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Resources

Resources

Videos from Simons RTDM, 2018

Feedback Control Theory: Architectures and Tools for
Real-Time Decision Making [essential prerequisite]

https://simons.berkeley.edu/talks/murray-control-1

Hidden Theory Part I (SA foundations)
https://www.youtube.com/watch?v=dhEF5pfYmvc

Hidden Theory Part II (Zap Q-learning)
https://www.youtube.com/watch?v=Y3w8f1xIb6s

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 
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Lecture notes online: Feedback systems and reinforcement learning
simons.berkeley.edu/sites/default/files/docs/16101/monographrlsimonsinstitutebootcampseptember2020.pdf

[1] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scientists and
Engineers. Princeton University Press, USA, 2008 (recent edition on-line).

[25] D. Huang, W. Chen, P. Mehta, S. Meyn, and A. Surana. Feature selection for neuro-
dynamic programming. In F. Lewis, editor, Reinforcement Learning and Approximate Dynamic
Programming for Feedback Control. Wiley, 2011.

[26] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement
learning algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020
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Resources

Apologies

π will always be an invariant measure
Markov Chains

and
Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 
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φ and φ̃ will be policies (feedback)

Control engineers minimize cost c(x, u) (rarely receive rewards)
x state, u input (action)

I don’t mean to offend!
If I seem critical, it is simply my opinion, and

I don’t have all the answers
My opinion may be stupid
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Background



Background RL as defined in the cloud

Reinforcement Learning
Intelligent actors optimize through interactions with their environment

Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Learn as we
Trade stocks?
Drive cars?
Manage the grid?
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What are we talking about?

Learn as we
Trade stocks?
Drive cars? model free!

Manage the grid?

RL is an emerging science, evolving alongside decision and control theory
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Background Challenge: unrealistic expectations

Reinforcement Learning
Dreams of Model Free Control well before my graduate student days

“Typical” Adaptive Control System:  MIT Rule

Early Dreams 
of 

Model Free Control

(NASA Report by Staff engineers at Edwards AFB, Nov, 1970)

Conclusions after 65 flight tests:
• Nearly invariant response at essentially all conditions
• accurate a priori knowledge of  aerodynamic characteristics not needed (model-free)
• aircraft configuration changes compensated for
• redundancy (dual) provided a reliable and fail safe system
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• Nearly invariant response at essentially all conditions
• accurate a priori knowledge of  aerodynamic characteristics not needed
• aircraft configuration changes compensated for
• redundancy (dual) provided a reliable and fail safe system

Problems: Gain changes due to disturbance inputs
Parameter drift and bursting
Lack of robustness in the presence of constraints (wind-up)
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-052-DFRC.html

RL is an emerging science, evolving alongside decision and control theory
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What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Process

Process: car, plane, pancreas
 bike sharing
 wall street, semi-conductor manufacturing
 power grid, transportation network
 
 Inputs: throttle, wheel position, insulin rate,  
 truck dispatch, commands to generators and batteries
 
 
Measurements: speed and position, insulin, glucose, blood pressure,  
 camera and driver reports, frequency, phase, voltage
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Approximating J? and/or u? can be addressed using RL
Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT )

}
Many optimization problems to solve, because there are many objectives
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Richard M. Murray, Caltech CDSSimons Institute, 24 Jan 2018

Transient: initial response to input 

• Step response: rise time, overshoot, settling time, etc 

Steady state: response after the transients have died out 

• Frequency response: magnitude and phase for sinusoids 

Safety: constraints that the system should never violate 

Liveness: conditions that system should satisfy repeatedly

Control System Specifications Power to Fan Speed

Power to Temperature

Frequency (Hz)

Time (sec)

1
600

1
4

0

0

−20

20

−40

−60

0 10 20 30Po
w

er
 tr

ac
ki

ng
 e

rr
or

M
ag

ni
tu

de
 (d

B)

Compensator A

Compensator B

Approximating J? and/or u? can be addressed using RL
Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT )

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1


What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Process

Process: car, plane, pancreas
 bike sharing
 wall street, semi-conductor manufacturing
 power grid, transportation network
 
 

Goal: Choose inputs so that z behaves
as desired, in an evolving uncertain world 

Inputs: throttle, wheel position, insulin rate,  
 truck dispatch, commands to generators and batteries
 
 
Measurements: speed and position, insulin, glucose, blood pressure,  
 camera and driver reports, frequency, phase, voltage
 
 

ΣΣ
yu

nd

z

m
ea

su
re

m
en

ts

In
pu

ts

disturbances Sensor
noise

Approximating J? and/or u? can be addressed using RL

Strategies: Open loop control, assuming perfect model z = Gzuu
Invert dynamics:

u = G−1
zu zdes

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT )

