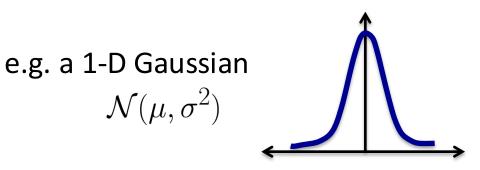
Robust Estimation in Parameter Learning

Ankur Moitra (MIT)

Simons Institute Bootcamp Tutorial, Part 2

CLASSIC PARAMETER LEARNING

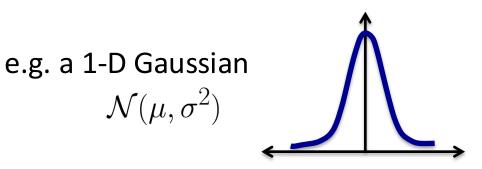
Given samples from an unknown distribution in some *class*



can we accurately estimate its parameters?

CLASSIC PARAMETER LEARNING

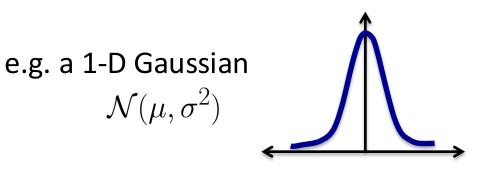
Given samples from an unknown distribution in some *class*



can we accurately estimate its parameters?

CLASSIC PARAMETER LEARNING

Given samples from an unknown distribution in some *class*



can we accurately estimate its parameters?

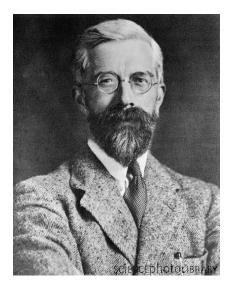
Yes!

empirical mean:

$$\frac{1}{N}\sum_{i=1}^{N}X_{i} \to \mu$$

empirical variance:

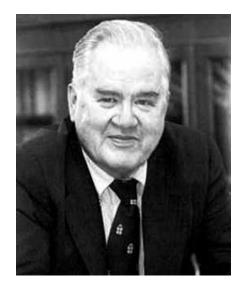
$$\frac{1}{N}\sum_{i=1}^{N} (X_i - \overline{X})^2 \to \sigma^2$$



R. A. Fisher

The **maximum likelihood estimator** is asymptotically efficient (1910-1920)

R. A. Fisher

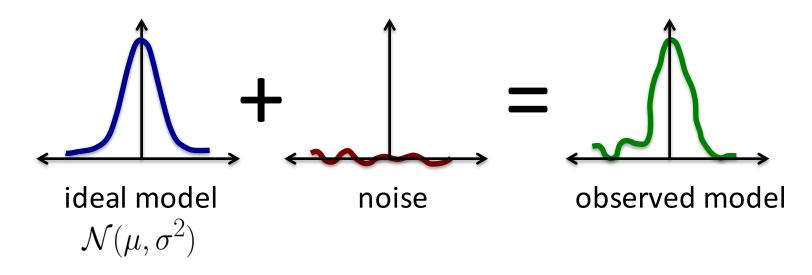


J. W. Tukey

The maximum likelihood estimator is asymptotically efficient (1910-1920) What about **errors** in the model itself? (1960)

ROBUST PARAMETER LEARNING

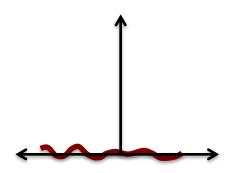
Given **corrupted** samples from a 1-D Gaussian:



can we accurately estimate its parameters?

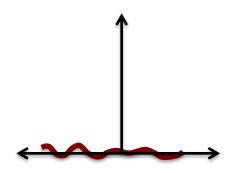
Equivalently:

 L_1 -norm of noise at most $O(\epsilon)$

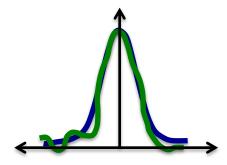


Equivalently:

 L_1 -norm of noise at most $O(\epsilon)$

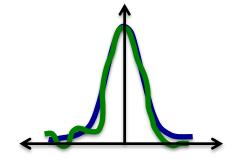


Arbitrarily corrupt O(ε)-fraction of samples (in expectation)



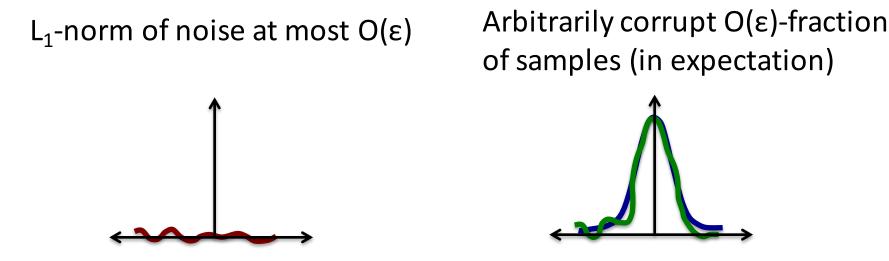
Equivalently:

Arbitrarily corrupt $O(\epsilon)$ -fraction of samples (in expectation)



This generalizes Huber's Contamination Model: An adversary can add an ϵ -fraction of samples

Equivalently:



This generalizes Huber's Contamination Model: An adversary can add an ε-fraction of samples

Outliers: Points adversary has corrupted, **Inliers:** Points he hasn't

Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x), g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x),g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

From the bound on the L₁-norm of the noise, we have:

$$d_{TV}(\bigwedge_{\text{ideal}}, \bigwedge) \leq O(\epsilon)$$

Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x),g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \Big| f(x) - g(x) \Big| dx$$

Goal: Find a 1-D Gaussian that satisfies

$$d_{TV}(\underbrace{ \int }_{\text{estimate}} , \underbrace{ \int }_{\text{ideal}}) \leq O(\epsilon)$$

Definition: The total variation distance between two distributions with pdfs f(x) and g(x) is

$$d_{TV}(f(x), g(x)) \triangleq \frac{1}{2} \int_{-\infty}^{\infty} \left| f(x) - g(x) \right| dx$$

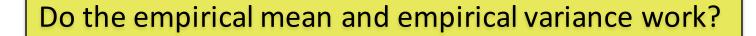
Equivalently, find a 1-D Gaussian that satisfies

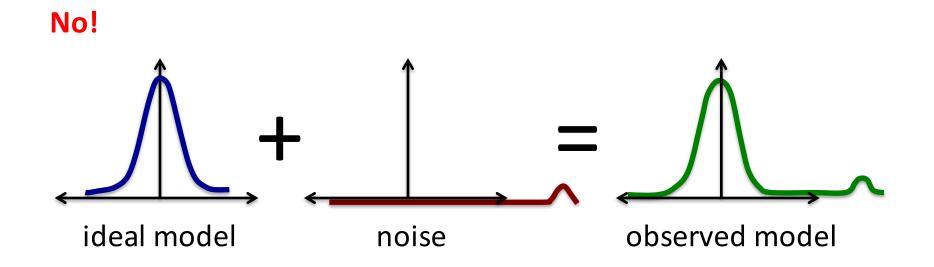
$$d_{TV}(\underbrace{ \int }_{\text{estimate}} , \underbrace{ \int }_{\text{observed}} \leq O(\epsilon)$$

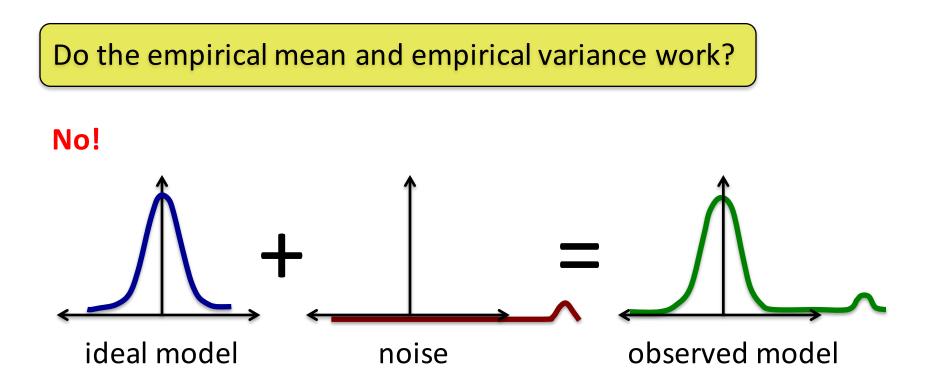
Do the empirical mean and empirical variance work?

Do the empirical mean and empirical variance work?

No!







But the **median** and **median absolute deviation** do work

 $MAD = median(|X_i - median(X_1, X_2, ..., X_n)|)$

 $\mathcal{N}(\mu, \sigma^2)$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \leq O(\epsilon$$
 where $\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$

 $\mathcal{N}(\mu, \sigma^2)$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \leq O(\epsilon)$$

where $\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$

Also called (properly) agnostically learning a 1-D Gaussian

 $\mathcal{N}(\mu, \sigma^2)$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \leq O(\epsilon)$$

where $\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$

What about robust estimation in high-dimensions?

