# Tensor Decompositions and Their Applications

## Ankur Moitra (MIT)

Simons Institute Bootcamp Tutorial, Part 1

# **Charles Spearman (1904):** There are two types of intelligence, *eductive* and *reproductive*

# **Charles Spearman (1904):** There are two types of intelligence, *eductive* and *reproductive*

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

**Charles Spearman (1904):** There are two types of intelligence, *eductive* and *reproductive* 

To test this theory, he invented Factor Analysis:

```
students (1000)
```

tests (10)



eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

**Charles Spearman (1904):** There are two types of intelligence, *eductive* and *reproductive* 

To test this theory, he invented Factor Analysis:



eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information





When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?



Given: 
$$M = \sum a_i \otimes b_i$$
  
 $= AB^{\top} = (AR)(R^{-1}B^{\top})$   
"correct" factors alternative factorization  
When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?

**Claim:** The factors  $\{a_i\}$  and  $\{b_i\}$  are not determined uniquely unless we impose additional conditions on them

Given: 
$$M = \sum a_i \otimes b_i$$
  
 $= AB^\top = (AR)(R^{-1}B^\top)$   
"correct" factors alternative factorization  
When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?

Claim: The factors  $\{a_i\}$  and  $\{b_i\}$  are not determined uniquely unless we impose additional conditions on them

e.g. if  $\{a_i\}$  and  $\{b_i\}$  are orthogonal, or  $\mathrm{rank}(M)=1$ 

Given: 
$$M = \sum a_i \otimes b_i$$
  
 $= AB^{\top} = (AR)(R^{-1}B^{\top})$   
"correct" factors alternative factorization  
When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?

**Claim:** The factors  $\{a_i\}$  and  $\{b_i\}$  are not determined uniquely unless we impose additional conditions on them

e.g. if  $\{a_i\}$  and  $\{b_i\}$  are orthogonal, or  $\mathrm{rank}(M)=1$ 

This is called the **rotation problem**, and is a major issue in factor analysis and motivates the study of **tensor methods**...

### OUTLINE

#### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

#### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

### OUTLINE

#### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

#### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

#### MATRIX DECOMPOSITIONS



$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_R \otimes b_R$$

## MATRIX DECOMPOSITIONS



$$M = a_1 \otimes b_1 + a_2 \otimes b_2 + \dots + a_R \otimes b_R$$

## **TENSOR DECOMPOSITIONS**



$$T = a_1 \otimes b_1 \otimes c_1 + \dots + a_R \otimes b_R \otimes c_R$$

(i, j, k) entry of  $x \otimes y \otimes z$  is x(i) imes y(j) imes z(k)

**Theorem [Jennrich 1970]:** Suppose  $\{a_i\}$  and  $\{b_i\}$  are linearly independent and no pair of vectors in  $\{c_i\}$  is a scalar multiple of each other...

**Theorem [Jennrich 1970]:** Suppose  $\{a_i\}$  and  $\{b_i\}$  are linearly independent and no pair of vectors in  $\{c_i\}$  is a scalar multiple of each other. Then

$$T = a_1 \otimes b_1 \otimes c_1 + \dots + a_R \otimes b_R \otimes c_R$$

is unique up to permuting the rank one terms and rescaling the factors.

**Theorem [Jennrich 1970]:** Suppose  $\{a_i\}$  and  $\{b_i\}$  are linearly independent and no pair of vectors in  $\{c_i\}$  is a scalar multiple of each other. Then

$$T = a_1 \otimes b_1 \otimes c_1 + \dots + a_R \otimes b_R \otimes c_R$$

is unique up to permuting the rank one terms and rescaling the factors.

Equivalently, the rank one factors are **unique** 

**Theorem [Jennrich 1970]:** Suppose  $\{a_i\}$  and  $\{b_i\}$  are linearly independent and no pair of vectors in  $\{c_i\}$  is a scalar multiple of each other. Then

$$T = a_1 \otimes b_1 \otimes c_1 + \dots + a_R \otimes b_R \otimes c_R$$

is unique up to permuting the rank one terms and rescaling the factors.

