a good approximation of the action-value function  $\hat{Q}_t \approx Q^{\pi_t}$  to define its policy

$$\pi_{t+1}(a|x) \propto \exp\left(\eta \sum_{k=1}^{t} \widehat{Q}_k(x,a)\right)$$

+ MDP-E is essentially identical to the "Trust-Region Policy Optimization" (TRPO) algorithm of Schulman et al. (2015), as shown by Neu, Jonsson and Gómez (2017)!!!

# **O-REPS WITH UNCERTAIN MODELS**

O-REPS can easily accommodate uncertainties in the transition model by extending the decision set:

$$\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} \colon \sum_{a} \mu(x, a) = \sum_{x', a'} P(x|x', a') \mu(x', a') \right\}$$

# **O-REPS WITH UNCERTAIN MODELS**

O-REPS can easily accommodate uncertainties in the transition model by extending the decision set:

$$\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} : \sum_{a} \mu(x, a) = \sum_{x', a'} P(x|x', a') \mu(x', a'), P \in \mathcal{P} \right\}$$

Confidence set of transition models

# **O-REPS WITH UNCERTAIN MODELS**

O-REPS can easily accommodate uncertainties in the transition model by extending the decision set:

$$\mathcal{U} = \left\{ \mu \in \Delta_{\mathcal{X} \times \mathcal{A}} \colon \sum_{a} \mu(x, a) = \sum_{x', a'} P(x | x', a') \mu(x', a'), P \in \mathcal{P} \right\}$$

UC-O-REPS by Rosenberg and Mansour (2019) Extended to bandit feedback by Jin et al. (2020): Confidence set of transition models

 $\hat{r}_t(x,a) = \frac{r_t(x,a)}{u_t(x,a)} \mathbb{I}\{(x,a) \text{ visited in episode } t\},$ with  $u_t(x,a) > q_t(x,a) = \mathbb{P}[(x,a) \text{ visited in episode } t|\mathcal{H}_{t-1}]$  w.h.p.

# 

# OUTLOOK

### • Open problems:

- Lower bounds? Right scaling with  $\tau$ ? Is uniform mixing necessary?
- Large state spaces and function approximation?
- Practical algorithms?

# OUTLOOK

### • Open problems:

- Lower bounds? Right scaling with  $\tau$ ? Is uniform mixing necessary?
- Large state spaces and function approximation?
- Practical algorithms?

### **Relevance to practice of RL?**

# OUTLOOK

### • Open problems:

- Lower bounds? Right scaling with  $\tau$ ? Is uniform mixing necessary?
- Large state spaces and function approximation?
- Practical algorithms?

### **Relevance to practice of RL?**

- Online learning algorithms are robust! Main tool: regularization
- Better understanding of regularization tools ⇒ better algorithms!
- Remember: TRPO = MDP-E!

### W95



### Online Markov Decision Processes under Bandit Feedback

HALL MAN HALL MAN

Bert Select

+ Assumption A2 The matematy distributions are undersidy · Assumption A3. Floor extint some floor province of

 $H_1^d(x,w) + \mathbb{E}\left[\sum_{i=1}^{\infty} \left(r_i(\mathbf{x}_i, \mathbf{a}_i) - p_i^{*}\right) | \mathbf{x}_i - x_i \mathbf{a}_i - \mathbf{a}\right],$  $\left\| f_{i}^{*}(x,u) - \xi \right\| = \sum_{i=1}^{n} \left\| f_{i}(x_{i}^{*},u) - \rho_{i}^{*} \right\| \left\| x_{i}^{*} - x \right\| =$ 

plants - Plant a secta and a surgery

 $\theta_{1}(\mathbf{x}, \mathbf{d}) = \begin{cases} \frac{1}{|\mathbf{x}_{1}, \mathbf{u}|^{2} + |\mathbf{x}_{1} - \mathbf{u}|^{2}} & \text{if } (\mathbf{x}_{1}, \mathbf{d}) + (\mathbf{x}_{1}, \mathbf{u}_{1}) \\ 0, & \text{otherwise}. \end{cases}$ 

minimp, inter a sind

+Let  $\mu_1 = \sum_{i=1}^{n} \mu^{i+1}(x) \pi_i(x) \pi_i(x)$  or and only. for all x, m

 $q_{i,k}, m \in r_{i,k}, m \in \rho_{i,k} \sum \mathcal{P}(a_{i,k}) a_{i,k} a_$ 

W .W .- I. Walance - water at - - - Window II - E. Y. Witalation II - 12 Wita at - 1

= Assumption A1 firsty policy if has a well-defined unique Theorem 1, for  $N = [x \ln x]$ .

