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Multi-step theory of carcinogenesis

Cancer arises as a result of genetic alterations that occur in a stepwise
fashion; these alterations can confer intermediate growth advantages and
cause clonal expansion.
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Cancer arises (mostly) from epithelial tissue (spatially structured).



Types of Epithelium

Transitional

Stratified squamous  Stratified cuboidal Pseudostratified columnar



.
Model of carcinogenesis in epithelium

> Start with lattice (Z mod L)?, each lattice site occupied by a cell
(N=L9

> Initially all cells are type-0 (normal) and reproduce at rate 1.
» Offspring replaces a randomly chosen neighbor cell

» Multi-step carcinogenesis process: type-0 (r=1) mutate at rate uy to
become type-1 premalignant cells, which mutate at rate u, to become
type-2 premalignant cells

> Type-i cells reproduce at rate (1 + s;) relative to type-(i — 1) cells where
si > 0.

> u; < uir1 (genomic instability increases with malignant phenotype)



Model Dynamics

_ multiple fields

pre-cancer field

\

primary tumor second primary tumor

Consider a two-step initiation process (e.g. inactivation of tumor suppressor
genes).

Would like to establish some basic properties as s — 0, N — oo, u1, > — 0:
(1) how fast do premalignant clones grow? (2) how long to first ‘successful’
type-1? (3) type-2?
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Biased voter process

Consider the growth of a family starting from a single type-1 cell, in domain
7° otherwise filled with type-Os.

Type-0 (fitness 1) and type-1 (fitness 1 + s) cells, selection dynamics only
(mutations suppressed).

Biased voter model: considered by Williams and Bjerknes 1972 (tumor
growth); Schwarz 1977 (interacting particle systems)

Define & = {x € Ztype-1 cell at x at time t}.



Basic result for biased voter process: survival
probability of a single mutant clone

On Z9, & # 0, |&| jumps at rate proportional to |9¢|.
Embedded discrete time process Z, is a biased random walk:

At every edge between a 0 and 1, during the next event:
- 0 is replaced by 1 w.p. p, where p = ;%
-1isreplacedby Ow.p. 1 —p

Extinction time of the clone Ty = inf{t > 0 : || = 0}.

_ _ _1—p_ S
P(To—OO)—1 7'0 _1+S




Results on expansion of premalignant clones in Z¢

Starting from one premalignant cell initially with fitness advantage s, no
mutations, and conditioned on nonextinction.

Case d = 1 (trivial): & = [Lt, Ri], an interval. No holes
= B — sast— co. Growth is linear.

Case d > 2 (Bramson and Griffeath 1981): (voter process)
There is a set D such that for any € > 0, 3t. such that for t > ¢,
(1—tDNZe C& C (1 +e)tD

Growth is linear with asymptotic shape D, where D is convex and symmetric.



Speed of expansion

Specifically, how does the (macroscopic) spread rate of a mutant clone
depend on the (microscopic) fitness advantage?

Theorem Let e; be the first unit vector and define the growth rate c4(s) such
that the intersection of D with the x axis is [—c4(S)e1, cq(S)es]. Then, as
s — 0 we have
s d=1
Cy(S) ~ ¢ \/4rs/log(1/s) d=2
1/ 465]3 d=3

where 4 is the probability that two d-dimensional simple random walks
started at the origin and (1,0,.., 0) never hit.



Defining success of clones on a finite domain

On (Z mod L)% we must define what we mean by ‘success’ of any mutant
clone.

Define T; = first time for Z, to hit size i.

1-(1 ! _
ﬁand P(To<o0)=(1+5s)¥

When s — 0and k ~ C/s:

P1(Tk < To) =
Pi(T < To) ~ 5— 5 and P(To < 00) > e°

To have success probability s as in infinite domain case, define success as
reaching size Cs/s, where Cs — oo as s — 0.



Unsuccessful families behave like subcritical BV
processes

Lemma Let & be the set of 1’s in a supercritical BV model in Z9 starting from
a single type-1 at the origin. Let T, be the time at which the process dies out.
Let & be the same process with the fitnesses of type-1 and type-0
interchanged. Then

({I&], t < To}|To < 00) =a {|&],t < To}
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Boundary size of subcritical BV processes

Remark The size of the boundary of the subcritical BV process is (when
& = K):
2dBak,

>3
45,k /log k, =2

a(k) ~ q(k) :{

Using (Cox, Durrett, Perkins 2002).



Upper bound on space-time volume of unsuccessful
families

Recall that for a single mutant clone in 29,

P(extinction) = 3 41—3

Lemma: Space-time volume of unsuccessful premalignant clones
To _
E( [ 1éat) = o(s)
0

s7? d
(s)=14s""log(1/s) d
d

S—1
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Upper bound on space time volume of unsuccessful
families

Let Z, be the biased random walk conditioned to hit 0.

Note that |&] is a continuous time version of Z, that jumps at approximately
rate (2 + s)g(k) when in state k.

Define T,” = min{n > 1 : Z, = k} then

To _ B > P1(Tk< 7-0) . k
E; (/0 |ft|dt> =0 (Z P(TS =00) (2+ S)Q(k)>

k=1




Unsuccessful families don’t wander too far

Lemma Consider a BV process in Z? with type-1s of fitness 1 + s and
type-0’s of fitness 1, starting with a single type-1 at the origin and type-0s
elsewhere. Let & be the set of 1’s at time t in this process, conditioned to die
out.

