TOOLS FOR UNDERSTANDING THE GEOGRAPHY OF ADAPTATION

Peter Ralph

USC Computational Biology and Bioinformatics

Simons Institute May 1st, 2014 work with Graham Coop

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

MOTIVATION: HEMOGLOBINOPATHIES

(from Flint et al 1998)

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Human sickle-cell allele (HbS): (Currat et al 2002)

- \blacktriangleright Single base substitution
- \triangleright provide protection against malaria (but deleterious in homozygotes)

MOTIVATION: HEMOGLOBINOPATHIES

(Howes et al 2013)

Human G6PD variants:

- \triangleright over 130 G6PD deficiency alleles; 34 variants at high frequency
- \triangleright provide protection against malaria but increases risk of anemia
- \triangleright Estimated ages 40-400 generations (various)

MOTIVATION: A NICE STORY ABOUT MICE.

mice: AH Harris

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- \triangleright Dark-pigmented mammals and reptiles on volcanic outcrops in the Southwest. (Dice, Benson 1936)
- ▶ "Dark" allele beneficial on outcrops, deleterious elsewhere.
- \triangleright MC1R: basis is shared between species but not between populations (Nachman, Hoekstra)

MOTIVATION: A NICE STORY ABOUT MICE.

image: Hoekstra

KORKARYKERKE PORCH

- \triangleright Dark-pigmented mammals and reptiles on volcanic outcrops in the Southwest. (Dice, Benson 1936)
- ▶ "Dark" allele beneficial on outcrops, deleterious elsewhere.
- \triangleright MC1R: basis is shared between species but not between populations (Nachman, Hoekstra)

IMPLICATIONS

The geography of adaptation

i.e. how adaptations are shared or not across the landscape tells us about

- \triangleright local adaptation: what do fitness landscapes look like?
- \triangleright constraint: many possible solutions or not?
- \triangleright speciation: how fast can distinct adaptations accumulate?

Main summarizing question:

What is the geographic resolution of adaptation?

KORK ERKER ADAM ADA

Also: When is there sharing of solutions? Every region its own solutions? How can we tell which is happening?

THE REST OF THE TALK

- \blacktriangleright Homogeneous landscape (quickly?)
- \blacktriangleright Patchy landscape: transients

note motivation from: Pennings & Hermisson, Soft Sweeps

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

FIRST: HOMOGENEOUS LANDSCAPE

- \triangleright Continuous species range with constant population density
- \triangleright Selective pressure is geographically uniform, changes from deleterious $(1 - s_d)$ to beneficial $(1 + s_b)$
- \triangleright Selected mutations are selectively equivalent (e.g. same base pair or on same pathway) and so *exclude* each other

DYNAMICS

Some alleles are present as standing variation

► in small clusters with effective density $\approx \rho \mu / s_d$.

Beneficial (*sb*) alleles:

- ► fix locally with probability $\approx 2s_b/\xi^2$, and if they do:
- **Similar speed** some speed $\approx \sigma \sqrt{s_b}$ (Fisher; KPP 1937)

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Combining these,

zenerations

- \triangleright Standing, and new mutations as Poisson processes
- \blacktriangleright thinned by chance of local fixation
- \blacktriangleright then spreading outward at constant speed
- \blacktriangleright and excluding further mutations.

KOD KARD KED KED BE YOUR

Combining these,

- \triangleright Standing, and new mutations as Poisson processes
- \blacktriangleright thinned by chance of local fixation
- \blacktriangleright then spreading outward at constant speed
- \blacktriangleright and excluding further mutations.

selection coefficient pop density mutation rate SD dispersal distance $=$ SD # of offspring

K ロ ト K 何 ト K ヨ ト K ヨ ト

 $2Q$

generations

Combining these,

- \triangleright Standing, and new mutations as Poisson processes
- \blacktriangleright thinned by chance of local fixation
- \blacktriangleright then spreading outward at constant speed
- \blacktriangleright and excluding further mutations.

selection coefficient pop density $=$ mutation rate SD dispersal distance $\varepsilon =$ SD # of offspring