}
Many optimization problems to solve, because there are many objectives

5 / 35

https://simons.berkeley.edu/talks/murray-control-1


What Control Can Offer Control theory in 2020

Control theory: goals and architectures Murray tutorial, 2018

Compensator
(or  “controller”) Process

Observer
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d:  disturbances

n:  measurement noise

z:  internal process we care about

y:  measurements

Approximating J? and/or u? can be addressed using RL

Strategies: Open loop control, assuming perfect model z = Gzuu
Invert dynamics:

u = G−1
zu zdes

Classical control: Choose u = Hẑdes +Gcy so that

u ≈ G−1
zu zdes

Murray [Simons, 2018] called this purely reactive

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT )

}
Many optimization problems to solve, because there are many objectives
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∆∆: un-modeled dynamics
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Strategies: Classical control: Choose u = Hẑdes +Gcy so that
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Typical control education: design H, Gc and observer so that desired spec-
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Approximating J? and/or u? can be addressed using RL

Strategies: Classical control: u = Hẑdes +Gcy

Consider the steps taken when you plan to drive across town.
There is a reactive component. What else?

Yellow boxes may be built around optimization (MPC/RHC):

J?(x) = min
u

{∫ T

0
c(xt, ut) dt+ V0(XT )

}
Many optimization problems to solve, because there are many objectives
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What Control Can Offer Adaptive control theory in 1990

An Incomplete History of Adaptive Control
ECE 517: Adaptive and Nonlinear Control---Lecture 1, Maxim Raginsky, Fall 2020

Adaptation

Dynamic process by which the controller adjusts
its interaction with a system in order to carry out
an objective (or reach a goal) w/o exact

*

knowledge of the system.

Common analytical tool: ODE Method
[stochastic approximation of Robbins & Monro]

• [Tsitsiklis, 1994] and [Jaakola, Jordan, and Singh, 1994] [14, 15]

• [Wittenmark, 1975], [Ljung, 1977] [7, 8]

 

Adaptive Control

Adaptation dynamic process by which the controller
adjusts its interaction with a systemin order to carry out an objective or
reach a goal w o exact knowledge ofthe system

Some incomplete history
19505 gain scheduling

early Model Reference Adaptive Control
MRAC

1958 R Kalman self tuning controller
regulator for the linear quadraticproblem

19605 stability of adaptive controllers
Lyapunov stabilityadaptation learning Feldbaum TsypkiD

1966 Parks Lyapunov redesign approach to
MRAC

19705 Stability analysis Narendra Morse

19805 limitations Rohrs et al sensitivity toUnmodeled dynamics
1983 Morse's conjecture X axtbu

a C IR
b Fo

cannot stabilize w o knowledge of sign b
1983 Nussbaum disproves Morse's conjecture
1984 Willems Byrnes simplified Nussbaum's

construction
exploration us exploitation

See Liberzon’s lecture notes: http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

Recent survey: [Matni et al, 2019] From self-tuning regulators to reinforcement learning and back again.

6 / 35
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ECE 517: Adaptive and Nonlinear Control---Lecture 1, Maxim Raginsky, Fall 2020

Adaptation

Dynamic process by which the controller adjusts
its interaction with a system in order to carry out
an objective (or reach a goal) w/o exact*
knowledge of the system.

*For example: MDP or linear system with bound
on dimension
Assumed for analysis and not implementation

Adaptive control and RL have nearly identical
roots and goals

Common analytical tool: ODE Method
[stochastic approximation of Robbins & Monro]

• [Tsitsiklis, 1994] and [Jaakola, Jordan, and Singh, 1994] [14, 15]

• [Wittenmark, 1975], [Ljung, 1977] [7, 8]
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cannot stabilize w o knowledge of sign b
1983 Nussbaum disproves Morse's conjecture
1984 Willems Byrnes simplified Nussbaum's

construction
exploration us exploitation

More history to be found in Lecture 4

See Liberzon’s lecture notes:
http://liberzon.csl.illinois.edu/teaching/16ece517notes.pdf

Recent survey: [Matni et al, 2019] From self-tuning regulators to reinforcement learning and back again.
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Optimal Control and RL Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

State: Xk denotes position and velocity (why?)
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)

7 / 35
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State: Xk denotes position and velocity
Input (or action): Uk is force

Value function: J?(x) = min
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c : cost function

τ : time to reach the hill top

Similar to a control favorite: Swinging up a pendulum by energy control [2]

DP eqn: J?(X0) = min
U0
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Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

c : cost function

τ : time to reach the hill top

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)
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Optimal Control and RL Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation
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Eight dimensional state space and four dimensional input space

Joint work with N. S. Raman, P. Barooah @ UF MAE, A. Devraj @ Stanford

See final page of references, and bibliography of [94]
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Optimal Control and RL Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Input: Uk
def
= [msa(k), roa(k), Tca(k), Tsa(k)]T

