Tensor Decompositions and Their Applications

Ankur Moitra (MIT)

Simons Institute Bootcamp Tutorial, Part 1

SPEARMAN'S HYPOTHESIS

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

SPEARMAN'S HYPOTHESIS

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive
eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

SPEARMAN'S HYPOTHESIS

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

To test this theory, he invented Factor Analysis:
students (1000)

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

SPEARMAN'S HYPOTHESIS

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

To test this theory, he invented Factor Analysis:
inner-dimension (2)
students (1000)

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

Given: $M=\sum a_{i} \otimes b_{i}$
$=A B^{\top}$
"correct" factors

Given: $M=\sum a_{i} \otimes b_{i}$

"correct" factors
When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?

Given: $M=\sum a_{i} \otimes b_{i}$

$$
=\underbrace{A B^{\top}}_{\text {"correct" factors }}=\underbrace{(A R)\left(R^{-1} B^{\top}\right)}_{\text {alternative factorization }}
$$

When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?

Given: $M=\sum a_{i} \otimes b_{i}$

$$
=\underbrace{A B^{\top}}_{\text {"correct" factors }}=\underbrace{(A R)\left(R^{-1} B^{\top}\right)}_{\text {alternative factorization }}
$$

When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?

Claim: The factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are not determined uniquely unless we impose additional conditions on them

Given: $M=\sum a_{i} \otimes b_{i}$

$$
=\underbrace{A B^{\top}}_{\text {"correct" factors }}=\underbrace{(A R)\left(R^{-1} B^{\top}\right)}_{\text {alternative factorization }}
$$

When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?

Claim: The factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are not determined uniquely unless we impose additional conditions on them

$$
\text { e.g. if }\left\{a_{i}\right\} \text { and }\left\{b_{i}\right\} \text { are orthogonal, or } \operatorname{rank}(M)=1
$$

Given: $M=\sum a_{i} \otimes b_{i}$

$$
=\underbrace{A B^{\top}}_{\text {"correct" factors }}=\underbrace{(A R)\left(R^{-1} B^{\top}\right)}_{\text {alternative factorization }}
$$

When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?
Claim: The factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are not determined uniquely unless we impose additional conditions on them

$$
\text { e.g. if }\left\{a_{i}\right\} \text { and }\left\{b_{i}\right\} \text { are orthogonal, or } \operatorname{rank}(M)=1
$$

This is called the rotation problem, and is a major issue in factor analysis and motivates the study of tensor methods...

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

MATRIX DECOMPOSITIONS

$$
\begin{aligned}
M= & a_{1} \otimes b_{1}+a_{2} \otimes b_{2}+\cdots+a_{R} \otimes b_{R} \\
& \square+\square+
\end{aligned}
$$

MATRIX DECOMPOSITIONS

$$
M=a_{1} \otimes b_{1}+a_{2} \otimes b_{2}+\cdots+a_{R} \otimes b_{R}
$$

$$
\square+\square \square^{\square}+
$$

TENSOR DECOMPOSITIONS

$$
T=a_{1} \otimes b_{1} \otimes c_{1}+\cdots+a_{R} \otimes b_{R} \otimes c_{R}
$$

$(\mathrm{i}, \mathrm{j}, \mathrm{k})$ entry of $x \otimes y \otimes z$ is $x(i) \times y(j) \times z(k)$

When are tensor decompositions unique?

When are tensor decompositions unique?

Theorem [Jennrich 1970]: Suppose $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are linearly independent and no pair of vectors in $\left\{c_{i}\right\}$ is a scalar multiple of each other...

When are tensor decompositions unique?

Theorem [Jennrich 1970]: Suppose $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are linearly independent and no pair of vectors in $\left\{c_{i}\right\}$ is a scalar multiple of each other. Then

$$
T=a_{1} \otimes b_{1} \otimes c_{1}+\cdots+a_{R} \otimes b_{R} \otimes c_{R}
$$

is unique up to permuting the rank one terms and rescaling the factors.

When are tensor decompositions unique?

