TOOLS FOR UNDERSTANDING THE GEOGRAPHY OF ADAPTATION

Peter Ralph

USC Computational Biology and Bioinformatics

Simons Institute May 1st, 2014 work with Graham Coop

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MOTIVATION: HEMOGLOBINOPATHIES

(from Flint et al 1998)

Human sickle-cell allele (HbS): (Currat et al 2002)

- Single base substitution
- provide protection against malaria (but deleterious in homozygotes)

MOTIVATION: HEMOGLOBINOPATHIES

(Howes et al 2013)

Human G6PD variants:

- over 130 G6PD deficiency alleles; 34 variants at high frequency
- provide protection against malaria but increases risk of anemia
- Estimated ages 40-400 generations (various)

MOTIVATION: A NICE STORY ABOUT MICE.

mice: AH Harris

(ロ) (同) (三) (三) (三) (○) (○)

- Dark-pigmented mammals and reptiles on volcanic outcrops in the Southwest. (Dice, Benson 1936)
- "Dark" allele beneficial on outcrops, deleterious elsewhere.
- MC1R: basis is shared between species but not between populations (Nachman, Hoekstra)

MOTIVATION: A NICE STORY ABOUT MICE.

image: Hoekstra

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Dark-pigmented mammals and reptiles on volcanic outcrops in the Southwest. (Dice, Benson 1936)
- "Dark" allele beneficial on outcrops, deleterious elsewhere.
- MC1R: basis is shared between species but not between populations (Nachman, Hoekstra)

IMPLICATIONS

The geography of adaptation

i.e. how adaptations are shared or not across the landscape tells us about

- local adaptation: what do fitness landscapes look like?
- constraint: many possible solutions or not?
- speciation: how fast can distinct adaptations accumulate?

Main summarizing question:

What is the geographic resolution of adaptation?

(ロ) (同) (三) (三) (三) (○) (○)

Also: When is there sharing of solutions? Every region its own solutions? How can we tell which is happening?

THE REST OF THE TALK

- Homogeneous landscape (quickly?)
- Patchy landscape: transients

note motivation from: Pennings & Hermisson, Soft Sweeps

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FIRST: HOMOGENEOUS LANDSCAPE

- Continuous species range with constant population density
- ► Selective pressure is geographically uniform, changes from deleterious (1 - s_d) to beneficial (1 + s_b)
- Selected mutations are selectively equivalent (e.g. same base pair or on same pathway) and so *exclude* each other

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

DYNAMICS

Some alleles are present as standing variation

- in small clusters with effective density $pprox
ho\mu/s_d$.

Beneficial (s_b) alleles:

- fix locally with probability $\approx 2s_b/\xi^2$, and if they do:
- spread radially with speed $\approx \sigma \sqrt{s_b}$ (Fisher; KPP 1937)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Combining these,

generations

- Standing, and new mutations as Poisson processes
- thinned by chance of local fixation
- then spreading outward at constant speed
- and excluding further mutations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Combining these,

- Standing, and new mutations as Poisson processes
- thinned by chance of local fixation
- then spreading outward at constant speed
- and excluding further mutations.

$$\begin{split} & \mathcal{S} = \text{selection coefficient} \\ & \rho = \text{pop density} \\ & \mu = \text{mutation rate} \\ & \sigma = \text{SD dispersal distance} \\ & \xi = \text{SD \# of offspring} \end{split}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Combining these,

- Standing, and new mutations as Poisson processes
- thinned by chance of local fixation
- then spreading outward at constant speed
- and excluding further mutations.

space

$$\begin{split} s &= \text{selection coefficient} \\ \rho &= \text{pop density} \\ \mu &= \text{mutation rate} \\ \sigma &= \text{SD dispersal distance} \\ \xi &= \text{SD \# of offspring} \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

generations

Combining these,

- Standing, and new mutations as Poisson processes
- thinned by chance of local fixation
- then spreading outward at constant speed
- and excluding further mutations.

$$\begin{split} s &= \text{selection coefficient} \\ \rho &= \text{pop density} \\ \mu &= \text{mutation rate} \\ \sigma &= \text{SD dispersal distance} \\ \xi &= \text{SD # of offspring} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Combining these,

- Standing, and new mutations as Poisson processes
- thinned by chance of local fixation
- then spreading outward at constant speed
- and excluding further mutations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

generations

RULE OF THUMB: A CHARACTERISTIC LENGTH

Spatial properties mainly determined by a characteristic length, solving:

$$\lambda_0 \pi \chi^2 + \lambda \pi \chi^3 / \nu = 1,$$

 χ is diameter of space-time cone in which expected to find one successful mutation.

