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Multi-step theory of carcinogenesis
Cancer arises as a result of genetic alterations that occur in a stepwise
fashion; these alterations can confer intermediate growth advantages and
cause clonal expansion.

Cancer arises (mostly) from epithelial tissue (spatially structured).





Model of carcinogenesis in epithelium

I Start with lattice (Z mod L)d , each lattice site occupied by a cell
(N .

= Ld )
I Initially all cells are type-0 (normal) and reproduce at rate 1.
I Offspring replaces a randomly chosen neighbor cell
I Multi-step carcinogenesis process: type-0 (r=1) mutate at rate u1 to

become type-1 premalignant cells, which mutate at rate u2 to become
type-2 premalignant cells

I Type-i cells reproduce at rate (1 + si ) relative to type-(i − 1) cells where
si ≥ 0.

I ui ≤ ui+1 (genomic instability increases with malignant phenotype)



Model Dynamics

Consider a two-step initiation process (e.g. inactivation of tumor suppressor
genes).

Would like to establish some basic properties as s → 0,N →∞, u1, u2 → 0:
(1) how fast do premalignant clones grow? (2) how long to first ‘successful’
type-1? (3) type-2?



Biased voter process

Consider the growth of a family starting from a single type-1 cell, in domain
Zd otherwise filled with type-0s.

Type-0 (fitness 1) and type-1 (fitness 1 + s) cells, selection dynamics only
(mutations suppressed).

Biased voter model: considered by Williams and Bjerknes 1972 (tumor
growth); Schwarz 1977 (interacting particle systems)

Define ξt ≡ {x ∈ Zd |type-1 cell at x at time t}.



Basic result for biased voter process: survival
probability of a single mutant clone

On Zd , ξt 6= ∅, |ξt | jumps at rate proportional to |∂ξt |.

Embedded discrete time process Zn is a biased random walk:

At every edge between a 0 and 1, during the next event:
- 0 is replaced by 1 w.p. p, where p = 1+s

2+s .
- 1 is replaced by 0 w.p. 1− p

Extinction time of the clone T0 = inf{t > 0 : |ξt | = 0}.

P(T0 =∞) = 1− 1− p
p

=
s

1 + s



Results on expansion of premalignant clones in Zd

Starting from one premalignant cell initially with fitness advantage s, no
mutations, and conditioned on nonextinction.

Case d = 1 (trivial): ξt = [Lt ,Rt ], an interval. No holes

⇒ Rt
t → s as t →∞. Growth is linear.

Case d ≥ 2 (Bramson and Griffeath 1981): (voter process)

There is a set D such that for any ε > 0, ∃tε such that for t ≥ tε,

(1− ε)tD ∩ Zd ⊆ ξt ⊆ (1 + ε)tD

Growth is linear with asymptotic shape D, where D is convex and symmetric.



Speed of expansion

Specifically, how does the (macroscopic) spread rate of a mutant clone
depend on the (microscopic) fitness advantage?

Theorem Let e1 be the first unit vector and define the growth rate cd (s) such
that the intersection of D with the x axis is [−cd (s)e1, cd (s)e1]. Then, as
s → 0 we have

cd (s) ∼


s d = 1√

4πs/ log(1/s) d = 2√
4βd s d = 3

where βd is the probability that two d-dimensional simple random walks
started at the origin and (1,0,.., 0) never hit.



Defining success of clones on a finite domain

On (Z mod L)d we must define what we mean by ‘success’ of any mutant
clone.

Define Ti ≡ first time for Zn to hit size i .

P1(Tk < T0) =
1− (1 + s)−1

1 + (1 + s)−k and Pk (T0 <∞) = (1 + s)−k

When s → 0 and k ∼ C/s:

P1(Tk < T0) ∼ s
1− e−C and Pk (T0 <∞)→ e−C

To have success probability s as in infinite domain case, define success as
reaching size Cs/s, where Cs →∞ as s → 0.



