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GRAPHICAL MODEL

High-dimensional limit;|

p— 00,1 —>

| a=n/p=06(1) |

X e R™P, X, eRLX . eR

Probability distribution: . .
1
w1y, = w\W; out y,u’ ,u'W
P(wly, X) vl LB A, - W)

Solvable for some Py,.,(v,, X,), examples follow.




EXAMPLE 1




PERCEPTRON STORAGE CAPACITY

, . o
J. Phys. A: Math. Gen. 21 (1988) 271-284. Printed in the UK J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK

Optimal storage properties of neural network models Three unfinished works on the optimal storage capacity

of networks
E Gardnert and B Derridat
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Abstract. We calculate the number, p =aN of random N-bit patterns that an optimal

neural network can store allowing a given fraction f of bit errors and with the condition

that each right bit is stabilised by a local field at least equal to a parameter K. For each Abstract. The optimal storage properties of three different neural network models are
value of « and K, there is a minimum fraction f.;, of wrong bits. We find a critical line, studied. For two of these models the architecture of the network is a perceptron with =J
a(K) with a.(0)=2. The minimum fraction of wrong bits vanishes for a < a.(K) and interactions, whereas for the third model the output can be an arbitrary function of the
increases from zero for @ > a (K). The calculations are done using a saddle-point method inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
and the order parameters at the saddle point are assumed to be replica symmetric. This minimal fraction of errors are obtained for the first two models. The third model can be
solution is locally stable in a finite region of the K,a plane including the line, « (K} but solved exactly and the exact solution is compared tc the bounds and to the results of
there is a line above which the solution becomes unstable and replica symmetry must be numerical simulations used for the two other models.

broken.




PERCEPTRON STORAGE CAPACITY

input data (patterns): random iid X, ~ /#(0,1/p)
labels: random iid Rademacher Y, ~ o(y, + 1)/2 + o(y, — 1)/2
constraints: Py, (y,. X, -w) =1(y, X, - w > k)

sphericalﬁ perceptron: ||w]||, = 1 binarx\perceptron: we (- I 11

-




PERCEPTRON STORAGE CAPACITY

input data (patterns): random iid X, ~ /#(0,1/p)

labels: random iid Rademacher Y, ~ o(y, + 1)/2 + o(y, — 1)/2
constraints: Py, (y,. X, -w) =1(y, X, - w > k)

spherical perceptron: ||w||, = 1 binary perceptron: w; € {—1, + 1}

Def: storage capacity as the largest a.(x) = n/p such that
with high probability (as p — o0 )

p
dw € [Rp:yﬂZX

W-Wi>K V//lz 1,...,n
i=1
Det: ground state energy as the smallest possible (over choices

of w) number of unsatisfied constraints.




EXAMPLE 2




COMPRESSED SENSING

From 106 wavelet coefficients, keep only 25k.

Most signals of interest are sparse in an appropriate basis.
(Exploited everywhere for data compression. Jpeg2000.)

We record the full data and then compress to keep only few bits.

Idea: Can we record directly only the relevant bits. How?




COMPRESSED SENSING

e.2. Donoho’06

y=Gs*+¢ w* = Ps* X =Go!

e G: measurement matrix of the apparatus (x-ray, NMR).
e ®@: Transform that makes the signal sparse.
y = Xw*+ £
» Random iid X is good in “conserving the information”.
> w* has many zeros, P, (w;) = (1 — p)o(w)) + p (0,1)

e Goal: Recover w* from as few measurements as possible.




EXAMPLE 3




TEACHER-STUDENT NEURAL NETWORK

(k=1, perceptron) Gardner, Derrida’88, (k>1, committee machine) Schwarze'g2

Teacher-network

o Generates data X, n samples of p
dimensional data, e.g. iid Gaussian.

o Generates weights w*, e.g. iid random.

o Generates labelsy.

teacher-weights

data /
X l \
: wi labels

+*%
W Y

Student-network

o Observes X, y, the architecture of the
network.

e How does the best achievable
generalisation error depend on the
number of samples n?

student-weights

data /
; Wo labels

Wa oy

p — 00,1 —

a =nlp=0()

k= O]}

# of hidden units




EXAMPLE 4

with non-separable prior P,




GENERATIVE PRIORS

e.g. Bora, Jalal, Price, Dimakis’17;

y = o(Gs*)

e G: measurement matrix of the apparatus (x-ray, NMR).

® s* signal from a range of generative neural network with

small input dimension k, z* € R*

g* — go(4)(W(4>q0(3)(W(3)¢(2)(W(2)q0(1)(W(1)Z*))))

Signal comes from a generative neural network |




EXAMPLE 5

with non-i11d matrix X




RANDOM FEATURE LEARNING

fixed o .
L iid Gaussian data, C € R’

C
Weivihts 1st layer fixed weights, F € R4

y
el post-activations, X = o(CF)

teacher labels, y, = 6(C, - W*)

Close relation to kernel machines (Rahimi, Recht’o8)

Solvable limit n, p,d — oo, n/p = O(1),d/p = (1)




HIDDEN MANIFOLD MODEL

Goldt, FK, Mézard, L.Z; arXiv:1909.11500

o Real input data lie of low-dimensional manifolds; they can be
generated by GANs and VAEs with small input dimension.

point coordinates
In sub-space

(dimension d). \

ﬁ ..  Non-linear

~ function

low-dimensional
** Sub-space

Data points
(dimension p)

y, = o(C, - w*)

S gz = B — _ — — X
Vé

| . . S :
comes from a generative neural networ




LET'S GET INTO MORE DETAILS




BACK TO EXAMPLE 1

STORAGE CAPACITY




PERCEPTRON STORAGE CAPACITY

input data (patterns): random iid X, ~ /#(0,1/p)

labels: random iid Rademacher Y, ~ o(y, + 1)/2 + o(y, — 1)/2
constraints: Py, (y,. X, -w) =1(y, X, - w > k)

spherical perceptron: ||w||, = 1 binary perceptron: w; € {—1, + 1}

Define storage (Gardner) capacity as the largest a-(x) = n/p
such that with high probability (as p — o0)

p
dw € Rp:yMZX

//”‘Wl'>K V//tz 1,...,71

1

For k = 0, storage capacity = linear separability threshold.