1 Supply air flow rate (msa)

2 Outdoor air ratio (roa)

3 Conditioned air temperature (Tca)

4 Supply air temperature (Tsa)

State: Xk
def
= [Tz(k),Wz(k), Toa(k),Woa(k), U(k − 1)]T

1 Zone air temperature (Tz)

2 Zone air humidity ratio (Wz)

3 Outdoor air temperature (Toa)

4 Outdoor air humidity ratio (Woa)

5 Control inputs from the previous time step

6 ... forecast of occupancy, weather, ... Exercise: make a list of useful data

Quadratic basis: + Zap Q-learning

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

=
∑
i

θiψi(x, u)

Initial results are great ...
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Optimal Control and RL Example: heating and ventilation in a Florida office building

Close Loop Response: Temperature and humidity evolution

10 -3

9 12 15 18 21 24 27 30 hrs
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9 12 15 18 21 24 27 30 hrs

5
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9

10

111e4
1e5
2.5e5

5e5 1e6
7.5e5 2.5e6 Limits

Goal: Maintain temperature / humidity, and minimize energy consumption

Inputs: Air-flow rate, out-door air ratio, conditioned air temperature, supply
air temperature

Approach: Find θ∗ with quadratic basis:

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

Once we know θ∗, we define Uk = φθ
∗
(Xk) = arg min

u
Qθ
∗
(Xk, u)
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Optimal Control and RL Example: heating and ventilation in a Florida office building

Algorithm learns: Cooling reduces humidity

Zone humidity low Zone humidity high

Conditioned air temperature (oF)
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Q-learning solution: zone is humid =⇒ conditioned air temperature reduced

Once we know θ∗, we define Uk = φθ
∗
(Xk)

11 / 35



Optimal Control and RL Example: heating and ventilation in a Florida office building

Algorithm learns: Humid air can be expensive

50
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Mild temperature and dry
outdoor weather
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outdoor weather

Outdoor air
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Supply air
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Supply air
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Outdoor air
ratio

Q-learning solution: humid exterior =⇒ outdoor air in-flow rate reduced

Once we know θ∗, we define Uk = φθ
∗
(Xk)
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Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

J
?
(x) = min

u

∞∑
k=0

c(Xk, Uk)

Value function: J?(x) = min
u

∞∑
k=0

c(Xk, Uk) , X0 = x ∈ X

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)
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Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

For example, θi is a “weight” in a neural network or

Qθ(x, u) =
∑
i

θiψi(x, u)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)
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Optimal Control and RL How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: find θ∗ such that Eθ∗(Xk, Uk) ≈ 0

Optimization Criterion:

L(θ)
def
= E∞[Eθ(X,U)2] = lim

T→∞

1

T

T−1∑
k=0

Eθ(Xk, Uk)
2

assuming this exists for each θ

Input: stable feedback + mixture of sinusoids, Uk = φ(Xk) + ξk

Find zeros of f̄(θ) = −∇θL(θ)

Algorithm design:
Step 1: consider an ODE: d

dtθt = atf̄(θt) stable?

Step 2: translate

θn+1 = θn − αn+1∇θ{Eθ(Xn, Un)2}
∣∣∣
θ=θn
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Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

a controlled Markovian model.

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35



Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

a controlled Markovian model.

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35



Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35



Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35



Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

f̄(θ∗) = 0

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35



Optimal Control and RL How to approximate Q??

Q-learning for Markovian Models Xk+1 = F(Xk, Uk,Wk+1)

Galerkin relaxation (or projected DP equation)

With the introduction of (i.i.d.) noise:

Xk+1 = F(Xk, Uk,Wk+1)

The DP equation is nearly identical, but gradient descent fails

Q-learning

Find zeros of f̄(θ) = E∞[ζkEθ(Xk, Xk+1, Uk)], θ ∈ Rd

Eθ(Xk, Xk+1, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

ζk ∈ Rd : “eligibility vector”

Design principle unchanged:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.

15 / 35



Where to go from here?



Where to go from here?

Control Theory Offers Useful Tricks and Lessons
Summary

Aspects of control philosophy we have covered:

Every control problem is multi-objective. We want to minimize fuel,
get to our destination on time, minimize risk, ...

Design is hierarchical, both in time and space (an approach to
distributed control)

If you have a model, use it! But recognize that no model is perfect.

As every MLer knows: test in many non-ideal scenarios.

Other tricks from the trade:

Controlled Lyapunov functions

Model reduction techniques many built on theory of singular perturbations.

Mean field game approximations for multi-agent systems

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10
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-1 x 104

(individual state)

(ensemble state)

Agent 5 is barely controllable
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As every MLer knows: test in many non-ideal scenarios.

Other tricks from the trade:

Controlled Lyapunov functions

Model reduction techniques many built on theory of singular perturbations.