Unsuccessful families behave like subcritical BV
processes

Lemma Let ξt be the set of 1’s in a supercritical BV model in Zd starting from
a single type-1 at the origin. Let T0 be the time at which the process dies out.
Let ξ̄t be the same process with the fitnesses of type-1 and type-0
interchanged. Then

({|ξt |, t ≤ T0}|T0 <∞) =d {|ξ̄t |, t ≤ T0}



Boundary size of subcritical BV processes

Remark The size of the boundary of the subcritical BV process is (when
|ξt | = k ):

∂(k) ∼ q(k) =

{
2dβd k , d ≥ 3
4β2k/ log k , d = 2.

Using (Cox, Durrett, Perkins 2002).



Upper bound on space-time volume of unsuccessful
families

Recall that for a single mutant clone in Zd ,

P(extinction) =
1

1 + s

Lemma: Space-time volume of unsuccessful premalignant clones

E
(∫ T0

0
|ξ̄t |dt

)
= O(`(s))

`(s) =


s−2 d = 1
s−1 log(1/s) d = 2
s−1 d = 3



Upper bound on space time volume of unsuccessful
families

Let Z̄n be the biased random walk conditioned to hit 0.

Note that |ξ̄t | is a continuous time version of Z̄n that jumps at approximately
rate (2 + s)q(k) when in state k .

Define T̄ +
k = min{n ≥ 1 : Z̄n = k} then

E1

(∫ T̄0

0
|ξ̄t |dt

)
= O

(
∞∑

k=1

P1(T̄k < T̄0)

Pk (T̄ +
k =∞)

· k
(2 + s)q(k)

)



Unsuccessful families don’t wander too far

Lemma Consider a BV process in Zd with type-1s of fitness 1 + s and
type-0’s of fitness 1, starting with a single type-1 at the origin and type-0s
elsewhere. Let ξ̄t be the set of 1’s at time t in this process, conditioned to die
out.

For M > 0, define the space time box

GM =
(

[−M`(s)1/2/2,M`(s)1/2/2]d × [0,M`(s)]
)
.

For any δ > 0 there exists M(δ) sufficiently large such that

P
(
{ξ̄t : t ≥ 0} ∩Gc

M(δ) 6= ∅
)
≤ δs.

Using result of (Merle 2008).



Arrival of first successful type-1 cell

Back to full model (on finite domain).

Initialize with all type-0 cells, and define σi : arrival time of first successful
type-i cell. Define the function

`(s) =


s−2 d = 1
s−1 log(1/s) d = 2
s−1 d = 3

and the assumptions

(A0) : (`(s))(d+2)/2 � 1/u1

(A1) : N/`(s)d/2 →∞

Theorem If (A0), (A1) hold, P(σ1 > t/Nu1s)→ e−t . as s, u1 → 0.



Proof of arrival time - sketch

I Grid space-time, (Z mod L)d × [0,∞) into non overlapping boxes with
time length Ms`(s) and spatial volume Md

s `(s)d/2 where Ms →∞
sufficiently slowly such that L� `(s)1/2Ms and u1`(s)(d+2)/2Md+1

s → 0.
I Previous result: probability of an unsuccessful family exiting its box (and

neighboring boxes) is o(s). We can approximately equate ’success’ with
exiting boxes.

I Probability that any box with ≥ 2 mutations, at least one which is
successful goes to 0.

I Thus successful mutations arrive at rate Nu1s and their fate is
independent of any other mutations.



Simplified model with mesoscopic growth

We will only consider successful type-1 and type-2 families in spatial domain
D = [−L/2, L/2]d ⊂ Rd

State. Specified by χt (space occupied by successful type-1 families iat time
t). D − χt is filled by type-0s, from here on out we will refer to this set as χc

t .

Dynamics.
I Mutations to type-1: Poisson process Π1 on on D × [0,∞) with intensity
λ1(x , t) = 1{x∈χc

t }
u1s1.

I Each point in Π1 initiates a ball with radius expanding as cd t
I Bx,r ≡ {y : ||y − x || ≤ r}, where || · || is the `2 norm, then if

Π1 ∩ (D × [0, t ]) = {(x1, t1), . . . , (xk , tk )},

χt =
k⋃

i=1

Bxi ,cd (t−ti ).