GRAPHICAL MODEL

Limit:
p = 00,1 = 00

a=n/lp=0()

we R, weR
ye R vy eR
xelR X eR X e R

Probability distribution: step function

/

1 £ -
SR ng<wi>ge<yﬂXﬂ W —K)




SPHERICAL PERCEPTRON

spherical perceptron: ||w||, = 1

k=i = 2 Cover 65

»k > 0: Conjecture from replica method by Derrida, Gardner’88.
Proot - Shcherbina, Tirozzi’03.

» k < O0: open problem, replica symmetry breaking present (Franz,
Parisi’16; Franz, Parisi, Sevelev, Urbani, and Zamponi’'17;
Mihailo Stojnic, arXiv:1306.3980)




BINARY PERCEPTRON

binary perceptron: w; € {—1, + 1}

o Krauth, Mézard’89 conjecture from replica method:
qdo- 40 = 0

1

Prs(@o> Go) = 5 ( 1) do + JDtlog 2 cosh (t\/c?o) + a[Dtlog
Saddle point q5’< ; Qak

|

a>ag: gbRS(qO ; qE‘;) < o (K=0r=0833




BINARY PERCEPTRON

e What is known rigorously?

e Kim, Roche’98: 0.005 < a (K =0) < 0.9973

e Ding, Sun’18: tight lower bound, proof technique inspired by
the physics result.

e Xu’'19, sharpness of the threshold.

Perhaps the most basic open problem on artificial
neural networks, with a simple explicit conjecture.

a (K = 0) = 0.833...




SYMMETRIC BINARY PERCEPTRONS

described so far Aubin, Perkins, LZ, 19001.00314

[ 31 <K

rectangle

p
< Z X,iW;
1l




PERCEPTRON STORAGE CAPACITY

log 2

S,UT

log p,

where p. " 1s the probability that a Gaussian random variable

of zero mean and unit variance satisfies the step/u-shape/
rectangle constraint.

g, > K |z, > K =K

step u-function rectangle

never correct Vk < k* ~ 0.817 Vk e RT

Aubin, Perkins, LZ, 1901.00314




CAN SOLUTIONS BE FOUND EFFICIENTLY?

e Statistical physics:

® For any a > O almost all solutions in a frozen-1RSB structure,

i.e. vanishing entropy blobs separated by extensive distance
(Krauth, Mézard’89, Huang, Wong, Kabashima’13).

e Frozen-1RSB solutions are conjectured algorithmically hard
to find with efficient algorithms.

e Rare solutions in a large wide cluster easy to find for
a < 0.75 (Baldassi, Ingrosso, Lucibello, Saglietti, Zecchina'1s).

e ngorously Close to nothing is known.

5 . Open problem 1: Algorlthmlcally constructlve a>o. 005 lower
|  bound for binary perceptron (symmetric, if simpler).




Are perceptrons with random labels relevant
for learning with neural networks?

® No, because generalisation is ill posed.
But see teacher-student setting (starting in 2 slides).

® Yes, because of relation to

o
(a) the VC dimension: dy,- > 7(; p

(b)The Rademacher complexity (next slide).




RADEMACHER COMPLEXITY

Def: Given a function class f, , and random 11d yﬂ e {1}, the

Rademacher complexity is &%, = E, ysup,,— Z Yl K ):
,u 1
Theorem: With high probability R Ieoor =/, Ol

“If you are bad at fitting random labels, you must generalize well.”

cmp.

Note: Forf, (X )= sign(X - W) (the perceptron)
1

&g = —(1 — R) where &g = —inf Z Iy, # £,,(X,)] is the
P

=1
ground state energy of the perceptron problem.

Abbara, Aubin, FK, LZ, 1912.02729




EXAMPLE 2&3
TEACHER-STUDENT

GENERALISED LINEAR MODEL




WHEN CAN A NEURAL NETWORK LEARN
A TEACHER-NEURAL NETWORK?

Teacher-network Student-network

Generates data X, n samples of p
dimensional data, e.g. random input
vectors.

e Observes X, y, the architecture of the
network.

e How does the best achievable
generalisation error depend on the
number of samples n?

Generates weights w*, e.g. iid random.

Generates labels y.

teacher-weights student-weights

data / data /
- labels N labels

Wi Y W ¥




TEACHER-STUDENT PERCEPTRON

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK I 989

Three unfinished works on the optimal storage capacity

of networks data

X weights

E Gardner and B Derrida W

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel l b 1
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France apels

Received 13 December 1988

Abstract. The optimal storage properties of three different neural network models are
studied. For two of these models the architecture of the network is a perceptron with =J
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be
solved exactly and the exact solution is compared tc the bounds and to the results of
numerical simulations used for the two other models.

» Take random iid Gaussian X, and random iid w* from P,

P
o Create Y, = sign ZXMW,-*

o

S - < ~ - 2 - ~ S 2 < - 3 S 2 < - — S g 2 < o = ° ¥ S S

| High-dimensional regime: n — 00 p — 00 p dimensions

n sample

Ry

< -




Solved using the replica method in the high-dimensional limit

RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 41, NUMBER 12 15 JUNE 1990

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

e Binary teacher-weights:
w* e {—1,1}F

e Phase transition in the
generalization error’s dependence

/’“” "\ on the sample complexity.

agp = 1.245 CVAT = 1.493 a=nlp

e
O
S
- S
)
c
‘9
)
(qv)
i
Ie
L
()
c
()
O




STATE-OR-THE-ART

o Best achievable generalisation error for the single-layer teacher-
student model for any activation function, any prior on weights.

e Regions of optimality of approximate message passing algorithm.

e Rigorous proof that the replica solution for the teacher-student
model is correct.