 $\mathcal{N}(\mu, \sigma^2)$

the median and MAD recover estimates that satisfy

$$d_{TV}(\mathcal{N}(\mu, \sigma^2), \mathcal{N}(\widehat{\mu}, \widehat{\sigma}^2)) \leq O(\epsilon)$$

where $\widehat{\mu} = \text{median}(X), \ \widehat{\sigma} = \frac{\text{MAD}}{\Phi^{-1}(3/4)}$

What about robust estimation in high-dimensions?

e.g. microarrays with 10k genes

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part III: Further Results

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part III: Further Results

Main Problem: Given samples from a distribution that is ε-close in total variation distance to a d-dimensional Gaussian

 $\mathcal{N}(\mu, \Sigma)$

give an efficient algorithm to find parameters that satisfy $d_{TV}(\mathcal{N}(\mu,\Sigma),\mathcal{N}(\widehat{\mu},\widehat{\Sigma}))\leq \widetilde{O}(\epsilon)$

Main Problem: Given samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian

 $\mathcal{N}(\mu, \Sigma)$

give an efficient algorithm to find parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \leq \widetilde{O}(\epsilon)$$

Special Cases:

(1) Unknown mean $\mathcal{N}(\mu, I)$

(2) Unknown covariance $\mathcal{N}(0, \Sigma)$

Unknown Mean	Error Guarantee	Running Time

Unknown Mean	Error Guarantee	Running Time
Tukey Median		

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	

Unknown Mean	Error Guarantee	Running Time	
Tukey Median	Ο(ε) 🗸	NP-Hard	X
			_
			,

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard X
Geometric Median		

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard X
Geometric Median		poly(d,N) 🗸

Unknown Mean	Error Guarantee	Running Time
Tukey Median	Ο(ε) 🗸	NP-Hard X
Geometric Median	Ο(ε√₫) 🗙	poly(d,N) 🗸

A COMPENDIUM OF APPROACHES

	nown lean	Erro Guarar		Running Time	_
Tukey Median Geometric Median		Ο(ε)	\checkmark	NP-Hard	Х
		O(ε√đ) X poly(d,N)		\checkmark	
Tourna	ament	Ο(ε)	\checkmark	N ^{O(d)}	X
					-

A COMPENDIUM OF APPROACHES

Unknown Mean	Error Guarantee	Running Time	
Tukey Median	Ο(ε) 🗸	NP-Hard X	
Geometric Median	Ο(ε√₫) 🗙	poly(d,N) 🗸	
Tournament	Ο(ε) 🗸	N ^{O(d)}	
Pruning	Ο(ε√ਰ) 🗙	O(dN) 🗸	

A COMPENDIUM OF APPROACHES

	Unknown Mean	Error Guarantee	Running Time	
٢	Fukey Median	Ο(ε) 🗸	NP-Hard X	
Geometric Median		Ο(ε√₫) 🗙	poly(d,N) 🗸	
	Tournament	Ο(ε) 🗸	N ^{O(d)}	
	Pruning	О(ε√₫) 🗙	O(dN) 🗸	
	•			

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

Equivalently: Computationally efficient estimators can only handle

$$\epsilon \le \frac{1}{\sqrt{d}}$$

fraction of errors and get **non-trivial** (TV < 1) guarantees

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

Equivalently: Computationally efficient estimators can only handle

$$\epsilon \le \frac{1}{100} \text{ for } d = 10,000$$

fraction of errors and get **non-trivial** (TV < 1) guarantees

All known estimators are **hard to compute** or lose **polynomial** factors in the dimension

Equivalently: Computationally efficient estimators can only handle

$$\epsilon \le \frac{1}{100} \text{ for } d = 10,000$$

fraction of errors and get **non-trivial** (TV < 1) guarantees

Is robust estimation algorithmically possible in high-dimensions?

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

RECENT RESULTS

Robust estimation is high-dimensions is algorithmically possible!

Theorem [Diakonikolas, Li, Kamath, Kane, Moitra, Stewart '16]: There is an algorithm when given $N = \widetilde{O}(d^3/\epsilon^2)$ samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$ finds parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \le O(\epsilon \log^{3/2} 1/\epsilon)$$

Moreover the algorithm runs in time poly(N, d)

RECENT RESULTS

Robust estimation is high-dimensions is algorithmically possible!