Equivalently, the rank one factors are **unique** 

There is a simple algorithm to compute the factors too!



**Compute**  $T(\cdot, \cdot, x)$ 



i.e. add up matrix slices

 $\sum_{i} x_i T_i$ 



**Compute**  $T(\cdot, \cdot, x)$ 



If  $T=a\otimes b\otimes c$  then  $T(\cdot,\cdot,x)=\langle c,x\rangle a\otimes b$ 

JENNRICH'S ALGORITHM

Compute  $T(\cdot, \cdot, x) = \sum \langle c_i, x \rangle a_i \otimes b_i$ 



i.e. add up matrix slices

 $\sum_{i} x_i T_i$ 

JENNRICH'S ALGORITHM

Compute  $T(\cdot, \cdot, x) = \sum \langle c_i, x \rangle a_i \otimes b_i$ 



(x is chosen uniformly at random from  $\mathbb{S}^{n-1}$  )





(x is chosen uniformly at random from  $\mathbb{S}^{n-1}$  )

• Compute  $T(\cdot, \cdot, x) = AD_x B^\top$ 

Compute  $T(\cdot, \cdot, x) = AD_xB^+$ Compute  $T(\cdot, \cdot, y) = AD_yB^{+}$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$   
 $AD_x B^{\top} (B^{\top})^{-1} D_y^{-1} A^{-1}$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$   
 $AD_x D_y^{-1} A^{-1}$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$   
 $AD_x D_y^{-1} A^{-1}$ 

**Claim:** whp (over x,y) the eigenvalues are distinct, so the Eigendecomposition is unique and recovers  $a_i$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$   
Diagonalize  $T(\cdot, \cdot, y) \left(T(\cdot, \cdot, x)\right)^{-1}$ 

Compute 
$$T(\cdot, \cdot, x) = AD_x B^{\top}$$
  
Compute  $T(\cdot, \cdot, y) = AD_y B^{\top}$   
Diagonalize  $T(\cdot, \cdot, x) \left(T(\cdot, \cdot, y)\right)^{-1}$   
Diagonalize  $T(\cdot, \cdot, y) \left(T(\cdot, \cdot, x)\right)^{-1}$ 

Match up the factors (their eigenvalues are reciprocals) and find  $\{c_i\}_i$  by solving a linear syst.

Given: 
$$M = \sum a_i \otimes b_i$$

When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?

Only possible if  $\{a_i\}$  and  $\{b_i\}$  are orthogonal, or  $\mathrm{rank}(M)=1$ 

Given: 
$$M = \sum a_i \otimes b_i$$

When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?

Only possible if  $\{a_i\}$  and  $\{b_i\}$  are orthogonal, or  $\mathrm{rank}(M)=1$ 

Given: 
$$T = \sum a_i \otimes b_i \otimes c_i$$

When can we find the factors  $\{a_i\}$ ,  $\{b_i\}$  and  $\{c_i\}$  uniquely?

Given: 
$$M = \sum a_i \otimes b_i$$

When can we find the factors  $\{a_i\}$  and  $\{b_i\}$  uniquely?

Only possible if  $\{a_i\}$  and  $\{b_i\}$  are orthogonal, or  $\mathrm{rank}(M)=1$ 

Given: 
$$T = \sum a_i \otimes b_i \otimes c_i$$

When can we find the factors  $\{a_i\}$ ,  $\{b_i\}$  and  $\{c_i\}$  uniquely?