Barbier, FK, Macris, Miolane, LZ, arXiv:1708.03395, COLT 18, PNAS’19




BAYES-OPTIMAL GENERALIZATION

Posterior probability distribution:

1 : a
P(W |y,X) — Z(y,X) EPW(Wi)gPOHt(yM |X,u : W)

where Py, |X, -w)=d6(y, —aX, -w))

(noisy) activation function

R

/ pot s
|
|

> A new sample Xnew 1S given. Bayes-optimal prediction of 1

F a new label: y new — “=P(w|y,X) [G(Xnew ' W)]

# minimization of a loss function (empirical risk minimization)




REPLICA METHOD SOLUTION

|
Def. “quenched” free energy: f= lim —E, ylogZ(y, X)

Theorem 1:

p—oo P

f =supinf frs(m,m)

m M

Jrs(m, m) = ®©p (m) + a®@p (m; p)

where

(I)Pw(’ﬁ) =

_W(e

Va\

mm

out

mwwy+1/ n%wz—rhw2/2) :

2

O, (m;p)=E,, dePout(y | \/Ev +4/p —mz)Ink;

W,WONPW

<y

v,E~ N(0,1)

Pou ¥ [V/mv + /p—mé)]]

p=L pw(Wz)




REPLICA METHOD SOLUTION

|
Def. “quenched” free energy: f= lim —E, ylogZ(y, X)

p—oo D
Theorem 1:
f =supint frs(m,m)

m m™m
A

. . mm
Jrs(m, m) = Dp (m) + a®p (m;p) 5

Theorem 2: Optimal generalisation error

gtest — _V,f [Ué(\/EV)Z] _— _V,Z,f [0§< \/ m*v -+ ‘\/p — M*Z)]z
P = [EPW(WZ)
v,z ~ N(0,1)
£~ B

where m* is the extremizer of frg




PROOF IDEA

Barbier, FK, Macris, Miolane, LZ arXiv:1708.03395

Notice frg(m,m) = @ Pw(n%) + a®d Pout(m; p)

0 Pw(nAfz) is the free energy of a scalar denoising problem

y’=\%w*+5

O p

O

. (m; p) 1isthe free energy of a scalar denoising problem

SeP i ue s e o0
s [EPW(Wz)




PROOF IDEA

Barbier, FK, Macris, Miolane, LZ arXiv:1708.03395

Adaptive interpolation between the original posterior and p + n
independent scalar denoising problems.

Interpolating Hamiltonian (=log-likelihood):

%=—ElnP s +—E Vimw* —w,) + E]°
[ ﬂ:1 ()ut(y'u | t,'u) 2 & [ (Wl Wl) 51]

Sip = 1 — [ Xw] s \/ JO m(t’)dt’vﬂ + \/ JO (p — m(t’))dt’zﬂ




PROOF IDEA

Barbier, FK, Macris, Miolane, LZ arXiv:1708.03395

Interpolating free energy:

1
=0=f~-

1 +mm 1

=D = =2 )+ nlpy (| mCrdrip

0
Main aim: Choose interpolation path m(t) so that f,(t)
effectively does not depend on t!

Key property for this to work (Nishimori): Under expectations
ground truth w* is exchangeable for a sample from P(w|y,X).

E,x s Epoun[80 W, w¥)] = E Ep,,,5[80, w', w)]




PROOF IDEA

Barbier, FK, Macris, Miolane, LZ arXiv:1708.03395

Interpolating free energy:

1
=0=f~-

1 +mm .
ft = 1) = = ———— 4 ®p () + nlp®y (| m(1)dr:p)

out

0
Main aim: Choose interpolation path m(t) so that f,(t)
effectively does not depend on t!

Work hard and get at the end:

f =supinf fre(m,m)

Dy (M) + a®p (m;p)




APPROXIMATE MESSAGE PASSING

1 s -
P(W |y,X) s Z(y,X) EPW(Wi)gPOUt(yM |Xpt ' W)

Belief Propagation

1
m;_,(w) = —P,w) [T m,-iw)

Si—p yFu

Pout(y,u | Z X,ulwl)
[

The p-dimensional integral in BP is algorithmically intractable ...




APPROXIMATE MESSAGE PASSING

1
m;_, (w) =—P, wp | [ m,_w
o y#H

mﬂ—-)i(wi) == 7 jH [dW ]—aﬂ(w )] ut(y,u | Z X'ulwl)
b

The p-dimensional integral in BP is algorithmically intractable ...

BP assumes incoming messages are independent. And there are many of them.
Central limit theorem implies that we can close the equations on only means and
variances of the messages.

Moreover, all the messages depend only weakly on the “target” node, expand
about the point-estimations and collect terms that matter into the so-called
Onsager terms.




Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a
repeat

AMP Update of wy,, V,

0_0 0
Vo gout,p,a t=1

Vi Z Floit
7

t E : t—1 t t—1
Wy — Fp,iai - Vp,gout,/.l.
7

AMP Update of X5, R, gout,u
géut,y, < Jout (w;tu Yps V;f)

—1
E: — | — Z Fiiawgout (w;tu Yus fo)
n

t t—1 t t
R'i — a, + Ez Z Fy-’igout,y,
7
AMP Update of the estimated marginals a;, v;

a;  fa(%5, R;)

vi = fo(25, R)
bt Simple to implement, only
until Convergence on a,v . R .
output: a,v. matrix multiplications, O(p2)

[ dw z Py (z) e3> [ dzPoui(y|z) (z —w) e”
fa(Z,R) — (z—R)2  ? fv(za R) - ZaRfa(ZaR) . g (w Y V) — out Y
dx Px (z) e~ 25— out\%*> J» = ~ —w)?
J X V [ dzPout(y|z)e” " 2v

https://github.com/sphinxteam/GeneralizedLinearModel2017

—— —



Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a
repeat

AMP Update of wy,, V),

0_0 0
Vo, gout,p.a t=1

AMP Update of X;, R, gout,u

AMP Update of the estimated marginals a;, v;

t—t+1
until Convergence on a,v
output: a,v.

Onsager
terms

a;  fa(%5, R;)

vi = fu(Z5, RY)
Simple to implement, only
matrix multiplications, O(p2)

GAMP for prediction:

https://github.com/sphinxteam/GeneralizedLinearModel2017

s

(y|2)6_# (Z—Zz Fnew,ia§_1)2




STATE EVOLUTION

Define: *a! then MSE({t) =p—m'

mt in the AMP algorithm evolves as:
m™*! =20, ()

mt o QO{am@Pout (mt; /0)

Recall the RS free energy

Jrs(m, m) = @p (M) + a®@p (m; p)

out




SELECTED RELATED WORK

AMP is closely related to the Thouless-Anderson-Palmer’76 equations for the
Sherrington-Kirkpatrick spin glass. For perceptron written by Mezard’89 as a
way to derive the replica result without replicas, not used as an actual algorithm.

TAP had a problem with time-indices and hence with convergence (only
Bolthausen fixed the issue in ~2008, and later AMP).

AMP for general prior written by Donoho, Maleki, Montanari in 2009.

G-AMP derived by Rangan’10, but also appeared earlier in Kabashima’o3 (as a
way to unify perceptron and CDMA).

State evolution proven by Bayati, Montanari’11 for Gaussian matrices and
output, by Bayati, Lelarge, Montanari’12 for general iid matrices, and Gaussian
output. General output and Gaussian matrices in Javanmard, Montanari’13.




BOTTOM LINE

1 . L
PorlyKi=c s [P [ ] PouC 1 X, - w)
=1 e

Z(y,

» w* 1s generated from Py, y from Pout. X is random 1id.

//

I/ The aalysis gave us the free energy frs(m)
MMSE = p — argmax frg(m)

MSE pApp = local extremum of frs(m), reached from
un-informed initialisation of state evolution.




SPHERICAL PERCEPTRON

p
Z mez’) g — G
i=1

L

optimal
AMP algorithm
logistic regression

] O |
—— . |
M
| 1 ||

15 2 25 3 35 4 45 5

—
o
P
—
D)
=
@)
o pi
)
qe!
0p)
i
qv!
P
D)
c
D)
o0

# of samples per dimension n/p




BAYES VS RISK MINIMISATION

e So far: Bayes-optimal estimation = marginals of the
posterior:

1 g -
PwiyX) =2 ngwagPout(yﬂ X, - w)

e More common: Empirical risk minimisation =
minimisation of a loss function:

n
min,, [ )" £(3,. X, - W) + Allw|}
=1
e.g. square loss £(y,z2) = (y — z)z, logistic loss £(y, z) = log,(1 + e™%)




BAYES VS RISK MINIMISATION

X -Wi) P, = ./(0,1) |  Optimally regularized logistic |
. regression essentially Bayes-optimal |

Rademacher bound
| optimal
Iogistic regression xxxxx

P
@)
P
P
D)
o
O
o =
o B
qe;
7))}
—
av]
P
QQ
o
Q
o0

# of samples per dimension Aubin, Lu, FK, LZ, 2006.06560




BINARY PERCEPTRON

= mgn(i ) w; € {—1,+1}

1 |\‘\.\:\:\I
Big question: Is there a
polynomial algorithm that |
recovers signal in (at least app = 1493

part of) the hard phase?

Yo 0 — i ' oo o o
0 0.5 1.5 2

# of samples per dimension n/p




SYMMETRIC-DOOR PERCEPTRON

- 00
p—)

symmetric door channel, binary X

w; € {—1,+1} nip =0()

SE ——
yes-optimal
MP, n=10* e

—
®)
—
—
D)
=
o
o p—

Open Problem 2: Can
one prove a SOS lower

bound for this problem? - B 5 > &
(for Alex Wein) <

# of samples per dimension n/p




PHASE DIAGRAM OF (NOISELESS)
SPARSE LINEAR ESTIMATION

Pw Gauss-Bernoulli(p )

AMP = approximate
message passing

Hard for all known algorithms:
T < 0 < QAlg

0.0
00 02 04 06 0.8 1.0

p=K n=1024




COMPRESSED PHASE RETRIEVAL

Absolute value channel, Gauss-Bernoulli X*
1.2 . =
v=|Xw"|

1 -

Py Gauss-Bernoulli(p)

).8 |

).6 |

- You cannot sense
04 | ] compresswely if
~ you lost the signs!

AMPOSSIBLE- - -

Perfect recovery
Spinodal
instability at g=0 - - - -~

0.5
p




PHASE RETRIEVAL

Real Gaussian matrices

y = | Xw*|

P, Gaussian

-
(]
hus
-
w
e
()]
hut
©
-
(o
wn
c
©
]
=

. Hard phase exists
' = |Informed State Evolution | even fOI- COIltiIlllOllS,

= State Evolution | . |
of & cvave ----moo---------L— Lo non-sparse weights.

0.4 0.5 0.6




SOTA FOR PROOFS

For separable priors P,, and Gaussian iid inputs X

e Replica theory gives predictions for generic GLM teacher-
GLM students. (In non-convex non-Bayes-optimal case RSB
is possible.)

e Rigorously proven for (a) Bayes-optimal estimation using
adaptive interpolation. (b) ERM for convex losses using
Gordon mini-max theory (Gaussian comparison).