Theorem [Diakonikolas, Li, Kamath, Kane, Moitra, Stewart '16]: There is an algorithm when given $N = \widetilde{O}(d^3/\epsilon^2)$ samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$ finds parameters that satisfy

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \le O(\epsilon \log^{3/2} 1/\epsilon)$$

Moreover the algorithm runs in time poly(N, d)

Extensions: Can weaken assumptions to sub-Gaussian or bounded second moments (with weaker guarantees) for the mean

Independently and concurrently:

Theorem [Lai, Rao, Vempala '16]: There is an algorithm when given $N = \widetilde{O}(d^2/\epsilon^2)$ samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$ finds parameters that satisfy

$$\|\mu - \hat{\mu}\|_{2} \le C\epsilon^{1/2} \|\Sigma\|_{2}^{1/2} \log^{1/2} d$$
$$\|\Sigma - \hat{\Sigma}\|_{F} \le C\epsilon^{1/2} \|\Sigma\|_{2} \log^{1/2} d$$

Moreover the algorithm runs in time poly(N, d)

Independently and concurrently:

Theorem [Lai, Rao, Vempala '16]: There is an algorithm when given $N = \widetilde{O}(d^2/\epsilon^2)$ samples from a distribution that is ϵ -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$ finds parameters that satisfy

$$\|\mu - \hat{\mu}\|_{2} \le C\epsilon^{1/2} \|\Sigma\|_{2}^{1/2} \log^{1/2} d$$
$$\|\Sigma - \hat{\Sigma}\|_{F} \le C\epsilon^{1/2} \|\Sigma\|_{2} \log^{1/2} d$$

Moreover the algorithm runs in time poly(N, d)

When the covariance is bounded, this translates to:

$$d_{TV}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\widehat{\mu}, \widehat{\Sigma})) \leq \widetilde{O}(\epsilon^{1/2})$$

A GENERAL RECIPE

Robust estimation in high-dimensions:

• Step #1: Find an appropriate parameter distance	
--	--

 Step #2: Detect when the naïve estimator has been compromised

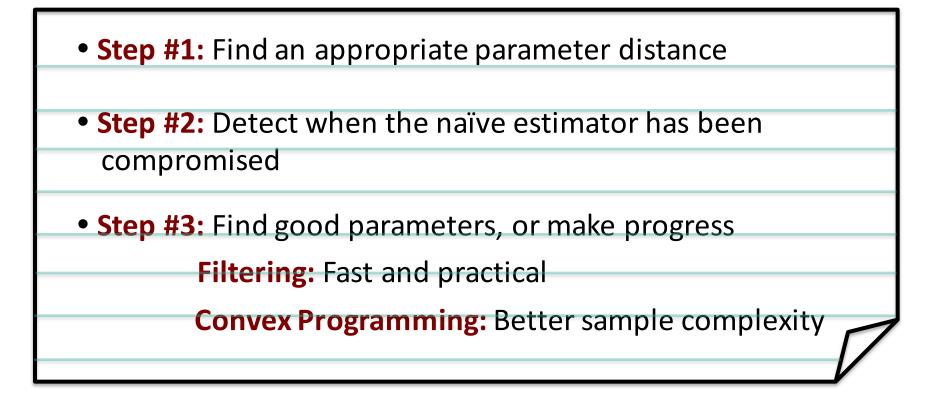
• **Step #3:** Find good parameters, or make progress

Filtering: Fast and practical

Convex Programming: Better sample complexity

A GENERAL RECIPE

Robust estimation in high-dimensions:



Let's see how this works for unknown mean...

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Step #1: Find an appropriate parameter distance for Gaussians

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

This can be proven using Pinsker's Inequality

$$d_{TV}(f,g)^2 \leq \frac{1}{2} \; d_{KL}(f,g)$$

and the well-known formula for KL-divergence between Gaussians

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Corollary: If our estimate (in the unknown mean case) satisfies

$$\|\mu - \widehat{\mu}\|_2 \le \widetilde{O}(\epsilon)$$

then $d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \widetilde{O}(\epsilon)$

Step #1: Find an appropriate parameter distance for Gaussians

A Basic Fact:

(1)
$$d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \frac{\|\mu - \widehat{\mu}\|_2}{2}$$

Corollary: If our estimate (in the unknown mean case) satisfies

$$\|\mu - \widehat{\mu}\|_2 \le \widetilde{O}(\epsilon)$$

then $d_{TV}(\mathcal{N}(\mu, I), \mathcal{N}(\widehat{\mu}, I)) \leq \widetilde{O}(\epsilon)$

Our new goal is to be close in **Euclidean distance**

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

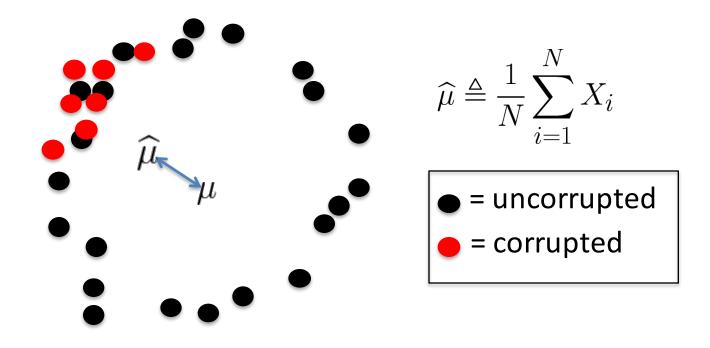
- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised

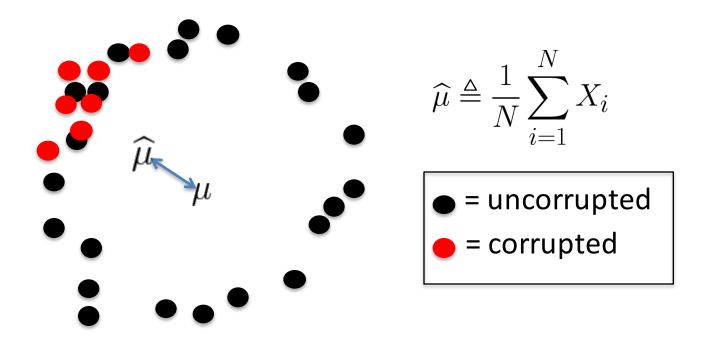
DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised



DETECTING CORRUPTIONS

Step #2: Detect when the naïve estimator has been compromised



There is a direction of large (> 1) variance

Key Lemma: If X₁, X₂, ... X_N come from a distribution that is ε -close to $\mathcal{N}(\mu, I)$ and $N \ge 10(d + \log 1/\delta)/\epsilon^2$ then for (1) $\widehat{\mu} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i$ (2) $\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} (X_i - \widehat{\mu})(X_i - \widehat{\mu})^T$

with probability at least $1-\delta$

$$\|\mu - \widehat{\mu}\|_2 \ge C\epsilon \sqrt{\log 1/\epsilon} \longrightarrow \|\widehat{\Sigma} - I\|_2 \ge C'\epsilon \log 1/\epsilon$$

Key Lemma: If X₁, X₂, ... X_N come from a distribution that is ε -close to $\mathcal{N}(\mu, I)$ and $N \ge 10(d + \log 1/\delta)/\epsilon^2$ then for (1) $\widehat{\mu} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i$ (2) $\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} (X_i - \widehat{\mu})(X_i - \widehat{\mu})^T$

with probability at least $1-\delta$

$$\|\mu - \widehat{\mu}\|_2 \ge C\epsilon \sqrt{\log 1/\epsilon} \longrightarrow \|\widehat{\Sigma} - I\|_2 \ge C'\epsilon \log 1/\epsilon$$

Take-away: An adversary needs to mess up the second moment in order to corrupt the first moment

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Step #3: Either find good parameters, or remove many outliers

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

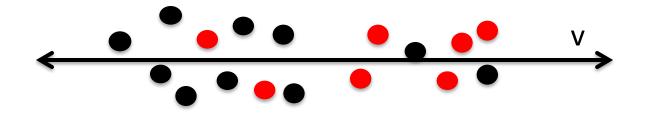
$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points:



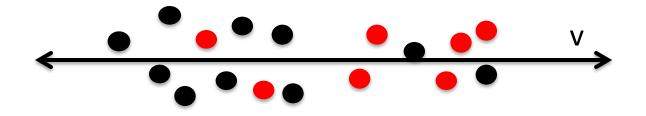
where v is the direction of largest variance

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points:



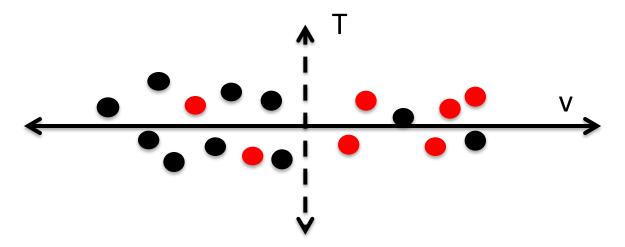
where v is the direction of largest variance, and T has a formula

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points:



where v is the direction of largest variance, and T has a formula

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points If we continue too long, we'd have no corrupted points left!

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$\|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points

If we continue too long, we'd have no corrupted points left!

Eventually we find (certifiably) good parameters

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points

If we continue too long, we'd have no corrupted points left!

Eventually we find (certifiably) good parameters

Running Time:
$$\widetilde{O}(Nd^2)$$
 $\,$ Sample Complexity: $\widetilde{O}(d^2/\epsilon^2)$

Step #3: Either find good parameters, or remove many outliers

Filtering Approach: Suppose that:

$$|\widehat{\Sigma} - I\|_2 \ge C' \epsilon \log 1/\epsilon$$

We can throw out more corrupted than uncorrupted points

If we continue too long, we'd have no corrupted points left!