**Jennrich:** If  $\{a_i\}$  and  $\{b_i\}$  are full rank and no pair in  $\{c_i\}$  are scalar multiples of each other

# OUTLINE

### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

# OUTLINE

### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval



# "Tree of Life"









In each sample, we observe a symbol ( $\Sigma$ ) at each extant ( $\bigcirc$ ) node where we sample from  $\pi$  for the root, and propagate it using  $R_{x,y}$ , etc

# HIDDEN MARKOV MODELS





# = hidden $\pi: \Sigma_s \to \mathbb{R}^+$ "initial distribution" = observed . . . С a D

**HIDDEN MARKOV MODELS** 

# HIDDEN MARKOV MODELS



# HIDDEN MARKOV MODELS



In each sample, we observe a symbol ( $\sum_{O}$ ) at each obs. ( $\bigcirc$ ) node where we sample from  $\pi$  for the start, and propagate it using  $R_{x,y}$ , etc ( $\sum_{S}$ )

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$  , etc are full rank so that we can re-root the tree arbitrarily

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$  , etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln|\det(P_{x,y})| + \frac{1}{2} \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where  $P_{x,y}$  is the joint distribution

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$ , etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln|\det(P_{x,y})| + \frac{1}{2} \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where  $P_{x,y}$  is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$ , etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln|\det(P_{x,y})| + \frac{1}{2} \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where  $P_{x,y}$  is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

#### (It's not even obvious it's nonnegative!)

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$  , etc are full rank so that we can re-root the tree arbitrarily

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}'}$  etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests



to reconstruction the topology

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$ , etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests



to reconstruction the topology, from polynomially many samples

Usually, we assume  $T_{\boldsymbol{x},\boldsymbol{y}}$ , etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests



to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is the main issue...









# Joint distribution over (a, b, c):

$$\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a|z=\sigma] \otimes \mathbb{P}[b|z=\sigma] \otimes \mathbb{P}[c|z=\sigma]$$



# Joint distribution over (a, b, c):

$$\sum_{\sigma} \mathbb{P}[z = \sigma] \mathbb{P}[a|z = \sigma] \otimes \mathbb{P}[b|z = \sigma] \otimes \mathbb{P}[c|z = \sigma]$$

$$\underset{\text{columns of } \mathbf{R}_{z,b}}{\overset{\text{columns of } \mathbf{R}_{z,b}}}$$

Is the full-rank assumption necessary?

Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time  $2^{n/\log(n)}$ 

Due to [Blum, Kalai, Wasserman, 2003]

Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time  $2^{n/\log(n)}$ 

Due to [Blum, Kalai, Wasserman, 2003]

(It's now used as a hard problem to build cryptosystems!)

# THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a|z=\sigma] \otimes \mathbb{P}[b|z=\sigma] \otimes \mathbb{P}[c|z=\sigma]$$

following [Mossel, Roch, 2006]

# OUTLINE

### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

# OUTLINE

### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

# MIXTURES OF SPHERICAL GAUSSIANS

Let's see another powerful application of tensor methods to learning mixtures of spherical Gaussians

$$\sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \sigma^2 I, x)$$

## MIXTURES OF SPHERICAL GAUSSIANS

Let's see another powerful application of tensor methods to learning mixtures of spherical Gaussians

$$\sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \sigma^2 I, x)$$

Can we reconstruct the parameters in polynomial time?

## MIXTURES OF SPHERICAL GAUSSIANS

Let's see another powerful application of tensor methods to learning mixtures of spherical Gaussians

$$\sum_{i=1}^{k} w_i \mathcal{N}(\mu_i, \sigma^2 I, x)$$

Can we reconstruct the parameters in polynomial time?

Theorem [Hsu, Kakade, 2013]: There is an algorithm that has polynomial run time/sample complexity that works when the  $\mu_i$ 's have full rank smallest singular value

Running time and sample complexity depend on  $1/\sigma_{min}^{F}$ 

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

Again, there is a low rank tensor that can be computed from samples whose tensor decomposition reveals the parameters we want to learn

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

**Case #1:** If a, b, c are distinct then we have

$$\mathbb{E}[x_a x_b x_c] = \left(\sum_{i=1}^k w_i \mu_i \otimes \mu_i \otimes \mu_i\right)_{a,b,c}$$

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

**Case #2:** If  $a = b \neq c$  then we have

$$\mathbb{E}[x_a x_b x_c] = \left(\sum_{i=1}^k w_i \mu_i \otimes \mu_i \otimes \mu_i\right)_{a,b,c} + \sigma^2 \left(\sum_{i=1}^k w_i \mu_i\right)_c$$