/5

o Open problem 3 Prove rephea formula (even the RS one)
for any non-convex & non- Bayes optlmal case. }l

_— s e ——p— —— = =




STATISTICAL PHYSICS AND
COMPUTATION IN HIGH DIMENSION
LECTURE IV

[Lenka Zdeborova & Florent Krzakala
(CNRS & CEA Saclay, ENS Paris, EPFL)

Probability, Geometry, and Computation in High Dimensions Boot Camp

Simons institute for Theory of Computing, 19.-28. 8. 2020



ADDING LAYERS OF HIDDEN VARIABLES




ADDING HIDDEN UNITS

Aubin, Maillard, Barbier, Macris, FK, LZ, NeurIPS’18, arXiv:1806.05451.

Committee machine

weights

data
O p input units X w / l \
labels

Vi L=3 layers

(O M hidden units e learned, v; & v fixed

O output unit

n training samples
K < M hidden units in the 1st layer

o L= OO 5 i .
Limit: P — o o = n/p = @(1) M = @(1)

Pya(y,, X)) X Gaussian i.1.d., y from a teacher.

Replica solution by Schwarze’9g2.




GRAPHICAL MODEL

High-dimensional limit:]

X e R™P, X, ER.X,ER

Probability distribution:
1 = L
P(W | ya X) — HPW(Wi)HP()ut(yﬂa Z X/,tiwika V)
Z(y’ X) i=1 T ]

Example:  Pou(,X, - w =]y, =sign( Y X,,) +sign( Y X, )]




The committee machine: Computational to statistical Technical contribution:
gaps in learning a two-layers neural network Appr oximate messa ge
passing and proof of the
Benjamin Aubin*f, Antoine Maillard’, Jean Barbier®¢f .
Florent Krzakala', Nicolas Macris®, Lenka Zdeborova* repll C a fo rmul a 5

Abstract

Heuristic tools from statistical physics have been used in the past to locate the 4 = a
phase transitions and compute the optimal learning and generalization errors in L E 11 GLM ‘ V4 h
the teacher-student scenario in multi-layer neural networks. In this contribution, S S entla y lt

we provide a rigorous justification of these approaches for a two-layers neural

network model called the committee machine. We also introduce a version of

the approximate message passing (AMP) algorithm for the committee machine
that allows to perform optimal learning in polynomial time for a large set of

parameters. We find that there are regimes in which a low generalization error is -‘ Order p arameters K X K

information-theoretically achievable while the AMP algorithm fails to deliver it;
strongly suggesting that no efficient algorithm exists for those cases, and unveiling

a large computational gap. matrices °

Theorem 2.1 (Replica formula) Suppose (H1): The prior Py has bounded support in R ; (H2):
The activation ¢qy; : RE x R — R is a bounded C? function with bounded first and second
derivatives w.rt. its first argument (in R¥ -space); and (H3): Forallp=1,...,mandi=1,...,n
we have i.i.d. X,; ~ N(0,1). Then for the model (2) with kernel (6) the limit of the free entropy is:

lim f,= lim “ElnZ, = sup inf {wpo(r)+a‘l'pout(q; p) — %Tr(rq)}, (7)

n—oo n—oo N TESI_E quI_L_' (p)

where o« = m/n and where Vp_ . (q;p) and ¥p,(r) are the free entropies of two simpler K-
dimensional estimation problems (3) and (4).




SPECIALISATION TRANSITION

Aubin, Maillard, Barbier, Macris, FK, LZ, NeurIPS’18, arXiv:1806.05451.

hidden units
y, = sign [mgn
K=2 Z

e Specialization phase transition
= hidden units specialise to

correlate with specific features.

| ® Consequence Sharp threshold |

for number of samples below |
| which linear regression is the
L best thlng to do

+ sign Z

N
—_
ot

Generalization error €,(«)

—— Specialization




COMPUTATIONAL GAP

Aubin, Maillard, Barbier, Macris, FK, LZ, NeurIPS’18, arXiv:1806.05451.

K
. . 0.5
y,u - Slgn [ Z Slgn( Z Xﬂ,iwi,a>] — DBayes optimal €,4(a)
a:ﬂ_ i * 1ANH)QK&>

- —-- Discontinuous specialization

hidden units K > 1 (after taking n,p — o0)

o
w

0060600060000 000000000

e Large algorithmic gap:

Computational gap

o
N

> IT threshold: n > 7.65Kp

o
—

S

D
D)
—
o
—
—
)
-
-
i
v
=
S
—
D)
-
O
€

» Algorithmic threshold
n > const. K*p

0.0
0 2 4 6 8 10 12 14

a = (# of samples) /(#hidden units x input size)




MORE HIDDEN UNITS?




TWO-(EXTENSIVE)LAYERS PERCEPTRON

' p # input units
Ok # hidden units
O m # output units

2 layers
w: & w learned

n training samples

Limit:- n—>o0 k>0 nlp=6il)
D 00 I - o kip = ©(1)
mip = 0(1)

nd 1nputs X iid teacher welghts wi* and w2 , generate output Y-

Optimal generahsatlon error of the student network?

No known elosed form (not even heurlstlc rephca) formula /



GOING DEEP (MULTI-LAYER)

e Learning multiple (more than one) layers entirely open even for
a single (extensive) hidden layer.

+ O(1) hidden layer = committee machine. Linear networks - not expressive.
NTK - no feature learning. Single hidden layer much larger than dimension =
mean field limit - no closed high-d formula.

