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MOTIVATION: HEMOGLOBINOPATHIES

(from Flint et al 1998)

Human sickle-cell allele (HbS): (Currat et al 2002)

I Single base substitution
I provide protection against malaria (but deleterious in

homozygotes)



MOTIVATION: HEMOGLOBINOPATHIES

(Howes et al 2013)

Human G6PD variants:
I over 130 G6PD deficiency alleles; 34 variants at high frequency
I provide protection against malaria but increases risk of anemia
I Estimated ages 40-400 generations (various)



MOTIVATION: A NICE STORY ABOUT MICE.

mice: AH Harris

I Dark-pigmented mammals and reptiles on volcanic outcrops in
the Southwest. (Dice, Benson 1936)

I “Dark” allele beneficial on outcrops, deleterious elsewhere.
I MC1R: basis is shared between species but not between

populations (Nachman, Hoekstra)



MOTIVATION: A NICE STORY ABOUT MICE.

image: Hoekstra

I Dark-pigmented mammals and reptiles on volcanic outcrops in
the Southwest. (Dice, Benson 1936)

I “Dark” allele beneficial on outcrops, deleterious elsewhere.
I MC1R: basis is shared between species but not between

populations (Nachman, Hoekstra)



IMPLICATIONS

The geography of adaptation

i.e. how adaptations are shared or not across the landscape
tells us about

I local adaptation: what do fitness landscapes look like?
I constraint: many possible solutions or not?
I speciation: how fast can distinct adaptations accumulate?

Main summarizing question:
What is the geographic resolution of adaptation?

Also: When is there sharing of solutions?
Every region its own solutions?
How can we tell which is happening?



THE REST OF THE TALK

I Homogeneous landscape (quickly?)
I Patchy landscape: transients

note motivation from: Pennings & Hermisson, Soft Sweeps



FIRST: HOMOGENEOUS LANDSCAPE

I Continuous species range with constant population density
I Selective pressure is geographically uniform,

changes from deleterious (1− sd ) to beneficial (1 + sb)
I Selected mutations are selectively equivalent

(e.g. same base pair or on same pathway)
and so exclude each other



DYNAMICS

Some alleles are present as standing variation
I in small clusters with effective density ≈ ρµ/sd .

Beneficial (sb) alleles:
I fix locally with probability ≈ 2sb/ξ

2, and if they do:
I spread radially with speed ≈ σ

√
sb (Fisher; KPP 1937)



MUTATIONS AS A POINT PROCESS

Combining these,
I Standing, and new mutations as Poisson processes
I thinned by chance of local fixation
I then spreading outward at constant speed
I and excluding further mutations.

s = selection coefficient

ρ = pop density

µ = mutation rate

σ = SD dispersal distance

ξ = SD # of offspring
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MUTATIONS AS A POINT PROCESS

Combining these,
I Standing, and new mutations as Poisson processes
I thinned by chance of local fixation
I then spreading outward at constant speed
I and excluding further mutations.

s = selection coefficient

ρ = pop density

µ = mutation rate

σ = SD dispersal distance

ξ = SD # of offspring



RULE OF THUMB: A CHARACTERISTIC LENGTH

Spatial properties mainly determined by a
characteristic length, solving:

λ0πχ
2 + λπχ3/v = 1,

χ is diameter of space-time cone in which
expected to find one successful mutation.

λ0 = density of standing mutations

λ = flux of new mutations

v = speed of wave

sb = fitness advantage, t > 0

sd = fitness disadvantage, t < 0

ρ = pop density

µ = mutation rate

σ = SD dispersal distance

ξ = SD # of offspring

π = 3.1415 . . .

With no standing variation:

χ =

(
σξ2

ρµ
√

2s π

)1/3

Also: mean time until adaptation;
proportion from standing variation; size of
sampled cluster, etc.



SICKLE-CELL ALLELE (HBS)

(from Flint et al 1998)

Human sickle-cell allele (HbS): (Currat et al 2002)

I Single base substitution: µ = 10−8

I Balancing selection: no problem
I Say, σ = 50 km and ρ = 2 people/km2

and sd = .05 or = .5.

estimated weaker stronger
sb 0.15 0.15 0.15
sd – 0.05 0.5
σ 10–100 50 50 km
µ 10−8 10−8 10−8

ρ 2 2 2 km−2

χ 1000 980 1120 km
age 10–70 63 77 gen
z0 – 52% 6%



SICKLE-CELL ALLELE (HBS)

(from Flint et al 1998)