Eventually we find (certifiably) good parameters

Running Time:
$$\widetilde{O}(Nd^2)$$
 Sample Complexity: $\widetilde{O}(d^2/\epsilon^2)$ Concentration of LTFs

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part III: Further Results

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part III: Further Results

A GENERAL RECIPE

Robust estimation in high-dimensions:

• Step #1: Find an appropriate parameter distance	
--	--

 Step #2: Detect when the naïve estimator has been compromised

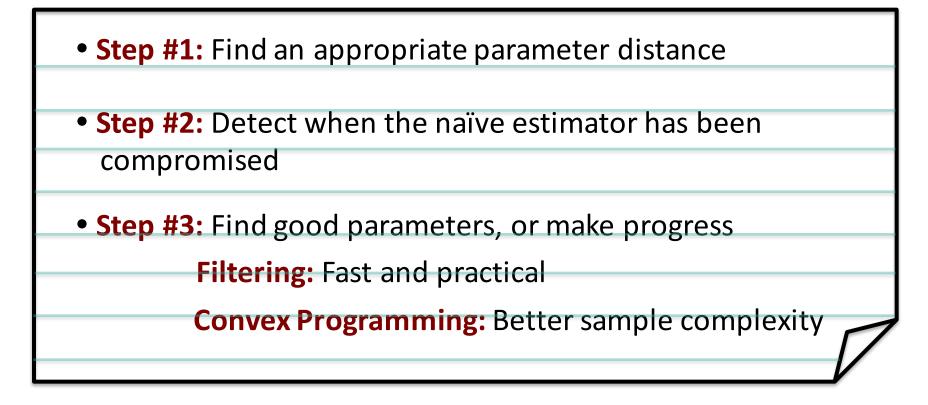
• **Step #3:** Find good parameters, or make progress

Filtering: Fast and practical

Convex Programming: Better sample complexity

A GENERAL RECIPE

Robust estimation in high-dimensions:



How about for **unknown covariance**?

Step #1: Find an appropriate parameter distance for Gaussians

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact:

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I - \widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2}\|_F)$$

Step #1: Find an appropriate parameter distance for Gaussians

Another Basic Fact:

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I - \widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2}\|_F)$$

Again, proven using Pinsker's Inequality

Step #1: Find an appropriate parameter distance for Gaussians **Another Basic Fact:**

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I - \widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2}\|_F)$$

Again, proven using Pinsker's Inequality

Our new goal is to find an estimate that satisfies:

$$\|I - \widehat{\Sigma}^{-1/2} \Sigma \widehat{\Sigma}^{-1/2}\|_F \le \widetilde{O}(\epsilon)$$

Step #1: Find an appropriate parameter distance for Gaussians **Another Basic Fact:**

(2)
$$d_{TV}(\mathcal{N}(0,\Sigma),\mathcal{N}(0,\widehat{\Sigma})) \leq O(\|I - \widehat{\Sigma}^{-1/2}\Sigma\widehat{\Sigma}^{-1/2}\|_F)$$

Again, proven using Pinsker's Inequality

Our new goal is to find an estimate that satisfies:

$$\|I - \widehat{\Sigma}^{-1/2} \Sigma \widehat{\Sigma}^{-1/2}\|_F \le \widetilde{O}(\epsilon)$$

Distance seems strange, but it's the right one to use to bound TV

What if we are given samples from $\mathcal{N}(0, \Sigma)$?

What if we are given samples from $\mathcal{N}(0, \Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

What if we are given samples from $\mathcal{N}(0, \Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

Key Fact: Let $X_i \sim \mathcal{N}(0, \Sigma)$ and $M = \mathbb{E}[(X_i \otimes X_i)(X_i \otimes X_i)^T]$

Then restricted to flattenings of d x d symmetric matrices

$$M = 2\Sigma^{\otimes 2} + \left(\Sigma^{\flat}\right) \left(\Sigma^{\flat}\right)^{T}$$

What if we are given samples from $\mathcal{N}(0, \Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

Key Fact: Let $X_i \sim \mathcal{N}(0, \Sigma)$ and $M = \mathbb{E}[(X_i \otimes X_i)(X_i \otimes X_i)^T]$

Then restricted to flattenings of d x d symmetric matrices

$$M = 2\Sigma^{\otimes 2} + \left(\Sigma^{\flat}\right) \left(\Sigma^{\flat}\right)^{T}$$

Proof uses Isserlis's Theorem

What if we are given samples from $\mathcal{N}(0, \Sigma)$?