//V S e ‘ SR . s s T .. . T
e Deep generative priors for the vector w. (e.g. Manoel, FK, Mezard,
LZ, ISIT, 1701.06981; Gabrié, Luneau, Barbier, Macris, FK, LZ, NeurIPS,

e Data samples coming from learned (deep) generative neural

networks. (Goldt, Mezard, FK, LZ, 1909.11500; Gerace, Loureiro, FK, Mezard,
LZ, ICML, 2002.09339; Goldt, Reeves, Mezard, FK, LZ, 2006.14709 )




GENERATIVE PRIORS

e.g. Bora, Jalal, Price, Dimakis’17;
y = o(Fs*)
e G: known measurement matrix of the apparatus.

® ¢* signal from a range of generative neural network learned

from data. There exists x* € R, k < p such that

¢ ¢(4)(W(4)¢(3)(W(3)¢(2)(W(2)¢(1)(W(1)X*))))

oW, W, i =1,...,L known, after training

.h’ Signal comes from a generative neural network |

— e — = = — ==




GENERATIVE PRIORS

v = 6(Fo W@ pOWp@W®pOwhx#))))

e G: known measurement matrix of the apparatus.

® ¢* signal from a range of generative neural network learned
from data. There exists x* € R, k < p such that
s* = @(W DO W3 DWW xy)))

oW, W, i =1,...,L known, after training

.h’ Signal comes from a generative neural network |

— — — — — = = = =




GENERATIVE PRIORS

= (p(5)(W(5)(p(4)(W(4)¢(3)(W(3)q0(2)(W(2)¢(1)(W(1)X*)))))

e G: known measurement matrix of the apparatus.

® ¢* signal from a range of generative neural network learned
from data. There exists x* € R, k < p such that
s* = @(W DO W3 DWW xy)))

oW, W, i =1,...,L known, after training

.h’ Signal comes from a generative neural network |

—— p—— = — _ _ N =




SOLVABLE CASE

= qﬂ(5)(W(5)(p(4)(W(4)g0(3)(W(3)¢(2)(W(2)(p(1)(W(1)X*)))))

o W(i), i = 1,..., L random iid (or random rotationally invariant).
Vi the aspect ratios of W% are ©(1).

® Latent variables x* € R* generated iid from a prior Py.

y generated by a teacher.

® Goal: From the knowledge of y, W j=1,..., L estimate
back the x*




KEY OBSERVATION ABOUT G-AMP

P
Poui |2, = W, - 0 | | Pxx)
i=1

e — ——_—— T T

Marginals of xandz: | 1
- = Z—ZP(yulzu)N(mequ)

e LPX (mi)e—%Az’w?-l—Biwi
Zx

GAMP update:




MULTI-LAYER GENERALISED
LINEAR ESTIMATION

v qo(5)(W(5)q0(4)(W(4)q0(3)(W(3)q0(2)(W(2)¢(1)(W(1)X*)))))

Introduce auxiliary variables h: Y = pY) (yﬂ ‘ z;‘il Wﬁ?hl’(l‘)>

out

(L) pU=h{ 1) Np—1 yw(L—1)7,(L—1)
b0 RE VR SwE Dl

out =1

@ - pO(H@] 31 O
o =P 3 e,




A "LEGO” PRINCIPLE

generatlve model Measurements

Free energy (and estimation/generalization error)
of chains (trees) of solvable graphical models follow
by recursively combining individual blocks.




MULTI-LAYER AMP

Each layer is G-AMP with an effective prior and an effective

output channel:
& by
)

€
PEGOIVE D€ 1 = | s D0
\/27V@D

1 5 2 £
Pgﬁft(z(f) |A(f+1)B(f+1)) - jdh chit)(h | Z(f)) 6—7,4( tDp24 gy

@D RN




MULTI-LAYER AMP

V(E)( t) = Z [W(f)]Q (3)( ),

(6) Z W(f)h(e) V’u(ﬁ) (t)glgé) (t o 1),

APy = -3 W21 8.40 1),

7

BO(t) =D W, el (1) + AP k7 @)

L

g//(tf)(t) = aa) log z(/)(Algf+l),B/§f+l), V/SL”), a)lgf)),

KO+ 1) = dglog Z VAP, BD, yE-D, @=D),

1 1 A (Z+D)1.2, p(Z+]) _z=a)?
FOACHD, D YO @) = dhd: Py (e ¢ ‘o o
: 4 . zﬂv(bﬂ) Ollt




MULTI-LAYER GENERALISED
LINEAR ESTIMATION

o gﬂ(L)(W(L). : .gﬁ(l)(W(l)X*))

Generalizing single layer results (Manoel, FK, Mezard, LZ, ISIT,
1701.06981; Gabrié, Luneau, Barbier, Macris, FK, LZ, NeurIPS, 1805.09785)

m Asymptotically exact mutual information/free energy.

» MMSE of Bayes-optimal inference.

= State evolution for asymptotic performance of ML-AMP.
® Regions where ML-AMP asymptotically optimal.

= Proof for the Bayes-optimal case (so far only for 2 layers)




EX: PHASE RETRIEVAL y=|Fs]

Aubin, Loureiro, Baker, FK, LZ, 1912.02008

[ ]
Cnarca nrmaor

With generative priors,
compressive phase retrieval
is possible. Hard phase
shrinks/disappears when

using generative priors
(also Hand, Leong, Voroninski’18)

#non—zero components

dimension of signal

— g

Generative prior
s = Relu(Wx)

#latent variables

o dimension of signal




A "LEGO” PRINCIPLE

generative model Measurements

Free energy of chains of solvable
graphical models is solvable.

Modular implementation of AMP for any
tree-like probabilistic graphical model.