Simplified model with mesoscopic growth

I Mutations to type-2: Poisson process Π2 with intensity

λ2(x , t) = 1{x∈χt}u2s2/(1 + s2) + 1{x∈χc
t }

u1u2s2C(s1)

(1 + s2)

where C(s1) is the expected space-time volume of unsuccessful type-1
families in the biased voter model.

I Process is stopped at the time of arrival of the first successful type-2
mutant.



Results: regimes of initiation dynamics (simplified
model)

Figure : Color is log Γ, where Γ = (Nu1s1)d+1(cd (s1)du2s2)−1.

N = number of cells = 10c , u1 = 10−a, u2 = 10−b, b = a− 2, d = 2,
s1 = s2 = s = .01.



Distribution of initiation time in regime I (Γ → 0)

Cancer initiation occurs within expanding clone of the first successful
premalignant family.

Theorem: Assume (A3) : u2 << 1/`(s)

Then if Γ→ 0, P(σ2 >
t

Nu1s )→ e−t as s, u1, u2 → 0.

Note that the assumptions used in the results to motivate the simplified model
are in force throughout these results ((A0), (A1), (A2)).



Distribution of σ2 in regime II (Γ → g ∈ (0,∞))

Initiation occurs within one of several successful premalignant lesions.

Theorem: Assume (A3) and Γ→ g

Then,

P(σ2 >
t

Nu1s
)→ exp

(
−t +

∫ t

0
exp

[
− γd yd+1

(d + 1)g

]
dy
)
.

where γd is the volume of unit ball in d−dimensions.



Distribution of σ2 in regime III (Γ → ∞)

Large number of premalignant lesions produced before cancer initiated from
either a successful or unsuccessful premalignant clone.

Thm: Assume (A3), Γ→∞.

Then, P(σ2 > t/Nu1s)→ exp
(
− γd (t/K )d+2

(d+1)(d+2)
− ρ2αd t/J

)
.

where αd and ρ2 are constants.



Distribution of σ2 in regime Γ → ∞

Approx. number of successful premalignant clones before cancer arises in
I an successful premalignant lesion (K ≡ Γ1/(d+2))
I an unsuccessful premalignant lesion (J ≡ 1

u2`(s)
)

For J/K →∞: arises in successful type-1 family

P(σ2 > Kt/Nu1s)→ exp
(
− γd td+2

(d + 1)(d + 2)

)
.

For J/K → 0: arises in unsuccessful type-1 family

P(σ2 > Jt/Nu1s)→ exp (−ρ2αd t).

For J/(J + K )→ θ ∈ (0, 1): arises in either

P(σ2 > (K + J)t/Nu1s)→ exp
(
− γd (t/θ)d+2

(d + 1)(d + 2)
− ρ2αd (t/(1− θ))

)
.



Summary

I Proposed/analyzed microscopic model of carcinogenesis (spatial
evolution)

I Used results of analysis to propose approximating stochastic
mesoscopic model

I Studied time of initiation of cancer in mesoscopic model, qualitative
regimes of initiation behavior and dependence on tissue/pathway
parameters.

I Ongoing work: spatial measures of diversity (+Katie Storey)

Next up: Understanding and predicting field cancerization with the
mesoscopic model
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Previous comparisons with experimental data

I Process without mutations, beginning with just two cell types of equal
fitness, is a voter model

I Previous comparisons between 2D voter model and clonal dynamics in
mouse epithelial tissue

I Klein et al, ‘Mechanism of murine epidermal maintenance: Cell division and the voter model’ Phys.
Rev. E 2007.

I Doupe et. al. ‘The Ordered Architecture of Murine Ear Epidermis is Maintained by Progenitor Cells
with Random Fate’ Developmental Cell, 2012.’

Figure : Klein et al, ‘Mechanism of murine epidermal maintenance:
Cell division and the voter model’ Phys. Rev. E 2007