 $\begin{array}{l} \lambda_{0} = \text{density of standing mutations} \\ \lambda_{z} = \text{flux of new mutations} \\ \nu_{z} = \text{speed of wave} \\ s_{b} = \text{fitness advantage, } t > 0 \\ s_{d} = \text{fitness disadvantage, } t < 0 \\ \rho_{z} = \text{pop density} \\ \mu_{z} = \text{mutation rate} \\ \sigma_{z} = \text{SD dispersal distance} \\ \xi_{z} = \text{SD # of offspring} \\ \pi_{z} = 3.1415 \ldots$

With no standing variation:

$$\chi = \left(\frac{\sigma\xi^2}{\rho\mu\sqrt{2s}\,\pi}\right)^{1/3}$$

Also: mean time until adaptation; proportion from standing variation; size of sampled cluster, etc.

SICKLE-CELL ALLELE (HBS)

Human sickle-cell allele (HbS): (Currat et al 2002)

- Single base substitution: $\mu = 10^{-8}$
- Balancing selection: no problem
- Say, σ = 50 km and ρ = 2 people/km² and s_d = .05 or = .5.

(from Flint et al 1998)

	estimated	weaker	stronger	
s _b	0.15	0.15	0.15	
s _d	_	0.05	0.5	
σ	10–100	50	50	km
μ	10 ⁻⁸	10^{-8}	10^{-8}	
ρ	2	2	2	km ⁻²
χ	1000	980	1120	km
age	10-70	63	77	gen
<i>Z</i> 0		52%	6%	

SICKLE-CELL ALLELE (HBS)

Observed pattern:

- Haplotype pattern on scale of 1000 km
- Estimated age 10-70 generations (Currat et al; Modiano et al)

(from Flint et al 1998)

	estimated	weaker	stronger	
s_b	0.15	0.15	0.15	
s _d	_	0.05	0.5	
σ	10–100	50	50	km
μ	10 ⁻⁸	10^{-8}	10^{-8}	
ρ	2	2	2	km ⁻²
χ	1000	980	1120	km
age	10–70	63	77	gen
<i>Z</i> 0	-	52%	6%	

SICKLE-CELL ALLELE (HBS)

- $s_b = \text{fitness} \text{ advantage}, t > 0$
- s_d = fitness disadvantage, t < 0
- $\rho = \operatorname{pop} \operatorname{density}$
- $\mu = mutation rate$
- $\sigma\,=\,{\rm SD}$ dispersal distance
- $\chi = \text{characteristic length}$
- $z_0 =$ proportion from standing

We compute:

- characteristic length $\chi \approx$ 1000 km
- mean adaptation time $\mathbb{E}[\tau] \approx 70$ generations
- proportion from standing variation z₀ significant
- ► time until pattern is erased R²/σ² ≈ 6,400 generations

	estimated	weaker	stronger	
s_b	0.15	0.15	0.15	
s_d	—	0.05	0.5	
σ	10–100	50	50	km
μ	10 ⁻⁸	10 ⁻⁸	10 ⁻⁸	
ho	2	2	2	km ⁻²
χ	1000	980	1120	km
age	10–70	63	77	gen
<i>Z</i> 0	_	52%	6%	

EXAMPLE: G6PD

Human G6PD variants:

(Howes et al 2013)

・ロト ・ 四ト ・ ヨト ・ ヨー

- ► 34 variants across 4,000,000 km²: $\chi \approx$ 350 km
- Estimated ages 40-400 generations (various)
- Estimated s = .25 (Slatkin et al 2008) or s = .04 (Tishkoff et al 2001)
- ▶ 150 coding bases: µ = 150 × 10⁻⁸
- Say, $\sigma = 50$ km and $\rho = 2$ people/km²

EXAMPLE: G6PD

Human G6PD variants:

(Howes et al 2013)

	estimated	weaker	stronger	
s _b	0.25 or 0.04	0.25	0.04	
S _d	0.1			
σ	50		_	km
μ	1.5×10 ⁻⁶		_	
ρ	2		_	km ⁻²
χ	350	144	254	km
age or $\mathbb{E}[au]$	40–400	7	32	gen
<i>Z</i> ₀	_	83%	51%	

200

EXAMPLE: G6PD

Human G6PD variants:

(Howes et al 2013)

	estimated	weaker	stronger	
s _b	0.25 or 0.04	0.25	0.04	
S _d	0.1	_	_	
σ	50	_	_	km
μ	1.5×10 ⁻⁶	_	_	
ρ	2	_	_	km ⁻²
χ	350	144	254	km
age or $\mathbb{E}[au]$	40–400	7	32	gen
<i>Z</i> ₀	_	83%	51%	
			Image: A	이 이 몸 이 이 몸

200

æ

SECOND CASE: PATCHY ENVIRONMENT

Focal allele is beneficial in patches; deleterious between:

What is the time scale of:

- appearance of new mutations in unadapted patches?
- transit of mutations between patches?

What does the latter look like?

ADAPTATION BY NEW MUTATION

Naively: a new mutant in a patch establishes with probability

$$p_{ ext{estab}} = rac{2s_b}{\xi^2}$$

so rate of influx is

$$\lambda_{mut} = A \rho \mu rac{2s_b}{\xi^2}$$
 per generation.

Actually, probability of establishment at distance r is $\simeq \exp(-r\sqrt{s_d}/\sigma)$ (Barton 1987) ... naive calculation does pretty good:

MIGRATION: TRANSITING FAMILIES

Suppose a mutation has fixed locally in one patch. How long until it reaches another at distance *R*?

At migration-selection balance: frequency at distance r is

$$q(r) pprox rac{1}{2} \left(rac{r\sqrt{2s_d}}{\sigma}
ight)^{-rac{d-1}{2}} \exp\left\{-rac{r\sqrt{2s_d}}{\sigma}
ight\}.$$

This deterministic "equilibrium" is composed of rare long-distance migrant families.

Draw a circle at distance r_0 from the original patch.

Definition: Any two individuals outside the patch that share an ancestor who lived outside r_0 are in the same "family".

In the continuum limit, these families are subcritical branching processes, killed on hitting a patch, with inhomogeneous branching rate.

(ロ) (同) (三) (三) (三) (○) (○)

For large r_0 , branching rate (nearly) homogeneous $1 - s_d$. (at least those making it to the new patch)

MODELING TRANSITING FAMILIES

General idea:

- Between patches, transiting families die out: growth rate -s_d < 0 ("subcritical").
- Chance that one lives for t generations is ~ e^{-s_dt}
- In the (rare) event it does, looks like a single "trunk" with transient "branches" (Geiger 1999)
- Trunk moves as a random walk.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THE EFFECTIVE MIGRATION RATE Rate at which mutations transit between patches is

 $\lambda_{mig}(R) = (outflux of families)$ $\times (prob family establishes in patch at R).$

On the other hand, without the new patch,

```
q(R) = (\text{outflux of families})
```

 \times (occupation time of a family near *R*).

Each is the probability that the family hits the patch, multiplied by

- the probability it establishes, or
- its occupation time

given it gets there.

SAC

MIGRATION AND MUTATION COMPARED

Constant is
$$\approx \rho \times 2s_b/\xi^2 \times 1/s_d$$
, so
 $\lambda_{\text{mig}} \approx \frac{\rho s_b}{\xi^2 s_d} \left(\frac{R\sqrt{2s_d}}{\sigma}\right)^{-\frac{d-1}{2}} \exp\left(-\frac{R\sqrt{2s_d}}{\sigma}\right).$

The relevant time scales of each are $T_{mig} = 1/\lambda_{mig}$ and $T_{mut} = 1/\lambda_{mut}$.

$$\lambda_{\mathsf{mut}} = \pmb{A}
ho\mu \pmb{2}\pmb{s}_{\pmb{b}}/\xi^2, \qquad$$
 so

 $\lambda_{\rm mut} \approx \lambda_{\rm mig}$ if (in 1D)

$$A\mu \approx (1/s_d) \exp(-R\sqrt{2s_d}/\sigma).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MIGRATION AND MUTATION COMPARED

Constant is
$$\approx \rho \times 2s_b/\xi^2 \times 1/s_d$$
, so
 $\lambda_{\text{mig}} \approx \frac{\rho s_b}{\xi^2 s_d} \left(\frac{R\sqrt{2s_d}}{\sigma}\right)^{-\frac{d-1}{2}} \exp\left(-\frac{R\sqrt{2s_d}}{\sigma}\right)$.