How do we detect if the naïve estimator is compromised?

$$\widehat{\Sigma} \triangleq \frac{1}{N} \sum_{i=1}^{N} X_i X_i^T$$

Key Fact: Let $X_i \sim \mathcal{N}(0, \Sigma)$ and $M = \mathbb{E}[(X_i \otimes X_i)(X_i \otimes X_i)^T]$

Then restricted to flattenings of d x d symmetric matrices

$$M = 2\Sigma^{\otimes 2} + \left(\Sigma^{\flat}\right) \left(\Sigma^{\flat}\right)^{T}$$

need to project out

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

If $\widehat{\Sigma}$ were the true covariance, we would have $Y_i \sim N(0,I)$ for inliers

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

If $\widehat{\Sigma}$ were the true covariance, we would have $Y_i \sim N(0,I)$ for inliers, in which case:

$$\frac{1}{N}\sum_{i=1}^{N} \left(Y_i \otimes Y_i\right) \left(Y_i \otimes Y_i\right)^T - 2I$$

would have small restricted eigenvalues

$$Y_i \triangleq (\widehat{\Sigma})^{-1/2} X_i$$

If $\widehat{\Sigma}$ were the true covariance, we would have $Y_i \sim N(0, I)$ for inliers, in which case:

$$\frac{1}{N}\sum_{i=1}^{N} \left(Y_i \otimes Y_i\right) \left(Y_i \otimes Y_i\right)^T - 2I$$

would have small restricted eigenvalues

Take-away: An adversary needs to mess up the (restricted) **fourth** moment in order to corrupt the **second** moment

Given samples that are ε -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Given samples that are ε -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick $X_i - X'_i \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$

Given samples that are ε -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick $X_i - X'_i \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$

Now use algorithm for **unknown covariance**

Given samples that are ε -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick
$$X_i - X'_i \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for **unknown covariance**

Step #2: (Agnostic) isotropic position

$$\widehat{\Sigma}^{-1/2} X_i \sim_{\epsilon} \mathcal{N}(\widehat{\Sigma}^{-1/2} \mu, I)$$

Given samples that are ε -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick
$$X_i - X'_i \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for **unknown covariance**

Step #2: (Agnostic) isotropic position

$$\widehat{\Sigma}^{-1/2} X_i \sim_{\epsilon} \mathcal{N}(\widehat{\Sigma}^{-1/2} \mu, I)$$

right distance, in general case

Given samples that are ε -close in total variation distance to a d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma)$

Step #1: Doubling trick
$$X_i - X'_i \sim_{\epsilon} \mathcal{N}(0, 2\Sigma)$$

Now use algorithm for **unknown covariance**

Step #2: (Agnostic) isotropic position

$$\widehat{\Sigma}^{-1/2} X_i \sim_{\epsilon} \mathcal{N}(\widehat{\Sigma}^{-1/2} \mu, I)$$

right distance, in general case

Now use algorithm for **unknown mean**

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part III: Further Results

OUTLINE

Part I: Introduction

- Robust Estimation in One-dimension
- Robustness vs. Hardness in High-dimensions
- Recent Results

Part II: Agnostically Learning a Gaussian

- Parameter Distance
- Detecting When an Estimator is Compromised
- A Win-Win Algorithm
- Unknown Covariance

Part III: Further Results

LIMITS TO ROBUST ESTIMATION

Theorem [Diakonikolas, Kane, Stewart '16]: Any *statistical query learning** algorithm in the strong corruption model

insertions and deletions

that makes error $o(\epsilon \sqrt{\log 1/\epsilon})$ must make at least $d^{\omega(1)}$ queries

LIMITS TO ROBUST ESTIMATION

Theorem [Diakonikolas, Kane, Stewart '16]: Any *statistical query learning** algorithm in the strong corruption model

insertions and deletions

that makes error $o(\epsilon \sqrt{\log 1/\epsilon})$ must make at least $d^{\omega(1)}$ queries

* Instead of seeing samples directly, an algorithm queries a fnctn $f: \mathbb{R}^d \to [0,1]$

and gets expectation, up to sampling noise

LIST DECODING

What if an adversary can corrupt the **majority** of samples?

LIST DECODING

What if an adversary can corrupt the **majority** of samples?

Theorem [Charikar, Steinhardt, Valiant '17]: Given samples from a distribution with mean μ and covariance $\Sigma \leq \sigma^2 I$ where $1 - \alpha$ have been corrupted, there is an algorithm that outputs

$$\widehat{\mu}_1, \widehat{\mu}_2, \dots \widehat{\mu}_L$$

with $L \leq O(\frac{1}{\alpha})$ that satisfies $\min_i \|\mu - \widehat{\mu}_i\|_2 \leq O\left(\frac{\sigma}{\alpha^{1/2}}\right)$

This extends to mixtures straightforwardly

LIST DECODING

What if an adversary can corrupt the **majority** of samples?