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

penerations

Combining these,

- \triangleright Standing, and new mutations as Poisson processes
- \blacktriangleright thinned by chance of local fixation
- \blacktriangleright then spreading outward at constant speed
- \blacktriangleright and excluding further mutations.

s = selection coefficient $=$ pop density $=$ mutation rate $\sigma =$ SD dispersal distance $\varepsilon =$ SD # of offspring

KORK ERKER ADAM ADA

Combining these,

generations

- \triangleright Standing, and new mutations as Poisson processes
- \blacktriangleright thinned by chance of local fixation
- \blacktriangleright then spreading outward at constant speed
- \blacktriangleright and excluding further mutations.

 $=$ selection coefficient $=$ pop density $\mu =$ mutation rate $\sigma =$ SD dispersal distance $\varepsilon =$ SD # of offspring

KOD KARD KED KED BE YOUR

space

RULE OF THUMB: A CHARACTERISTIC LENGTH

Spatial properties mainly determined by a characteristic length, solving:

$$
\lambda_0\pi\chi^2+\lambda\pi\chi^3/\nu=1,
$$

 χ is diameter of space-time cone in which expected to find one successful mutation.

 λ_0 = density of standing mutations $\lambda =$ flux of new mutations $v =$ speed of wave s_b = fitness advantage, $t > 0$ s_d = fitness disadvantage, $t < 0$ $\rho =$ pop density $\mu =$ mutation rate $\sigma =$ SD dispersal distance $\xi =$ SD # of offspring π $-$ 3.1415

With no standing variation:

$$
\chi = \left(\frac{\sigma \xi^2}{\rho \mu \sqrt{2s} \pi}\right)^{1/3}
$$

Also: mean time until adaptation; proportion from standing variation; size of sampled clust[er,](#page-13-0) [et](#page-15-0)[c.](#page-13-0) Ω

SICKLE-CELL ALLELE (HBS)

Human sickle-cell allele (HbS): (Currat et al 2002)

- \triangleright Single base substitution: $\mu = 10^{-8}$
- \blacktriangleright Balancing selection: no problem
- \blacktriangleright Say, $\sigma = 50$ km and $\rho = 2$ people/*km*² and $s_d = .05$ or $= .5$.

(from Flint et al 1998)

SICKLE-CELL ALLELE (HBS)

Observed pattern:

- \blacktriangleright Haplotype pattern on scale of 1000 km
- \blacktriangleright Estimated age 10-70 generations (Currat et al; Modiano et al)

(from Flint et al 1998)

SICKLE-CELL ALLELE (HBS)

 s_b = fitness advantage, $t > 0$

 s_d = fitness disadvantage, $t < 0$

 $\rho =$ pop density

- $\mu =$ mutation rate
- $\sigma =$ SD dispersal distance
- $x =$ characteristic length
- z_0 = proportion from standing

We compute:

- ► characteristic length $x \approx 1000$ km
- \blacktriangleright mean adaptation time $\mathbb{E}[\tau] \approx 70$ generations
- proportion from standing variation z_0 significant
- \blacktriangleright time until pattern is erased $R^2/\sigma^2 \approx 6,400$ generations

EXAMPLE: G6PD

Human G6PD variants: *(Howes et al 2013)*

 2990

K ロ X × 伊 X × ミ X × ミ X → ミ ミ …

- ► 34 variants across 4, 000, 000 km²: $\chi \approx 350$ km
- \triangleright Estimated ages 40-400 generations (various)
- Estimated $s = .25$ (Slatkin et al 2008) OF $s = .04$ (Tishkoff et al 2001)
- ► 150 coding bases: $\mu = 150 \times 10^{-8}$
- \blacktriangleright Say, $\sigma = 50$ km and $\rho = 2$ people/*km*²

EXAMPLE: G6PD

Human G6PD variants: *(Howes et al 2013)*

 299

É

EXAMPLE: G6PD

Human G6PD variants: *(Howes et al 2013)*

 299

目

SECOND CASE: PATCHY ENVIRONMENT

Focal allele is beneficial in patches; deleterious between:

What is the time scale of:

- \blacktriangleright appearance of new mutations in unadapted patches?
- \blacktriangleright transit of mutations between patches?