Fluid models for networks, and their workload relaxations [CTCN]
Feature selection for neuro-dynamic programming, 2011 [25]
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Where to go from here?

Control & RL to Come

• Every Optimization Problem Is a Quadratic Program Chapters 3 & 5

The complex nonlinear Bellman equation has been a road block in Q-learning
Estimating the Q-function should be easy: it is the solution to an LP or QP

• The ODE Method Chapter 4

• Gradient Free Optimization and Policy Gradient RL Chapter 4

• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)
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• The ODE Method Chapter 4 [Basics of Algorithm Design and Analysis]

Don’t start with an algorithm!

I see a noisy Euler approximation of the ODE:

d

dt
xt = q(t, xt)

ODE Method: design the vector field q first, then translate to create an algorithm

Approximate policy iteration is a simple application

• Gradient Free Optimization and Policy Gradient RL Chapter 4

• Real-Time System Optimization with Applications to Power Systems

“We examine the problem of real-time
optimization of networked systems and
develop online algorithms that steer the
system towards the optimal system
trajectory...”

Andrey Bernstein [96, 97, 98]

(National Renewable Energy Laboratory)

17 / 35
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Probabilités, XXXIII, pages 1–68. Springer, Berlin, 1999.

[63] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist., 23(3):462–466, 09 1952.

[64] D. Ruppert. A Newton-Raphson version of the multivariate Robbins-Monro procedure.
The Annals of Statistics, 13(1):236–245, 1985.

[65] D. Ruppert. Efficient estimators from a slowly convergent Robbins-Monro processes.
Technical Report Tech. Rept. No. 781, Cornell University, School of Operations Research
and Industrial Engineering, Ithaca, NY, 1988.

29 / 35



References

Stochastic Approximation II

[66] B. T. Polyak. A new method of stochastic approximation type. Avtomatika i
telemekhanika, 98–107, 1990 (in Russian). Translated in Automat. Remote Control, 51
1991.

[67] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4):838–855, 1992.

[68] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic
approximation. Ann. Appl. Probab., 14(2):796–819, 2004.

[69] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
24, 451–459. Curran Associates, Inc., 2011.

[70] S. Chen, A. M. Devraj, A. Bušić, and S. Meyn. Explicit Mean-Square Error Bounds for
Monte-Carlo and Linear Stochastic Approximation. arXiv e-prints, 2002.02584, Feb. 2020.

[71] W. Mou, C. Junchi Li, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan. On Linear
Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic
Concentration. arXiv e-prints, page arXiv:2004.04719, Apr. 2020.

30 / 35



References

Optimization and ODEs I

[72] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights. In Advances in neural information
processing systems, pages 2510–2518, 2014.

[73] B. Shi, S. S. Du, W. Su, and M. I. Jordan. Acceleration via symplectic discretization of
high-resolution differential equations. In H. Wallach, H. Larochelle, A. Beygelzimer,
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[91] M. Krstić and H.-H. Wang. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica, 36(4):595 – 601, 2000.

[92] S. Liu and M. Krstic. Introduction to extremum seeking. In Stochastic Averaging and
Stochastic Extremum Seeking, Communications and Control Engineering. Springer,
London, 2012.

[93] O. Trollberg and E. W. Jacobsen. On the convergence rate of extremum seeking control.
In European Control Conference (ECC), pages 2115–2120. 2014.

34 / 35



References

Selected Applications I

[94] N. S. Raman, A. M. Devraj, P. Barooah, and S. P. Meyn. Reinforcement learning for
control of building HVAC systems. In American Control Conference, July 2020.

[95] K. Mason and S. Grijalva. A review of reinforcement learning for autonomous building
energy management. arXiv.org, 2019. arXiv:1903.05196.

News from Andrey@NREL:

[96] A. Bernstein and E. Dall’Anese. Real-time feedback-based optimization of distribution
grids: A unified approach. IEEE Transactions on Control of Network Systems,
6(3):1197–1209, 2019.

[97] A. Bernstein, E. Dall’Anese, and A. Simonetto. Online primal-dual methods with
measurement feedback for time-varying convex optimization. IEEE Transactions on Signal
Processing, 67(8):1978–1991, 2019.

[98] Y. Chen, A. Bernstein, A. Devraj, and S. Meyn. Model-free primal-dual methods for
network optimization with application to real-time optimal power flow. In 2020 American
Control Conference (ACC), pages 3140–3147, 2020.

35 / 35


	Resources
	Background
	RL as defined in the cloud
	Challenge: unrealistic expectations

	What Control Can Offer
	Control theory in 2020
	Adaptive control theory in 1990

	Optimal Control and RL
	Example: climb up a hill
	Example: heating and ventilation in a Florida office building
	How to approximate Q?

	Where to go from here?
	References