Baker, Aubin, FK, LZ, 2004.01571

|
[
1
|
l~
//




TWO-(EXTENSIVE)LAYERS PERCEPTRON

' p # input units
Ok # hidden units
O m # output units

2 layers
w: & w learned

n training samples

Limit:- n—>o0 k>0 nlp=6il)
D 00 I - o kip = ©(1)
mip = 0(1)

nd 1nputs X iid teacher welghts wi* and w2 , generate output Y-

Optimal generahsatlon error of the student network?

No known elosed form (not even heurlstlc rephca) formula /



GOING DEEP (MULTI-LAYER)

e Learning multiple (more than one) layers entirely open even for
a single (extensive) hidden layer.

+ O(1) hidden layer = committee machine. Linear networks - not expressive.
NTK - no feature learning. Single hidden layer much larger than dimension =
mean field limit - no closed high-d formula.

e Deep generative priors for the vector w. (e.g. Manoel, FK, Mezard,

LZ, ISIT, 1701.06981; Gabrié, Luneau, Barbier, Macris, FK, LZ, NeurIPS,
1805.09785; Aubin, Loureiro, Baker, FK, LZ, 1912.02008)

‘e Data samples comlng from learned (deep) generatlve Tneural \‘

networks. (Goldt, Mezard, FK, LZ, 1909.11500; Gerace, Loureiro, FK, Mezard, l

LZ ICML 2002.09339; Goldt Reeves Mezard FK LZ 2006 14709)

-

|




GANs generated photos of people.




DATA ON MANIFOLDS

e Real input data lie of low-dimensional manifolds; they can be
generated by GANs and VAEs with small input dimension.




HIDDEN MANIFOLD MODEL

Goldt, FK, Mézard, LZ; arXiv:1909.11500

e Real input data lie of low-dimensional manifolds; they can be
generated by GANs and VAEs with small input dimension.

e Hidden manifold model (C random iid matrix, F generic).

X,eR C,eR* FeRP
p input & d latent dimension, p>d.

X=RPCY 3 ouc)




Hidden manifold model

low-dimensional
sub-space




Hidden manifold model

low-dimensional point coordinates
sub-space In sub-space
" (dimension d)




Hidden manifold model

low-dimensional point coordinates
sub-space In sub-space
" (dimension d)

Key: The true labels depend only on
the latent representation of the point!




Hidden manifold model

low-dimensional point coordinates
sub-space | In sub-space

(dimension d)

= Non-linear

Data points _
function

(dimension p)

Y C Key: The true labels depend only on
= g ( ) the latent representation of the point!




HIDDEN MANIFOLD VS MNIST

Hidden manifold (d=10) MNIST (odd vs even):

Neural network: single hidden layer, sigmoidal activation, K hidden units.

(b) 0.5-

The neural network learns a simpler function first.

—



MNIST VS HIDDEN MANIFOLD

MNIST (odd vs even): Hidden manifold (d=10)

Two independent students do =~ Two independent students do
not learn the same function! not learn the same function!

TR R T
+ 2

4

' o Vo

+ &l (structured) 02 + elrEs (structured)

¢ €l (i.i.d. Gaussian) 4 &lEr (iid. Gaussian)

4 6 8
K




SOLVING THE HMM

e With random F, least-square regression, and max-margin:
Mei, Montanari’ig, Montanari, Ruan, Sohn, Yan’19.

e Generic F, committee machine on (X,y) from HMM with
online SGD algorithm. Goldt, FK, Mézard, LZ; arXiv:1909.11500

e Generic F, generalized linear regression on (X,y) from
HMM. Gerace, Loureiro, FK, Mézard, LZ, ICML, 2002.09339

/~ YR — _ —— _____ o _ = - R ———— —— =" - = ————— ——

/ . — oSSl 2 \
.f Open problem 4: Prove that result (for convex losses). }




GAUSSIAN EQUIVALENCE

In the limit p,n,d — oo, while n/p = (1) and d/p = O(1),
generalisation error of the committee machine for

1s the same as the one of

X, =KxKFC,+ kN (0,1, + Kl v, = 8(C)

ko = E (@], 51 = E |2/, &, = E |[f(2)*| — kg — K

Formally: Goldt, FK, Mézard, Reeves, L.Z, arXiv:2006.14709




‘A/S = %K%[Egy
qs = %Klz[Efy
QM = %Kl[Eé’y
Vw = aki[Eé,y
q, = alc,%[Ef’y

Replica solution

Consider the unique fixed point of the following system of equations

| o,nly, [
N E (y,a)o) ﬂ(‘y/ 1)]’ V, = VL (1 —Z gﬂ(—z)>,
n/>l3+és /
() =) a45=— [1 —2z8,(=2) + zzgﬂ(—z)]
Z (v o) V2 S q 2
_ iv x —7 —2)+7z / —z ]’ . o guennnns,
A+ 7,7, l 8ul=2) +28(~2) n(y, ) = argmin [(x 2;)) +7(y, x)
’a) i n’>l R ‘.lllllll
0,Z (y, a)o) b 3 1)], I my = 7 (1 — % g,,(—z)), 9 s ) L e o
s X == X
I r |1 Z(y, w) = I _Voe 2 0 (y _',f 0(752.5)
2‘:( a)o) aw”(y,wl)] VW: a0 l7—1+zgﬂ(—z)], . T P
i 1% G W
- — G l = epes
o) ”(y,wl)_wl)z =T iy [y 1+ z7g,( z)],
Z (@ : 2 +d,
¢ qu)v l_zgu(_Z)ﬂzgé(—Z)],

with ol = M*/1/Q*¢ o)

A
gtraining = Z%t + [Ef,y [‘Z (y’ a)(;k) 4 (y’ I’](y, a)ik )]