What does the latter look like?

ADAPTATION BY NEW MUTATION

Naively: a new mutant in a patch establishes with probability

$$
\rho_{\textsf{estab}} = \frac{2 s_b}{\xi^2}
$$

so rate of influx is

$$
\lambda_{\mathsf{mut}} = A \rho \mu \frac{2s_b}{\xi^2} \quad \text{per generation.}
$$

Actually, probability of establishment at distance *r* is \simeq exp($-r\sqrt{s_d}/\sigma$) (Barton 1987) ... naive calculation does pretty good:

MIGRATION: TRANSITING FAMILIES

Suppose a mutation has fixed locally in one patch. How long until it reaches another at distance *R*?

At migration-selection balance: frequency at distance *r* is

$$
q(r) \approx \frac{1}{2} \left(\frac{r\sqrt{2s_d}}{\sigma} \right)^{-\frac{d-1}{2}} \exp \left\{-\frac{r\sqrt{2s_d}}{\sigma} \right\}.
$$

This deterministic "equilibrium" is composed of rare long-distance migrant families.

Draw a circle at distance r_0 from the original patch.

Definition: Any two individuals outside the patch that share an ancestor who lived outside r_0 are in the same "family".

In the continuum limit, these families are subcritical branching processes, killed on hitting a patch, with inhomogeneous branching rate.

KORK ERKER ADAM ADA

For large r_0 , branching rate (nearly) homogeneous $1 - s_d$. (at least those making it to the new patch)

MODELING TRANSITING FAMILIES

General idea:

- \blacktriangleright Between patches, transiting families die out: growth rate $-s_d < 0$ ("subcritical").
- ► Chance that one lives for *t* generations is ∼ *e* −*s^d t*
- In the (rare) event it does, looks like a single "trunk" with transient "branches" (Geiger 1999)
- \blacktriangleright Trunk moves as a random walk.

KOD KARD KED KED BE YOUR

THE EFFECTIVE MIGRATION RATE Rate at which mutations transit between patches is

 $\lambda_{\text{mia}}(R) =$ (outflux of families)

 \times (prob family establishes in patch at R).

On the other hand, without the new patch,

```
q(R) = (outflux of families)
```
 \times (occupation time of a family near *R*).

Each is the probability that the family hits the patch, multiplied by

- \blacktriangleright the probability it establishes, or
- \blacktriangleright its occupation time

given it gets there.

 $2Q$

MIGRATION AND MUTATION COMPARED

Constant is
$$
\approx \rho \times 2s_b/\xi^2 \times 1/s_d
$$
, so

$$
\lambda_{\text{mig}} \approx \frac{\rho s_b}{\xi^2 s_d} \left(\frac{R\sqrt{2s_d}}{\sigma}\right)^{-\frac{d-1}{2}} \exp\left(-\frac{R\sqrt{2s_d}}{\sigma}\right).
$$

The relevant time scales of each are $T_{\text{miq}} = 1/\lambda_{\text{miq}}$ and $T_{\text{mut}} = 1/\lambda_{\text{mut}}$.

$$
\lambda_{\text{mut}} = A \rho \mu 2s_b / \xi^2, \quad \text{so}
$$

 $\lambda_{\text{mut}} \approx \lambda_{\text{mia}}$ if (in 1D)

$$
A\mu \approx (1/s_d) \exp(-R\sqrt{2s_d}/\sigma).
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

MIGRATION AND MUTATION COMPARED

Constant is
$$
\approx \rho \times 2s_b/\xi^2 \times 1/s_d
$$
, so

$$
\lambda_{\text{mig}} \approx \frac{\rho s_b}{\xi^2 s_d} \left(\frac{R\sqrt{2s_d}}{\sigma}\right)^{-\frac{d-1}{2}} \exp\left(-\frac{R\sqrt{2s_d}}{\sigma}\right).
$$

The relevant time scales of each are $T_{\text{miq}} = 1/\lambda_{\text{miq}}$ and $T_{\text{mut}} = 1/\lambda_{\text{mut}}$.