Observed pattern:
I Haplotype pattern on scale of 1000 km
I Estimated age 10-70 generations

(Currat et al; Modiano et al)

estimated weaker stronger
sb 0.15 0.15 0.15
sd – 0.05 0.5
σ 10–100 50 50 km
µ 10−8 10−8 10−8

ρ 2 2 2 km−2

χ 1000 980 1120 km
age 10–70 63 77 gen
z0 – 52% 6%



SICKLE-CELL ALLELE (HBS)

sb = fitness advantage, t > 0

sd = fitness disadvantage, t < 0

ρ = pop density

µ = mutation rate

σ = SD dispersal distance

χ = characteristic length

z0 = proportion from standing

We compute:
I characteristic length χ ≈ 1000 km
I mean adaptation time

E[τ ] ≈ 70 generations
I proportion from standing variation z0

significant
I time until pattern is erased

R2/σ2 ≈ 6,400 generations

estimated weaker stronger
sb 0.15 0.15 0.15
sd – 0.05 0.5
σ 10–100 50 50 km
µ 10−8 10−8 10−8

ρ 2 2 2 km−2

χ 1000 980 1120 km
age 10–70 63 77 gen
z0 – 52% 6%



EXAMPLE: G6PD

(Howes et al 2013)Human G6PD variants:
I 34 variants across 4,000,000 km2: χ ≈ 350 km
I Estimated ages 40-400 generations (various)

I Estimated s = .25 (Slatkin et al 2008)

or s = .04 (Tishkoff et al 2001)

I 150 coding bases: µ = 150× 10−8

I Say, σ = 50 km and ρ = 2 people/km2



EXAMPLE: G6PD

(Howes et al 2013)Human G6PD variants:
estimated weaker stronger

sb 0.25 or 0.04 0.25 0.04
sd 0.1 – –
σ 50 – – km
µ 1.5×10−6 – –
ρ 2 – – km−2

χ 350 144 254 km
age or E[τ ] 40–400 7 32 gen
z0 – 83% 51%



EXAMPLE: G6PD

(Howes et al 2013)Human G6PD variants:
estimated weaker stronger

sb 0.25 or 0.04 0.25 0.04
sd 0.1 – –
σ 50 – – km
µ 1.5×10−6 – –
ρ 2 – – km−2

χ 350 144 254 km
age or E[τ ] 40–400 7 32 gen
z0 – 83% 51%



SECOND CASE: PATCHY ENVIRONMENT

Focal allele is beneficial in patches; deleterious between:

A = patch size

R = patch separation

sb = on-patch selective advantage

−sd = between-patch selective cost

ρ = pop density

µ = mutation rate

σ = SD dispersal distance

ξ = SD # of offspring

What is the time scale of:
I appearance of new mutations in unadapted patches?
I transit of mutations between patches?

What does the latter look like?



ADAPTATION BY NEW MUTATION
Naively: a new mutant in a patch establishes with probability

pestab =
2sb

ξ2

so rate of influx is

λmut = Aρµ
2sb

ξ2 per generation.

Actually, probability of establishment at distance r is ' exp(−r
√

sd/σ)
(Barton 1987) . . . naive calculation does pretty good:
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MIGRATION: TRANSITING FAMILIES

Suppose a mutation has fixed locally in
one patch.
How long until it reaches another at
distance R?

At migration-selection balance: frequency
at distance r is

q(r) ≈ 1
2

(
r
√

2sd

σ

)− d−1
2

exp
{
− r
√

2sd

σ

}
.

This deterministic “equilibrium” is
composed of rare long-distance migrant
families.

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

deme number (space)

al
le

le
 fr

eq
ue

nc
y

s = 0.1

s = −0.02 s = −0.02

20 40 60 80 120

space (demes)

tim
e 

(g
en

er
at

io
ns

)

0.
5 

0.
5 

0.
05
 

0.05 

70
00

85
00

80
00

75
00



FAMILY DECOMPOSITION

Draw a circle at distance r0 from the original patch.

Definition: Any two individuals outside the patch that share an
ancestor who lived outside r0 are in the same “family”.

In the continuum limit, these families are subcritical branching
processes, killed on hitting a patch, with inhomogeneous branching
rate.

For large r0, branching rate (nearly) homogeneous 1− sd .
(at least those making it to the new patch)



MODELING TRANSITING FAMILIES

General idea:
I Between patches, transiting families

die out:
growth rate −sd < 0 (“subcritical”).