Theorem [Jennrich 1970]: Suppose $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are linearly independent and no pair of vectors in $\left\{c_{i}\right\}$ is a scalar multiple of each other. Then

$$
T=a_{1} \otimes b_{1} \otimes c_{1}+\cdots+a_{R} \otimes b_{R} \otimes c_{R}
$$

is unique up to permuting the rank one terms and rescaling the factors.

Equivalently, the rank one factors are unique

When are tensor decompositions unique?

Theorem [Jennrich 1970]: Suppose $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are linearly independent and no pair of vectors in $\left\{\mathrm{c}_{\mathrm{i}}\right\}$ is a scalar multiple of each other. Then

$$
T=a_{1} \otimes b_{1} \otimes c_{1}+\cdots+a_{R} \otimes b_{R} \otimes c_{R}
$$

is unique up to permuting the rank one terms and rescaling the factors.

Equivalently, the rank one factors are unique

There is a simple algorithm to compute the factors too!

JENNRICH’S ALGORITHM

Compute $T(\cdot, \cdot, x)$

i.e. add up matrix slices

$$
\sum_{i} x_{i} T_{i}
$$

JENNRICH’S ALGORITHM

Compute $T(\cdot, \cdot, x)$

i.e. add up matrix slices

$$
\sum_{i} x_{i} T_{i}
$$

$$
\text { If } T=a \otimes b \otimes c \text { then } T(\cdot, \cdot, x)=\langle c, x\rangle a \otimes b
$$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=\sum\left\langle c_{i}, x\right\rangle a_{i} \otimes b_{i}$

i.e. add up matrix slices
$\sum_{i} x_{i} T_{i}$

JENNRICH’S ALGORITHM

Compute $T(\cdot, \cdot, x)=\sum\left\langle c_{i}, x\right\rangle a_{i} \otimes b_{i}$

i.e. add up matrix slices

(x is chosen uniformly at random from \mathbb{S}^{n-1})

JENNRICH'S ALGORITHM
 $\operatorname{Diag}\left(\left\{\left\langle c_{i}, x\right\rangle\right\}_{i}\right)$
 Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$

i.e. add up matrix slices

$$
\sum_{i} x_{i} T_{i}
$$

(x is chosen uniformly at random from \mathbb{S}^{n-1})

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$

$$
A D_{x} B^{\top}\left(B^{\top}\right)^{-1} D_{y}^{-1} A^{-1}
$$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$

$$
A D_{x} D_{y}^{-1} A^{-1}
$$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$

$$
A D_{x} D_{y}^{-1} A^{-1}
$$

Claim: whp (over x, y) the eigenvalues are distinct, so the Eigendecomposition is unique and recovers a_{i}

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$
Diagonalize $T(\cdot, \cdot, y)(T(\cdot, \cdot, x))^{-1}$

JENNRICH'S ALGORITHM

Compute $T(\cdot, \cdot, x)=A D_{x} B^{\top}$
Compute $T(\cdot, \cdot, y)=A D_{y} B^{\top}$
Diagonalize $T(\cdot, \cdot x)(T(\cdot, \cdot y))$
Diagonalize $T(\cdot, \cdot, x)(T(\cdot, \cdot, y))^{-1}$
Diagonalize $T(\cdot, \cdot, y)(T(\cdot, \cdot, x))^{-1}$
Match up the factors (their eigenvalues are reciprocals) and find $\left\{c_{i}\right\}_{i}$ by solving a linear syst.

Given: $M=\sum a_{i} \otimes b_{i}$
When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?
Only possible if $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are orthogonal, or $\operatorname{rank}(M)=1$

Given: $M=\sum a_{i} \otimes b_{i}$
When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?
Only possible if $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are orthogonal, or $\operatorname{rank}(M)=1$
Given: $T=\sum a_{i} \otimes b_{i} \otimes c_{i}$
When can we find the factors $\left\{a_{i}\right\},\left\{b_{i}\right\}$ and $\left\{c_{i}\right\}$ uniquely?