CAN WE DETECT ALLELES SHARED BY MIGRATION?

Shared alleles will share a haplotype; how long?

- \blacktriangleright Haplotype whittled down by recombination between patches:
- \blacktriangleright if transit between patches takes *t* generations,
- **►** shared haplotype will be \approx Exponential with mean 1/*t*.

The trunk: \approx Brownian, killed at rate s_d .

Let τ be the hitting time of the new patch, at distance r .

If length of shared haplotype is *L*, then in 1–D:

$$
\mathbb{P}\{L > \ell\} = \mathbb{E}\left[e^{-\ell\tau}|\tau < \infty\right] = \exp\left(-\frac{R}{\sigma}\left(\sqrt{2(\ell + s_d)} - \sqrt{2s_d}\right)\right).
$$

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

LENGTH OF SHARED HAPLOTYPE

The probability the haplotype is of length $\geq \ell$ is

$$
\mathbb{P}\{L > \ell\} = \mathbb{E}\left[e^{-\ell\tau}\right] = \text{exp}\left\{-\left(R/\sigma\right)\left(\sqrt{2(\ell+s_d)}-\sqrt{2s_d}\right)\right\}
$$

For large *R*:

- **•** Mean transit time of allele is $\mathbb{E}[\tau] \approx R/(\sigma\sqrt{2s_d})$.
- **►** Haplotype length is $\mathbb{E}[L] \approx \sigma \sqrt{2s_d}/R$.
- ► $L = (Y + \sqrt{2s_d})^2 2s_d$, with $Y \sim$ Exponential($R\sqrt{ }$ 2/ σ).
- \triangleright CLT for τ as $R \to \infty$:

$$
\tau \approx \frac{R}{\sigma\sqrt{2s_d}} + \sqrt{\frac{R}{\sigma(2s_d)^{3/2}}}Z, \qquad Z \sim N(0,1).
$$

KORKAR KERKER E VOOR

Back to *Chaetodipus intermedius* (Dice, Benson, Nachman, Hoekstra, etc)

イロトメ 御 トメ 君 トメ 君 トッ 君

 299

Back to *Chaetodipus intermedius* (Dice, Benson, Nachman, Hoekstra, etc)

KORKARYKERKE PORCH

On one flow (Pinacate) an allele of MC1R is responsible for much of the change to a dark pelage (Nachman et al 2003). Hoekstra et al (2004): further study of nearby flows.

- Hoekstra et al (2004) estimated $0.03 < s_b < 0.3$.
- ^I Cline width suggests 3*km* < σ/[√] *s^d* < 30*km*
- **Another species suggests** $\sigma = 0.28$ *km*
- ^I . . . so maybe 10[−]⁴ < *s^d* < 0.01 ?

Probability of parallel adaptation, i.e. adaptation by mutation before mutation, is

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

... and size of shared haplotype \approx 56Kb.

CONCLUSIONS

- \triangleright Order-of-magnitude estimates and Poisson process calculations get not unreasonable answers
- \triangleright Some aspects of geometry are insensitive to parameters.
- \triangleright We can describe well the initial dynamics; what happens next?

KOD KOD KED KED E VAN

 \triangleright Need to better model interactions (e.g. G6PD).

thanks

gideon bradburd

yaniv brandvain

graham coop

Michael Nachman

WITHIN A PATCH

In a discrete deme, large population model, lineages of the adapted allele moves from *x* to *y* at rate

$$
q(x \leftarrow y) = \rho p(y)(1+s(y))m(y \rightarrow x).
$$

.

KORK ERKER ADAM ADA

If migration is nearest-neighbor,

the stationary distribution is

 $\pi(x) = p(x)(1 + s(x)).$

Diffusion limit for motion of the

lineage is

$$
dX_t = \pi'(X_t)dt + dB_t.
$$