For M > 0, define the space time box
Gy = ([7/\/1@(3)1/2/2, Me(s)'/?/2]% x [o, Me(s)]) .
For any 6 > 0 there exists M(¢) sufficiently large such that

P({E{ : tZO}ﬂG/l‘:,j(g) #@) < ds.

Using result of (Merle 2008).



Arrival of first successful type-1 cell

Back to full model (on finite domain).

Initialize with all type-0 cells, and define o;: arrival time of first successful
type-i cell. Define the function

S—2

d
(s)=1qs""log(1/s) d
d

871
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and the assumptions

(A0):  (£(s)P"2 < 1/uy
(A1) : N/(s)"? = o

Theorem If (A0), (A1) hold, P(c1 > t/Nuys) — e~'. as s, uy — 0.
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Proof of arrival time - sketch

» Grid space-time, (Z mod L)? x [0, o) into non overlapping boxes with
time length Ms/(s) and spatial volume MZ¢(s)?/? where Ms — oo
sufficiently slowly such that L > ¢(s)'/2Ms and us£(s)\@*2/2MZ*" - 0.

> Previous result: probability of an unsuccessful family exiting its box (and
neighboring boxes) is o(s). We can approximately equate 'success’ with
exiting boxes.

> Probability that any box with > 2 mutations, at least one which is
successful goes to 0.

» Thus successful mutations arrive at rate Nu;s and their fate is
independent of any other mutations.
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Simplified model with mesoscopic growth

We will only consider successful type-1 and type-2 families in spatial domain
D=[-L/2L/2]% c RY

State. Specified by x: (space occupied by successful type-1 families iat time
t). D — x; is filled by type-0s, from here on out we will refer to this set as x¥.

Dynamics.

> Mutations to type-1: Poisson process M1y on on D x [0, co) with intensity
A(x, t) =1 {X€xf}u1 Sq.

» Each point in My initiates a ball with radius expanding as cyt

> B, ={y:|ly — x|| <r}, where|| - || is the £, norm, then if
M N (D X [0, t]) = {(X17 t1), Cey (Xk, tk)},

U Xj,Cq(t—t;)-
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Simplified model with mesoscopic growth

> Mutations to type-2: Poisson process [, with intensity

U4 UQSQC(S1)

)\Q(X7 t) = 1{X6X[}u232/(1 +32)+1{X€X,C} (1 +Sz)

where C(sy) is the expected space-time volume of unsuccessful type-1
families in the biased voter model.

> Process is stopped at the time of arrival of the first successful type-2
mutant.



Results: regimes of initiation dynamics (simplified
model)
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Figure : Coloris log I', where I' = (Nuys1)9*" (cy(s1)u28:) 1.

N = number of cells = 10°,us = 1072, u,b =10"%, b=a—2,d = 2,

S1 =8 =s=.01.



Distribution of initiation time in regime | (I — 0)

Cancer initiation occurs within expanding clone of the first successful
premalignant family.

Theorem: Assume (A3) : ux << 1/4(s)

Thenif I — 0, P(o2 > ﬁs) —~ e tass,u,u — 0.

Note that the assumptions used in the results to motivate the simplified model
are in force throughout these results ((A0), (A1), (A2)).
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Distribution of o2 in regime Il (I — g € (0, x))

Initiation occurs within one of several successful premalignant lesions.

Theorem: Assume (A3)andTl — g
Then,

t t ,ydyd+1

where ~4 is the volume of unit ball in d—dimensions.



.
Distribution of o5 in regime Il (I — oo)

Large number of premalignant lesions produced before cancer initiated from
either a successful or unsuccessful premalignant clone.

Thm: Assume (A3), I — oo.

Then, P(o2 > t/Nuis) — exp ( % pzadl‘/J)
where ag and p, are constants.
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Distribution of o2 in regime I' — oo

Approx. number of successful premalignant clones before cancer arises in
» an successful premalignant lesion (K = '/(4+2))

> an unsuccessful premalignant lesion (J = Uzg(s))

For J/K — oo: arises in successful type-1 family

d+2
P(o2 > Kt/Nuys) — exp <7(d+7$;w>'

For J/K — 0: arises in unsuccessful type-1 family
P(o2 > Jt/Nuis) — exp (—p2aqt).
For J/(J+ K) — 6 € (0,1): arises in either

d+2
P(o2 > (K + J)t/Nuis) — exp (—% — paag(t/(1 — 0))).



Summary

» Proposed/analyzed microscopic model of carcinogenesis (spatial
evolution)

» Used results of analysis to propose approximating stochastic
mesoscopic model

> Studied time of initiation of cancer in mesoscopic model, qualitative
regimes of initiation behavior and dependence on tissue/pathway
parameters.

» Ongoing work: spatial measures of diversity (+Katie Storey)

Next up: Understanding and predicting field cancerization with the
mesoscopic model
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Previous comparisons with experimental data

» Process without mutations, beginning with just two cell types of equal
fitness, is a voter model

» Previous comparisons between 2D voter model and clonal dynamics in
mouse epithelial tissue

> Klein et al, ‘Mechanism of murine epidermal maintenance: Cell division and the voter model Phys.
Rev. E 2007.

> Doupe et. al. ‘The Ordered Architecture of Murine Ear Epidermis is Maintained by Progenitor Cells
with Random Fate’ Developmental Cell, 2012/
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Figure : Klein et al, ‘Mechanism of murine epidermal maintenance:
Cell division and the voter model Phys. Rev. E 2007