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

**Case #2:** If  $a = b \neq c$  then we have

$$\mathbb{E}[x_a x_b x_c] = \left(\sum_{i=1}^k w_i \mu_i \otimes \mu_i \otimes \mu_i\right)_{a,b,c} + \sigma^2 \left(\sum_{i=1}^k w_i \mu_i\right)_c$$
first moment

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

**Case #3:** If a = b = c then we have

$$\mathbb{E}[x_a x_b x_c] = \left(\sum_{i=1}^k w_i \mu_i \otimes \mu_i \otimes \mu_i\right)_{a,b,c} - 3\sigma^2 \left(\sum_{i=1}^k w_i \mu_i\right)_c$$

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

**Proof:** Consider the a, b, c entry of the third moment tensor

**Case #3:** If a = b = c then we have

$$\mathbb{E}[x_a x_b x_c] = \left(\sum_{i=1}^k w_i \mu_i \otimes \mu_i \otimes \mu_i\right)_{a,b,c} - 3\sigma^2 \left(\sum_{i=1}^k w_i \mu_i\right)_c$$



$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

It can be written compactly as

$$T = \mathbb{E}[x \otimes x \otimes x] - \sigma^2 \sum_{j=1}^d M_j \quad \text{with}$$
$$M_j = \left(\mathbb{E}[x] \otimes e_j \otimes e_j + e_j \otimes \mathbb{E}[x] \otimes e_j + e_j \otimes e_j \otimes \mathbb{E}[x]\right)$$

$$T = \sum_{i=1}^{k} w_i \mu_i \otimes \mu_i \otimes \mu_i$$

can be expressed through the empirical moments of the mixture

It can be written compactly as

$$T = \mathbb{E}[x \otimes x \otimes x] - \sigma^2 \sum_{j=1}^d M_j \quad \text{with}$$
$$M_j = \left(\mathbb{E}[x] \otimes e_j \otimes e_j + e_j \otimes \mathbb{E}[x] \otimes e_j + e_j \otimes e_j \otimes \mathbb{E}[x]\right)$$

Now use Jennrich's Algorithm

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a|z=\sigma] \otimes \mathbb{P}[b|z=\sigma] \otimes \mathbb{P}[c|z=\sigma]$$

following [Mossel, Roch, 2006]

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a|z=\sigma] \otimes \mathbb{P}[b|z=\sigma] \otimes \mathbb{P}[c|z=\sigma]$$

following [Mossel, Roch, 2006]

[Mixtures of Spherical Gaussians]: (corrections of third moment)

$$\mathbb{E}[x \otimes x \otimes x] - \sigma^2 \sum_{j=1}^d M_j$$

following [Hsu, Kakade, 2013]

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$\sum_{j} \mathbb{P}[\text{topic} = j] A_j \otimes A_j \otimes A_j$$

following [Anandkumar, Hsu, Kakade, 2012]

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$\sum_{j} \mathbb{P}[\text{topic} = j] A_j \otimes A_j \otimes A_j$$

following [Anandkumar, Hsu, Kakade, 2012]

[Community Detection]: (counting stars)

$$\sum_{j} \mathbb{P}[C_x = j] \Big( C_A \Pi \Big)_j \otimes \Big( C_B \Pi \Big) \bigotimes_j \Big( C_C \Pi \Big)_j$$

following [Anandkumar, Ge, Hsu, Kakade, 2014]

#### OUTLINE

#### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

#### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

#### OUTLINE

#### **Part I: Introduction**

- The Rotation Problem
- Jennrich's Algorithm

#### **Part II: Applications**

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

What if we want to learn the parameters of generative model with a continuous latent variable?

What if we want to learn the parameters of generative model with a continuous latent variable?

#### **Multireference Alignment**

Recover a signal from random noisy shifts





true signal

noisy data

What if we want to learn the parameters of generative model with a continuous latent variable?

What if we want to learn the parameters of generative model with a continuous latent variable?