0*¢

|Gerace, Loureiro, FK, Mezard, LZ, ICML, 2002.09339],



PHASE DIAGRAM

= ert(FC,) Y= Sign(C,,t : WO) classification, least-squares loss

— A=107"7
A=107°
A=10"3
A=10"1
A=1

— A =100

-== Optimal A

—
o
—
—
o
C
o
=
©
.
'©
-
o
c
o
O




RANDOM FEATURES

In the limit p,n,d — oo, while n/p = (1) and d/p = O(1),
generalisation error of

X, =1lcy V.= g(C,) C,€R? inputdata
F e Rpxd features

X, € RP projections

n = # samples, d= input dimension, p = # features (width)




n/d=3
logistic loss, square loss

Over-parametrization

0.5

0.4 -

0.3 -

| -
O
—
—
)
-
O
i)
©
U
©
—
)
c
)
O

— Logistic loss
— Square loss

Training loss




Phase transition of perfect separability

A modern maximume-likelihood theory for

A high-dimensional logistic regression Gaussian

40 Pragya Sur and Emmanuel J. Candés OrthOgC)nal

|
MLE does not exist

30
>.

20

10 \separable

MLE exists | , ,
0- -4 0.5 0.6 0.7

0.1 0.2 0.3 0.4
K ~ [ Theory ‘65

Generalizes the storage capacity phase transition
[Cover '65; Gardner '87; Sur & Candes, '18]



Generalisation error

Generalisation error

Asymptotics accurate even at d=200!

o = =
&) o &)
1

o
o

e o o o H
N & [@)] (o0} o
1 1 1 1

o
o

Regression task

£ loss

Classification task

logistic loss

0.4 A1

0.3 1

0.2 A1

Generalisation error

Gaussian projection

Orthogonal projection

Gaussian projection Orthogonal projection

Optimal A Optimal A

Generalisation error
o
w

o
o

0.5 1.0 1.5 2.0
p/n

- |rst

- |r St

2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
pin

ayer: random Gaussian Matrix
ayer: subsampled Fourier matrix



Generalisation error

Generalisation error

Gaussian v.s. orthogonal features

1.5
A=10"8 S A=107%
o 0.4 1
1.0 1 c
i)
2 0.3
0.5 A ©
()]
3 0.2 -
& 0.
0.0
Gaussian projection Orthogonal projection Gaussian projection Orthogonal projection
1.0
0.8 1 Optimal A S Optimal A
o 0.4
c
0.6 _4(_’_3
©
0.3 A
0.4 1 =
2
0.2 0 0.2 A
G]
0.0 T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.
p/n p/n

The Unreasonable Effectiveness of Structured
Random Orthogonal Embeddings

Nips '17
Krzysztof Choromanski * Mark Rowland *

Google Brain Robotics University of Cambridge
kchoro@google.com mr504@cam.ac.uk

Adrian Weller
University of Cambridge and Alan Turing Institute
aw665@cam.ac.uk



Does the analysis work when

the generative model is deep?




DEEP GENERATIVE MODELS

Goldt, FK, Mézard, Reeves LZ; arXiv:2006.14709

e Data model: Inputs generated by multi-layer neural networks.
Teacher acting on the latent space.

e Result: Closed-formula for online SGD on one (small) hidden
layer neural networks. Generalization of Saad, Sola’g5 ODEs.

e Theoretically justified for random and independent weight
matrices, works great even for learned generators.




Deep convolutional GAN with random weights

Radford et al., ICLR 2016:

512

256

N

c € RP

[ atent variable u 4'
=)

AN g

TR
1"\ o
ﬁ
[4;] I
e
[
THRHEE™S
lI ‘H\O‘)
i

Project and reshape CONV 1

e Just five layers of 2D
convolutions

* No pooling layer,
no fully-connected layers

e RelU activation after each
layer, Tanh at the end

Stride 2 16

CONV 2

-

- PR
-
—
1L —

B
T
~—
-

Stride 2

Images generated by a
DCGAN trained on CIFAR10
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Deep convolutional GAN: ODE vs simulation

(b)

Random weights

0.4 +  pmse(8, 6)
0.21
0.0
100 102 10*
steps /N
1 DFFFI*H'
R12
i R21 +
_1- _|_ R22 '

102 104

steps /N

100

1.0

0.51

0.0 ==

10°
steps /N

Pre-trained weights (CIFAR10)

0.3

0.2

0.1;

0.0+

0.2

0.0

-0.2

+  pmse(8, 6)
10° 102 104
steps /N

i

'_ _I_ R11
_|_ R12
T ohn ERpEEC
1 _I_ R22
10° 102 104
steps /N

0.4

0.2;

0.0

1.51
1.0;
0.51
0.0
—0.5;

F I F
Lo+
+ 0On + +

e
T =y

R
10° 102 104
steps /N
+ v
+ v?
***********‘Fh+
10° 102 104
steps /N

Both experiments: g(x) = erf(x/\/2), M=K=2, n = 0.2, D=100, N=3072

e Great agreement for random weights.

 Reasonable agreement for learned weights.
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The realNVP: normalising flows

Dinh, Sohl-Dickstein, Bengio (ICLR 2017)

* Normalising flows generate inputs using a series
of invertible transformations.

e \ery good agreement between ODE and
simulation for a pre-trained realNVP

0.75
+ pmse(o, 8)
0.501
0.251
0.001 ' ' ' '
10° 102 104 109 102 10%
steps /N steps /N

oo Porfoo Tl 1 0.5 M
s L 1

=
o i = 2 L o + Vl
z i A : 0.0f 4 RU N
- I - i3 - R 0
» ' . Ly R | o + R2
-.q s | I'.-r __--' =3 1
. i f Ll: '|- ¥

05| + &2 e
10° 102 10% 100 102 104
steps /N steps /N

Top half: CIFAR10 images
Bottom half: Samples from realNVP M=K=2, n = 0.2, D=3072, N=3072
trained on CIFAR10
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THANK YOU!