I Chance that one lives for t
generations is ∼ e−sd t

I In the (rare) event it does, looks like
a single “trunk”
with transient “branches” (Geiger 1999)

I Trunk moves as a random walk.



THE EFFECTIVE MIGRATION RATE
Rate at which mutations transit between
patches is

λmig(R) = (outflux of families)
× (prob family establishes in patch at R).

On the other hand, without the new patch,

q(R) = (outflux of families)
× (occupation time of a family near R).

Each is the probability that the family hits
the patch, multiplied by

I the probability it establishes, or
I its occupation time

given it gets there.



MIGRATION AND MUTATION COMPARED

Constant is ≈ ρ× 2sb/ξ
2 × 1/sd , so

λmig ≈
ρsb

ξ2sd

(
R
√

2sd

σ

)− d−1
2

exp
(
−R
√

2sd

σ

)
.

The relevant time scales of each are Tmig = 1/λmig and Tmut = 1/λmut.

λmut = Aρµ2sb/ξ
2, so

λmut ≈ λmig if (in 1D)

Aµ ≈ (1/sd )exp(−R
√

2sd/σ).



MIGRATION AND MUTATION COMPARED

Constant is ≈ ρ× 2sb/ξ
2 × 1/sd , so

λmig ≈
ρsb

ξ2sd

(
R
√

2sd

σ

)− d−1
2

exp
(
−R
√

2sd

σ

)
.

The relevant time scales of each are Tmig = 1/λmig and Tmut = 1/λmut.
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CAN WE DETECT ALLELES SHARED BY MIGRATION?

Shared alleles will share a haplotype; how long?
I Haplotype whittled down by recombination between patches:
I if transit between patches takes t generations,
I shared haplotype will be ≈ Exponential with mean 1/t .

The trunk: ≈ Brownian, killed at rate sd .

Let τ be the hitting time of the new patch, at distance r .

If length of shared haplotype is L, then in 1–D:

P{L > `} = E
[
e−`τ |τ <∞

]
= exp

(
−R
σ

(√
2(`+ sd )−

√
2sd

))
.



LENGTH OF SHARED HAPLOTYPE

The probability the haplotype is of length > ` is

P{L > `} = E
[
e−`τ

]
= exp

{
−(R/σ)

(√
2(`+ sd )−

√
2sd

)}
For large R:

I Mean transit time of allele is E[τ ] ≈ R/(σ
√

2sd ).
I Haplotype length is E[L] ≈ σ

√
2sd/R.

I L d
= (Y +

√
2sd )

2 − 2sd , with Y ∼ Exponential(R
√

2/σ).
I CLT for τ as R →∞:

τ ≈ R
σ
√

2sd
+

√
R

σ(2sd )3/2 Z , Z ∼ N(0,1).



APPLICATION TO ROCK POCKET MICE
Back to Chaetodipus intermedius (Dice, Benson, Nachman, Hoekstra, etc)



APPLICATION TO ROCK POCKET MICE
Back to Chaetodipus intermedius (Dice, Benson, Nachman, Hoekstra, etc)



APPLICATION TO ROCK POCKET MICE

On one flow (Pinacate) an allele of MC1R is responsible for much of
the change to a dark pelage (Nachman et al 2003).
Hoekstra et al (2004): further study of nearby flows.



APPLICATION TO ROCK POCKET MICE

I Hoekstra et al (2004) estimated 0.03 < sb < 0.3.
I Cline width suggests 3km < σ/

√
sd < 30km

I Another species suggests σ = 0.28km
I . . . so maybe 10−4 < sd < 0.01 ?



APPLICATION TO ROCK POCKET MICE
Probability of parallel adaptation, i.e. adaptation by mutation before
mutation, is

λmut

λmut + λmig
=

2Aµsb

2Aµsb + exp(−
√

2sdR/σ)
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. . . and size of shared haplotype ≈ 56Kb.



CONCLUSIONS

I Order-of-magnitude estimates and Poisson process calculations
get not unreasonable answers

I Some aspects of geometry are insensitive to parameters.
I We can describe well the initial dynamics; what happens next?
I Need to better model interactions (e.g. G6PD).
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WITHIN A PATCH

In a discrete deme, large
population model,
lineages of the adapted allele
moves from x to y at rate

q(x ← y) = ρp(y)(1+s(y))m(y → x).

If migration is nearest-neighbor,

the stationary distribution is

π(x) = p(x)(1 + s(x)).

Diffusion limit for motion of the

lineage is

dXt = π′(Xt)dt + dBt .

.