#### **Global Registration**

Estimate positions from rigid motions



What if we want to learn the parameters of generative model with a continuous latent variable?

What if we want to learn the parameters of generative model with a continuous latent variable?

#### **Cryo-electron microscopy**

Determine 3D structure from random noisy 2D projections



**Definition:** An **orbit retrieval** problem is specified by a group G and a linear homomorphism

$$\rho: G \to GL(\mathbb{R}^d)$$

We get noisy observations under the group action

$$\rho(g) \cdot x + \eta$$

where g is chosen from the Haar measure on G and  $\eta$  is Gaussian noise

**Definition:** An **orbit retrieval** problem is specified by a group G and a linear homomorphism

$$\rho: G \to GL(\mathbb{R}^d)$$

We get noisy observations under the group action

$$\rho(g)\cdot x+\eta$$

where g is chosen from the Haar measure on G and  $\eta$  is Gaussian noise

Goal: Recover some  $\widehat{x}$  that is close to the orbit

 $\{\rho(g)\cdot x|g\in G\}$ 

In many settings we can estimate

$$T = \int_{g \in G} (\rho(g) \cdot x)^{\otimes 3} dg$$

In many settings we can estimate

$$T = \int_{g \in G} (\rho(g) \cdot x)^{\otimes 3} dg$$

Can we recover x up to its orbit?

In many settings we can estimate

$$T = \int_{g \in G} (\rho(g) \cdot x)^{\otimes 3} dg$$

Can we recover x up to its orbit?

**Theorem [Moitra, Wein, 2019]:** There is a polynomial time algorithm that works for SO(2) when x is random

In many settings we can estimate

$$T = \int_{g \in G} (\rho(g) \cdot x)^{\otimes 3} dg$$

Can we recover x up to its orbit?

**Theorem [Moitra, Wein, 2019]:** There is a polynomial time algorithm that works for SO(2) when x is random

What about for non-abelian groups?

#### **TENSOR NETWORKS**

Tensor networks are a graphical representation for tensors and operations on them, e.g.

#### **TENSOR NETWORKS**

Tensor networks are a graphical representation for tensors and operations on them, e.g.

third order tensors have three legs



#### **TENSOR NETWORKS**

Tensor networks are a graphical representation for tensors and operations on them, e.g.

third order tensors have three legs



tensors can be attached by summing over connected indices



## **REVISITING PRIOR WORK**

Prior work implicitly uses this framework



See [Richard, Montanari], [Barak, Moitra], [Hopkins, Shi, Steurer], [Hopkins et al.], [Hopkins, Shi, Steurer] for applications to tensor principal component analysis, tensor completion, decomposing random overcomplete third order tensors, etc

## SPECTRAL METHODS FROM TENSOR NETS

| Given | input tens | or T |
|-------|------------|------|
|       |            |      |

 Step #1: Build a new tensor B by connecting copies of T according to the tensor network

• **Step #2:** Flatten B to form a symmetric matrix M

• **Step #3:** Compute the leading eigenvector of M

## THE BLUEPRINT

We give a spectral method based on the following tensor network



## THE BLUEPRINT

We give a spectral method based on the following tensor network



Smaller tensor networks fail for this problem

Part I: Tensor Decompositions and Their Applications

Part II: Robust and Computationally Efficient Parameter Estimation

Part III: Noise Models in Supervised Learning and Connections to Fairness

Part IV: Provable Algorithms for Inverse Problems in the Sciences?

#### **Summary:**

- Tensor decompositions are unique under more general conditions than matrix decompositions
- Jennrich's Algorithm
- Applications to Phylogenetic Reconstruction, HMMs, Mixtures of Gaussians, Topic Models, ...
- Are there tensor methods that work with group structure?

#### Summary:

- Tensor decompositions are unique under more general conditions than matrix decompositions
- Jennrich's Algorithm
- Applications to Phylogenetic Reconstruction, HMMs, Mixtures of Gaussians, Topic Models, ...
- Are there tensor methods that work with group structure?

# Thanks! Any Questions?