Theorem [Charikar, Steinhardt, Valiant '17]: Given samples from a distribution with mean μ and covariance $\Sigma \leq \sigma^2 I$ where $1 - \alpha$ have been corrupted, there is an algorithm that outputs

$$\widehat{\mu}_1, \widehat{\mu}_2, \dots \widehat{\mu}_L$$

with $L \leq O(\frac{1}{\alpha})$ that satisfies $\min_i \|\mu - \widehat{\mu}_i\|_2 \leq O\left(\frac{\sigma}{\alpha^{1/2}}\right)$

This extends to mixtures straightforwardly

[Kothari, Steinhardt '18], [Diakonikolas et al '18] gave improved guarantees, but under Gaussianity

BEYOND GAUSSIANS

Can we relax the distributional assumptions?

BEYOND GAUSSIANS

Can we relax the distributional assumptions?

Theorem [Kothari, Steurer '18] [Hopkins, Li '18]: Given ε-corrupted samples from a k-certifiably subgaussian distribution there is an algorithm that outputs

$$\begin{split} \|\mu - \widehat{\mu}\| &\leq Ck^{1/2} \epsilon^{1-1/k} \|\Sigma\|^{1/2} \\ (1 - C\epsilon^{1-2/k})\Sigma \preceq \widehat{\Sigma} \preceq (1 + C\epsilon^{1-2/k})\Sigma \end{split}$$

BEYOND GAUSSIANS

Can we relax the distributional assumptions?

Theorem [Kothari, Steurer '18] [Hopkins, Li '18]: Given ε-corrupted samples from a k-certifiably subgaussian distribution there is an algorithm that outputs

$$\begin{split} \|\mu - \widehat{\mu}\| &\leq C k^{1/2} \epsilon^{1-1/k} \|\Sigma\|^{1/2} \\ (1 - C \epsilon^{1-2/k}) \Sigma \preceq \widehat{\Sigma} \preceq (1 + C \epsilon^{1-2/k}) \Sigma \end{split}$$

When you only know bounds on the moments, these guarantees are optimal

Estimating the mean accurately with **heavy tailed** distributions?

Estimating the mean accurately with **heavy tailed** distributions?

Theorem [Hopkins '18]: Given n iid samples from a distribution with mean μ and covariance Σ and target confidence $1 - \delta$, there is a polynomial time algorithm that outputs $\hat{\mu}$ satisfying

$$\mathbb{P}\Big[\|\mu - \widehat{\mu}\| > C\Big(\sqrt{\frac{\mathrm{Tr}\Sigma}{n}} + \sqrt{\frac{\|\Sigma\|\log 1/\delta}{n}}\Big)\Big] \le \delta$$

Estimating the mean accurately with **heavy tailed** distributions?

Theorem [Hopkins '18]: Given n iid samples from a distribution with mean μ and covariance Σ and target confidence $1 - \delta$, there is a polynomial time algorithm that outputs $\hat{\mu}$ satisfying

$$\mathbb{P}\Big[\|\mu - \widehat{\mu}\| > C\Big(\sqrt{\frac{\mathrm{Tr}\Sigma}{n}} + \sqrt{\frac{\|\Sigma\|\log 1/\delta}{n}}\Big)\Big] \le \delta$$

The empirical mean doesn't work, and median-of-means estimator due to [Lugosi, Mendelson '18] is hard to compute

Estimating the mean accurately with **heavy tailed** distributions?

Theorem [Hopkins '18]: Given n iid samples from a distribution with mean μ and covariance Σ and target confidence $1 - \delta$, there is a polynomial time algorithm that outputs $\hat{\mu}$ satisfying

$$\mathbb{P}\Big[\|\mu - \widehat{\mu}\| > C\Big(\sqrt{\frac{\mathrm{Tr}\Sigma}{n}} + \sqrt{\frac{\|\Sigma\|\log 1/\delta}{n}}\Big)\Big] \le \delta$$

The empirical mean doesn't work, and median-of-means estimator due to [Lugosi, Mendelson '18] is hard to compute

[Cherapanamjeri, Flammarion, Bartlett '19] gave faster algorithms based on gradient descent

Summary:

- Nearly optimal algorithm for agnostically learning a high-dimensional Gaussian
- General recipe using restricted eigenvalue problems
- Further applications to other mixture models
- What's next for algorithmic robust statistics?

Summary:

- Nearly optimal algorithm for agnostically learning a high-dimensional Gaussian
- General recipe using restricted eigenvalue problems
- Further applications to other mixture models
- What's next for algorithmic robust statistics?

Thanks! Any Questions?