R L A I

 $\boldsymbol{n}_{1}^{*} = \boldsymbol{n}_{2} - \left(\boldsymbol{n}_{1}^{*} - \sum_{i}^{2} \boldsymbol{p}_{i}^{*}\right) + \left(\sum_{i}^{2} \boldsymbol{p}_{i}^{*} - \sum_{$ 

Experience the fullies Proposition 1, Let 2 I have a summer by

# Thanks!!!

### Lamona L. far a = [[ +41+4]

man Sidie.

# REFERENCES

- Yu, J. Y., Mannor, S., & Shimkin, N. (2009). Markov decision processes with arbitrary reward processes. *Mathematics of Operations Research*, *34*(3), 737-757.
- Abbasi-Yadkori, Y., Bartlett, P. L., Kanade, V., Seldin, Y., & Szepesvári, Cs. (2013). Online learning in Markov decision processes with adversarially chosen transition probability distributions. In *Advances in neural information processing* systems (pp. 2508-2516).
- Gajane, P., Ortner, R., & Auer, P. (2019). Variational Regret Bounds for Reinforcement Learning. In *Uncertainty in Artificial Intelligence.*
- Cheung, W. C., Simchi-Levi, D., & Zhu, R. (2020). Reinforcement Learning for Non-Stationary Markov Decision Processes: The Blessing of (More) Optimism. In *International Conference on Machine Learning*.
- Even-Dar, E., Kakade, S. M., & Mansour, Y. (2005). Experts in a Markov decision process. In *Advances in neural information processing systems* (pp. 401-408).
- Even-Dar, E., Kakade, S. M., & Mansour, Y. (2009). Online Markov decision processes. *Mathematics of Operations Research*, *34*(3), 726-736.

# REFERENCES

- Neu, G., Antos, A., György, A., & Szepesvári, C. (2010). Online Markov decision processes under bandit feedback. In *Advances in Neural Information Processing Systems* (pp. 1804-1812).
- Peters, J., Mülling, K., & Altun, Y. (2010). Relative entropy policy search. In AAAI (Vol. 10, pp. 1607-1612).
- Zimin, A., & Neu, G. (2013). Online learning in episodic Markovian decision processes by relative entropy policy search. In *Advances in neural information processing systems* (pp. 1583-1591).
- Dick, T., György, A., & Szepesvári, Cs. (2014). Online Learning in Markov Decision Processes with Changing Cost Sequences. In *International Conference* on Machine Learning (pp. 512-520).
- Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvári, Cs., & Weisz, G. (2019). POLITEX: Regret bounds for policy iteration using expert prediction. In *International Conference on Machine Learning* (pp. 3692-3702).
- Cai, Q., Yang, Z., Jin, C., & Wang, Z. (2019). Provably efficient exploration in policy optimization. *arXiv preprint arXiv:1912.05830.*

# REFERENCES

- Neu, G., Jonsson, A., & Gómez, V. (2017). A unified view of entropy-regularized Markov decision processes. *arXiv preprint arXiv:1705.07798*.
- Rosenberg, A., & Mansour, Y. (2019, May). Online Convex Optimization in Adversarial Markov Decision Processes. In *International Conference on Machine Learning* (pp. 5478-5486).
- Rosenberg, A., & Mansour, Y. (2019). Online stochastic shortest path with bandit feedback and unknown transition function. In *Advances in Neural Information Processing Systems* (pp. 2212-2221).
- Jin, C., Jin, T., Luo, H., Sra, S., & Yu, T. (2020). Learning adversarial Markov decision processes with bandit feedback and unknown transition. In *International Conference on Machine Learning* (pp. 1369-1378).