Given: $M=\sum a_{i} \otimes b_{i}$
When can we find the factors $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ uniquely?
Only possible if $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are orthogonal, or $\operatorname{rank}(M)=1$
Given: $T=\sum a_{i} \otimes b_{i} \otimes c_{i}$
When can we find the factors $\left\{a_{i}\right\},\left\{b_{i}\right\}$ and $\left\{c_{i}\right\}$ uniquely?

Jennrich: If $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are full rank and no pair in $\left\{c_{i}\right\}$ are scalar multiples of each other

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

PHYLOGENETIC RECONSTRUCTION

"Tree of Life"

PHYLOGENETIC RECONSTRUCTION

PHYLOGENETIC RECONSTRUCTION

PHYLOGENETIC RECONSTRUCTION

PHYLOGENETIC RECONSTRUCTION

In each sample, we observe a symbol (Σ) at each extant () node where we sample from π for the root, and propagate it using $R_{x, y}$, etc

HIDDEN MARKOV MODELS

$$
\begin{aligned}
& =\text { hidden } \\
& =\text { observed }
\end{aligned}
$$

HIDDEN MARKOV MODELS

$\pi: \Sigma_{s} \rightarrow \mathbb{R}^{+}$
"initial distribution"

O = hidden
O = observed

HIDDEN MARKOV MODELS

HIDDEN MARKOV MODELS

$\pi: \Sigma_{s} \rightarrow \mathbb{R}^{+}$
"initial distribution"
= hidden
= observed

In each sample, we observe a symbol (Σ_{O}) at each obs. () node where we sample from π for the start, and propagate it using $\mathrm{R}_{\mathrm{x}, \mathrm{y}}$ etc $\left(\sum_{S}\right)$

Can we reconstruct just the topology from random samples?

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily
[Steel, 1994]: The following is a distance function on the edges

$$
d_{x, y}=-\ln \left|\operatorname{det}\left(P_{x, y}\right)\right|+\frac{1}{2} \prod_{\sigma \text { in } \Sigma} \pi_{x, \sigma}-\frac{1}{2} \prod_{\sigma \text { in } \Sigma} \pi_{y, \sigma}
$$

where $P_{x, y}$ is the joint distribution

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily
[Steel, 1994]: The following is a distance function on the edges

$$
d_{x, y}=-\ln \left|\operatorname{det}\left(P_{x, y}\right)\right|+\frac{1}{2} \prod_{\sigma \text { in } \Sigma} \pi_{x, \sigma}-\frac{1}{2} \prod_{\sigma \text { in } \Sigma} \pi_{y, \sigma}
$$

where $P_{x, y}$ is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily
[Steel, 1994]: The following is a distance function on the edges

$$
d_{x, y}=-\ln \left|\operatorname{det}\left(P_{x, y}\right)\right|+\frac{1}{2} \prod_{\sigma \text { in } \Sigma} \pi_{x, \sigma}-\frac{1}{2} \prod_{\sigma \text { in } \Sigma} \pi_{y, \sigma}
$$

where $P_{x, y}$ is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree
(It's not even obvious it's nonnegative!)

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily
[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

OR ...
to reconstruction the topology

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily
[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology, from polynomially many samples

Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x, y}$, etc are full rank so that we can re-root the tree arbitrarily
[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is the main issue...
[Chang, 1996]: The model is identifiable (if R's are full rank)
[Chang, 1996]: The model is identifiable (if R's are full rank)

[Chang, 1996]: The model is identifiable (if R's are full rank)

[Chang, 1996]: The model is identifiable (if R's are full rank)

[Chang, 1996]: The model is identifiable (if R's are full rank)

Joint distribution over ($\mathrm{a}, \mathrm{b}, \mathrm{c}$):
$\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a \mid z=\sigma] \otimes \mathbb{P}[b \mid z=\sigma] \otimes \mathbb{P}[c \mid z=\sigma]$
[Chang, 1996]: The model is identifiable (if R's are full rank)

