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empirical	mean:	 empirical	variance:	

Yes!
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The	maximum	likelihood	
estimator	is	asymptotically	
efficient	(1910-1920)

R.	A.	Fisher J.	W.	Tukey

What	about	errors in	the	
model	itself?	(1960)



ROBUST	PARAMETER	LEARNING
Given	corrupted samples	from	a	1-D	Gaussian:

can	we	accurately	estimate	its	parameters?

=+
ideal	model noise observed	model
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How	do	we	constrain	the	noise?

Equivalently:

This	generalizes	Huber’s	Contamination	Model:	An	adversary	can
add an	ε-fraction	of	samples

L1-norm	of	noise	at	most	O(ε) Arbitrarily	corrupt	O(ε)-fraction
of	samples	(in	expectation)

Outliers:	Points	adversary	has	corrupted,	Inliers:	Points	he	hasn’t
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In	what	norm	do	we	want	the	parameters	to	be	close?

Definition:	The	total	variation	distance	between	two	distributions
with	pdfs f(x)	and	g(x)	is

estimate ideal

Goal:	Find	a	1-D	Gaussian	that	satisfies



In	what	norm	do	we	want	the	parameters	to	be	close?

estimate observed

Definition:	The	total	variation	distance	between	two	distributions
with	pdfs f(x)	and	g(x)	is

Equivalently,	find	a	1-D	Gaussian	that	satisfies
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No!

=+
ideal	model noise observed	model

But	the	median and	median	absolute	deviation	do	work
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e.g.	microarrays	with	10k	genes

Fact	[Folklore]:	Given	samples	from	a	distribution	that	is	ε-close
in	total	variation	distance	to	a	1-D	Gaussian

the	median	and	MAD	recover	estimates	that	satisfy

where
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in	total	variation	distance	to	a	d-dimensional	Gaussian

give	an	efficient	algorithm	to	find	parameters	that	satisfy

Special	Cases:

(1)	Unknown	mean

(2)	Unknown	covariance
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A	COMPENDIUM	OF	APPROACHES

Error	
Guarantee

Running	
Time

TukeyMedian O(ε) NP-Hard

Geometric	Median O(ε√d) poly(d,N)

Tournament O(ε) NO(d)

O(ε√d)Pruning O(dN)

Unknown
Mean

…
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The	Price	of	Robustness?

All	known	estimators	are	hard	to	compute	or
lose	polynomial factors	in	the	dimension

Equivalently:	Computationally	efficient	estimators	can	only	handle

fraction	of	errors	and	get	non-trivial	(TV	<	1)	guarantees

Is	robust	estimation	algorithmically	possible	in	high-dimensions?
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RECENT	RESULTS

Theorem	[Diakonikolas,	Li,	Kamath,	Kane,	Moitra,	Stewart	‘16]:	
There	is	an	algorithm	when	given																											samples	from	a	
distribution	that	is	ε-close	in	total	variation	distance	to	a	
d-dimensional	Gaussian																finds	parameters	that	satisfy

Robust	estimation	is	high-dimensions	is	algorithmically	possible!

Moreover	the	algorithm	runs	in	time	poly(N,	d)

Extensions:	Can	weaken	assumptions	to	sub-Gaussian	or	bounded
second	moments	(with	weaker	guarantees)	for	the	mean
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Independently	and	concurrently:	

Theorem	[Lai,	Rao,	Vempala ‘16]:	There	is	an	algorithm	when	given	
samples	from	a	distribution	that	is	ε-close	in	total	

variation	distance	to	a	d-dimensional	Gaussian																finds	
parameters	that	satisfy

Moreover	the	algorithm	runs	in	time	poly(N,	d)

When	the	covariance	is	bounded,	this	translates	to:
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� Step	#1:	Find	an	appropriate	parameter	distance

� Step	#2:	Detect	when	the	naïve	estimator	has	been	
compromised	

� Step	#3:	Find	good	parameters,	or	make	progress
Filtering:	Fast	and	practical
Convex	Programming:	Better	sample	complexity
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Robust	estimation	in	high-dimensions:

� Step	#1:	Find	an	appropriate	parameter	distance

� Step	#2:	Detect	when	the	naïve	estimator	has	been	
compromised	

� Step	#3:	Find	good	parameters,	or	make	progress
Filtering:	Fast	and	practical
Convex	Programming:	Better	sample	complexity

Let’s	see	how	this	works	for	unknown	mean…
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PARAMETER	DISTANCE

Step	#1:	Find	an	appropriate	parameter	distance	for	Gaussians

A	Basic	Fact:	

(1)

Corollary:	If	our	estimate	(in	the	unknown	mean	case)	satisfies

then

Our	new	goal	is	to	be	close	in	Euclidean	distance
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Step	#2:	Detect	when	the	naïve	estimator	has	been	compromised