The relevant time scales of each are $T_{mig} = 1/\lambda_{mig}$ and $T_{mut} = 1/\lambda_{mut}$.

CAN WE DETECT ALLELES SHARED BY MIGRATION?

Shared alleles will share a haplotype; how long?

- Haplotype whittled down by recombination between patches:
- ▶ if transit between patches takes t generations,
- shared haplotype will be \approx Exponential with mean 1/*t*.

The trunk: \approx Brownian, killed at rate s_d .

Let τ be the hitting time of the new patch, at distance *r*.

If length of shared haplotype is L, then in 1–D:

$$\mathbb{P}\{L > \ell\} = \mathbb{E}\left[e^{-\ell\tau} | \tau < \infty\right] = \exp\left(-\frac{R}{\sigma}\left(\sqrt{2(\ell + s_d)} - \sqrt{2s_d}\right)\right).$$

LENGTH OF SHARED HAPLOTYPE

The probability the haplotype is of length $> \ell$ is

$$\mathbb{P}\{L > \ell\} = \mathbb{E}\left[e^{-\ell\tau}\right] = \exp\left\{-(R/\sigma)\left(\sqrt{2(\ell+s_d)} - \sqrt{2s_d}\right)\right\}$$

For large R:

- Mean transit time of allele is $\mathbb{E}[\tau] \approx R/(\sigma\sqrt{2s_d})$.
- Haplotype length is $\mathbb{E}[L] \approx \sigma \sqrt{2s_d}/R$.
- $L \stackrel{d}{=} (Y + \sqrt{2s_d})^2 2s_d$, with $Y \sim \text{Exponential}(R\sqrt{2}/\sigma)$.
- CLT for τ as $R \to \infty$:

$$au pprox rac{R}{\sigma\sqrt{2s_d}} + \sqrt{rac{R}{\sigma(2s_d)^{3/2}}}Z, \qquad Z \sim N(0,1).$$

(日) (日) (日) (日) (日) (日) (日)

Back to Chaetodipus intermedius (Dice, Benson, Nachman, Hoekstra, etc)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Back to Chaetodipus intermedius (Dice, Benson, Nachman, Hoekstra, etc)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

On one flow (Pinacate) an allele of MC1R is responsible for much of the change to a dark pelage (Nachman et al 2003). Hoekstra et al (2004): further study of nearby flows.

- ► Hoekstra et al (2004) estimated 0.03 < s_b < 0.3.</p>
- Cline width suggests $3km < \sigma/\sqrt{s_d} < 30km$
- Another species suggests $\sigma = 0.28 km$
- ... so maybe $10^{-4} < s_d < 0.01$?

Probability of parallel adaptation, i.e. adaptation by mutation before mutation, is

 \ldots and size of shared haplotype \approx 56Kb.

CONCLUSIONS

- Order-of-magnitude estimates and Poisson process calculations get not unreasonable answers
- Some aspects of geometry are insensitive to parameters.
- We can describe well the initial dynamics; what happens next?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

► Need to better model interactions (e.g. G6PD).

thanks

gideon bradburd

graham coop

Michael Nachman

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

yaniv brandvain

WITHIN A PATCH

In a discrete deme, large population model, lineages of the adapted allele moves from x to y at rate

$$q(x \leftarrow y) = \rho p(y)(1 + s(y))m(y \rightarrow x).$$

.

(ロ) (同) (三) (三) (三) (○) (○)

If migration is nearest-neighbor,

the stationary distribution is

 $\pi(x) = p(x)(1 + s(x)).$

Diffusion limit for motion of the

lineage is

$$dX_t = \pi'(X_t)dt + dB_t.$$