Joint distribution over ($\mathrm{a}, \mathrm{b}, \mathrm{c}$):
$\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a \mid z=\sigma] \otimes \underbrace{\mathbb{P}[b \mid z=\sigma]}_{\text {columns of } \mathrm{R}_{\mathrm{z}, \mathrm{b}}} \otimes \mathbb{P}[c \mid z=\sigma]$
[Mossel, Roch, 2006]: There is an algorithm to PAC learn a phylogenetic tree or an HMM (if its transition/output matrices are full rank) from polynomially many samples
[Mossel, Roch, 2006]: There is an algorithm to PAC learn a phylogenetic tree or an HMM (if its transition/output matrices are full rank) from polynomially many samples

Is the full-rank assumption necessary?
[Mossel, Roch, 2006]: There is an algorithm to PAC learn a phylogenetic tree or an HMM (if its transition/output matrices are full rank) from polynomially many samples

Is the full-rank assumption necessary?
[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM
[Mossel, Roch, 2006]: There is an algorithm to PAC learn a phylogenetic tree or an HMM (if its transition/output matrices are full rank) from polynomially many samples

Is the full-rank assumption necessary?
[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time $2^{n / \log (n)}$

Due to [Blum, Kalai, Wasserman, 2003]
[Mossel, Roch, 2006]: There is an algorithm to PAC learn a phylogenetic tree or an HMM (if its transition/output matrices are full rank) from polynomially many samples

Is the full-rank assumption necessary?
[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time $2^{n / \log (n)}$

Due to [Blum, Kalai, Wasserman, 2003]
(It's now used as a hard problem to build cryptosystems!)

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$
\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a \mid z=\sigma] \otimes \mathbb{P}[b \mid z=\sigma] \otimes \mathbb{P}[c \mid z=\sigma]
$$

following [Mossel, Roch, 2006]

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

MIXTURES OF SPHERICAL GAUSSIANS

Let's see another powerful application of tensor methods to learning mixtures of spherical Gaussians

$$
\sum_{i=1}^{k} w_{i} \mathcal{N}\left(\mu_{i}, \sigma^{2} I, x\right)
$$

MIXTURES OF SPHERICAL GAUSSIANS

Let's see another powerful application of tensor methods to learning mixtures of spherical Gaussians

$$
\sum^{k} w_{i} \mathcal{N}\left(\mu_{i}, \sigma^{2} I, x\right)
$$

Can we reconstruct the parameters in polynomial time?

MIXTURES OF SPHERICAL GAUSSIANS

Let's see another powerful application of tensor methods to learning mixtures of spherical Gaussians

$$
\sum_{i=1}^{k} w_{i} \mathcal{N}\left(\mu_{i}, \sigma^{2} I, x\right)
$$

Can we reconstruct the parameters in polynomial time?

Theorem [Hsu, Kakade, 2013]: There is an algorithm that has polynomial run time/sample complexity that works when the μ_{i} 's have full rank smallest singular value

Running time and sample complexity depend on $1 / \sigma_{\text {min }}$

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture

Again, there is a low rank tensor that can be computed from samples whose tensor decomposition reveals the parameters we want to learn

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor
Case \#1: If a, b, c are distinct then we have

$$
\mathbb{E}\left[x_{a} x_{b} x_{c}\right]=\left(\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}\right)_{a, b, c}
$$

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor
Case \#2: If $a=b \neq c$ then we have

$$
\mathbb{E}\left[x_{a} x_{b} x_{c}\right]=\left(\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}\right)_{a, b, c}+\sigma^{2}\left(\sum_{i=1}^{k} w_{i} \mu_{i}\right)_{c}
$$

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor
Case \#2: If $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$ then we have

$$
\mathbb{E}\left[x_{a} x_{b} x_{c}\right]=\left(\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}\right)_{a, b, c}+\sigma^{2}\left(\sum_{i=1}^{k} w_{i} \mu_{i}\right)_{c}
$$

first moment

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor
Case \#3: If $a=b=c$ then we have

$$
\mathbb{E}\left[x_{a} x_{b} x_{c}\right]=\left(\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}\right)_{a, b, c}-3 \sigma^{2}\left(\sum_{i=1}^{k} w_{i} \mu_{i}\right)_{c}
$$