=	uncorrupted
=	corrupted

There	is	a	direction	of	large	(>	1)	variance
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to																	and																																													then	for	
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Key	Lemma:	If	X1,	X2,	…	XN come	from	a	distribution	that	is	ε-close
to																	and																																													then	for	

(1) (2)

with	probability	at	least	1-δ

Take-away:	An	adversary	needs	to	mess	up	the	second	moment
in	order	to	corrupt	the	first	moment	
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A	WIN-WIN	ALGORITHM

Step	#3:	Either	find	good	parameters,	or	remove	many	outliers

Filtering	Approach:	Suppose	that:

We	can	throw	out	more	corrupted	than	uncorrupted	points

If	we	continue	too	long,	we’d	have	no	corrupted	points	left!

Eventually	we	find	(certifiably)	good	parameters	

Running	Time:	 Sample	Complexity:	
Concentration	of	LTFs
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Robust	estimation	in	high-dimensions:

� Step	#1:	Find	an	appropriate	parameter	distance

� Step	#2:	Detect	when	the	naïve	estimator	has	been	
compromised	

� Step	#3:	Find	good	parameters,	or	make	progress
Filtering:	Fast	and	practical
Convex	Programming:	Better	sample	complexity

How	about	for	unknown	covariance?
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PARAMETER	DISTANCE

Step	#1:	Find	an	appropriate	parameter	distance	for	Gaussians

Another	Basic	Fact:	

Again,	proven	using	Pinsker’s Inequality

(2)

Our	new	goal	is	to	find	an	estimate	that	satisfies:

Distance	seems	strange,	but	it’s	the	right	one	to	use	to	bound	TV
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What	if	we	are	given	samples	from														?

How	do	we	detect	if	the	naïve	estimator	is	compromised?

Key	Fact:	Let	 and

Then	restricted	to	flattenings of	d	x	d	symmetric	matrices

Proof	uses	Isserlis’s Theorem
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need	to	project	out

What	if	we	are	given	samples	from														?

How	do	we	detect	if	the	naïve	estimator	is	compromised?

Key	Fact:	Let	 and

Then	restricted	to	flattenings of	d	x	d	symmetric	matrices
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Key	Idea: Transform	the	data,	look	for	restricted	large	eigenvalues

If					were	the	true	covariance,	we	would	have	
for	inliers,	in	which	case:

would	have	small	restricted	eigenvalues

Take-away:	An	adversary	needs	to	mess	up	the	(restricted)	fourth
moment	in	order	to	corrupt	the	secondmoment	
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Given	samples	that	are	ε-close	in	total	variation	distance	to	a	
d-dimensional	Gaussian

Step	#1:	Doubling	trick

Now	use	algorithm	for	unknown	covariance

Step	#2:	(Agnostic)	isotropic	position

Now	use	algorithm	for	unknown	mean
right	distance,	in	general	case
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Theorem	[Diakonikolas,	Kane,	Stewart	‘16]:	Any	statistical	query	
learning* algorithm	in	the	strong	corruption	model

that	makes	error																												must	make	at	least												queries

*	Instead	of	seeing	samples	directly,	an	algorithm	queries	a	fnctn

and	gets	expectation,	up	to	sampling	noise

insertions	and	deletions
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What	if	an	adversary	can	corrupt	the	majority of	samples?

This	extends	to	mixtures	straightforwardly

Theorem	[Charikar,	Steinhardt,	Valiant	‘17]:	Given	samples	from
a	distribution	with	mean					and	covariance																			where		
have	been	corrupted,	there	is	an	algorithm	that	outputs

with that	satisfies

[Kothari,	Steinhardt	‘18],	[Diakonikolas et	al	’18] gave	improved
guarantees,	but	under	Gaussianity
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Theorem	[Kothari,	Steurer ‘18] [Hopkins,	Li	’18]:	Given	ε-corrupted
samples	from	a	k-certifiably	subgaussian distribution	there	is	an
algorithm	that	outputs

Can	we	relax	the	distributional	assumptions?

When	you	only	know	bounds	on	the	moments,	these	guarantees
are	optimal
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Estimating	the	mean	accurately	with	heavy	tailed	distributions?

Theorem	[Hopkins	‘18]:	Given	n	iid samples	from	a	distribution
with	mean					and	covariance					and	target	confidence												,
there	is	a	polynomial	time	algorithm	that	outputs					satisfying	

The	empirical	mean	doesn’t	work,	and	median-of-means	estimator	
due	to [Lugosi,	Mendelson ‘18]	is	hard	to	compute

[Cherapanamjeri,	Flammarion,	Bartlett	‘19]	gave	faster	algorithms
based	on	gradient	descent
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