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
Proof: Consider the a, b, c entry of the third moment tensor
Case \#3: If $a=b=c$ then we have

$$
\mathbb{E}\left[x_{a} x_{b} x_{c}\right]=\left(\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}\right)_{a, b, c}-3 \sigma^{2}\left(\sum_{i=1}^{k} w_{i} \mu_{i}\right)_{c}
$$

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
It can be written compactly as

$$
T=\mathbb{E}[x \otimes x \otimes x]-\sigma^{2} \sum_{j=1}^{d} M_{j} \quad \text { with }
$$

$M_{j}=\left(\mathbb{E}[x] \otimes e_{j} \otimes e_{j}+e_{j} \otimes \mathbb{E}[x] \otimes e_{j}+e_{j} \otimes e_{j} \otimes \mathbb{E}[x]\right)$

Main Lemma: If σ^{2} is known then the tensor

$$
T=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
$$

can be expressed through the empirical moments of the mixture
It can be written compactly as

$$
T=\mathbb{E}[x \otimes x \otimes x]-\sigma^{2} \sum_{j=1}^{d} M_{j} \quad \text { with }
$$

$M_{j}=\left(\mathbb{E}[x] \otimes e_{j} \otimes e_{j}+e_{j} \otimes \mathbb{E}[x] \otimes e_{j}+e_{j} \otimes e_{j} \otimes \mathbb{E}[x]\right)$

Now use Jennrich's Algorithm

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$
\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a \mid z=\sigma] \otimes \mathbb{P}[b \mid z=\sigma] \otimes \mathbb{P}[c \mid z=\sigma]
$$

following [Mossel, Roch, 2006]

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$
\sum_{\sigma} \mathbb{P}[z=\sigma] \mathbb{P}[a \mid z=\sigma] \otimes \mathbb{P}[b \mid z=\sigma] \otimes \mathbb{P}[c \mid z=\sigma]
$$

following [Mossel, Roch, 2006]
[Mixtures of Spherical Gaussians]: (corrections of third moment)

$$
\mathbb{E}[x \otimes x \otimes x]-\sigma^{2} \sum_{j=1}^{d} M_{j}
$$

following [Hsu, Kakade, 2013]

THE POWER OF CONDITIONAL INDEPENDENCE

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$
\sum_{j} \mathbb{P}[\text { topic }=j] A_{j} \otimes A_{j} \otimes A_{j}
$$

following [Anandkumar, Hsu, Kakade, 2012]

THE POWER OF CONDITIONAL INDEPENDENCE

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$
\sum_{j} \mathbb{P}[\text { topic }=j] A_{j} \otimes A_{j} \otimes A_{j}
$$

following [Anandkumar, Hsu, Kakade, 2012]
[Community Detection]: (counting stars)

$$
\sum_{j} \mathbb{P}\left[C_{x}=j\right]\left(C_{A} \Pi\right)_{j} \otimes\left(C_{B} \Pi\right)_{j} \otimes\left(C_{C} \Pi\right)_{j}
$$

following [Anandkumar, Ge, Hsu, Kakade, 2014]

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

OUTLINE

Part I: Introduction

- The Rotation Problem
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Mixtures of Gaussians
- Orbit Retrieval

ORBIT RETRIEVAL

What if we want to learn the parameters of generative model with a continuous latent variable?

ORBIT RETRIEVAL

What if we want to learn the parameters of generative model with a continuous latent variable?

Multireference Alignment
Recover a signal from random noisy shifts

true signal

noisy data

ORBIT RETRIEVAL

What if we want to learn the parameters of generative model with a continuous latent variable?

ORBIT RETRIEVAL

What if we want to learn the parameters of generative model with a continuous latent variable?

Global Registration
Estimate positions from rigid motions

ORBIT RETRIEVAL

What if we want to learn the parameters of generative model with a continuous latent variable?

ORBIT RETRIEVAL

What if we want to learn the parameters of generative model with a continuous latent variable?

Cryo-electron microscopy

Determine 3D structure from random noisy 2D projections

ORBIT RETRIEVAL

Definition: An orbit retrieval problem is specified by a group G and a linear homomorphism

$$
\rho: G \rightarrow G L\left(\mathbb{R}^{d}\right)
$$

We get noisy observations under the group action

$$
\rho(g) \cdot x+\eta
$$

where g is chosen from the Haar measure on G and η is Gaussian noise

ORBIT RETRIEVAL

Definition: An orbit retrieval problem is specified by a group G and a linear homomorphism

$$
\rho: G \rightarrow G L\left(\mathbb{R}^{d}\right)
$$

We get noisy observations under the group action

$$
\rho(g) \cdot x+\eta
$$

where g is chosen from the Haar measure on G and η is Gaussian noise

Goal: Recover some \widehat{x} that is close to the orbit

$$
\{\rho(g) \cdot x \mid g \in G\}
$$

ORBIT TENSOR DECOMPOSITION

In many settings we can estimate

$$
T=\int_{g \in G}(\rho(g) \cdot x)^{\otimes 3} d g
$$

ORBIT TENSOR DECOMPOSITION

In many settings we can estimate

$$
T=\int_{g \in G}(\rho(g) \cdot x)^{\otimes 3} d g
$$

Can we recover x up to its orbit?

ORBIT TENSOR DECOMPOSITION

In many settings we can estimate

$$
T=\int_{g \in G}(\rho(g) \cdot x)^{\otimes 3} d g
$$

Can we recover x up to its orbit?

Theorem [Moitra, Wein, 2019]: There is a polynomial time algorithm that works for $\mathrm{SO}(2)$ when x is random

ORBIT TENSOR DECOMPOSITION

In many settings we can estimate

$$
T=\int_{g \in G}(\rho(g) \cdot x)^{\otimes 3} d g
$$

Can we recover x up to its orbit?

Theorem [Moitra, Wein, 2019]: There is a polynomial time algorithm that works for $\mathrm{SO}(2)$ when x is random

What about for non-abelian groups?

TENSOR NETWORKS

Tensor networks are a graphical representation for tensors and operations on them, e.g.

TENSOR NETWORKS

Tensor networks are a graphical representation for tensors and operations on them, e.g.

third order tensors have three legs

TENSOR NETWORKS

Tensor networks are a graphical representation for tensors and operations on them, e.g.
third order tensors have three legs

tensors can be attached by summing over connected indices

REVISITING PRIOR WORK

Prior work implicitly uses this framework

See [Richard, Montanari], [Barak, Moitra], [Hopkins, Shi, Steurer], [Hopkins et al.], [Hopkins, Shi, Steurer] for applications to tensor principal component analysis, tensor completion, decomposing random overcomplete third order tensors, etc

SPECTRAL METHODS FROM TENSOR NETS

Given input tensor T

- Step \#1: Build a new tensor B by connecting copies of T according to the tensor network
- Step \#2: Flatten B to form a symmetric matrix M
- Step \#3: Compute the leading eigenvector of M

THE BLUEPRINT

We give a spectral method based on the following tensor network

THE BLUEPRINT

We give a spectral method based on the following tensor network

Smaller tensor networks fail for this problem

TUTORIAL OUTLINE

Part I: Tensor Decompositions and Their Applications
Part II: Robust and Computationally Efficient Parameter Estimation

Part III: Noise Models in Supervised Learning and Connections to Fairness

Part IV: Provable Algorithms for Inverse Problems in the Sciences?

Summary:

- Tensor decompositions are unique under more general conditions than matrix decompositions
- Jennrich's Algorithm
- Applications to Phylogenetic Reconstruction, HMMs, Mixtures of Gaussians, Topic Models, ...
- Are there tensor methods that work with group structure?

Summary:

- Tensor decompositions are unique under more general conditions than matrix decompositions
- Jennrich's Algorithm
- Applications to Phylogenetic Reconstruction, HMMs, Mixtures of Gaussians, Topic Models, ...
- Are there tensor methods that work with group structure?

Thanks! Any Questions?

