Quantum Linear Algebra with Near-Optimal Complexities

Lin Lin

Department of Mathematics, UC Berkeley Lawrence Berkeley National Laboratory

Joint work with Dong An and Yu Tong (Berkeley)
Quantum Seminar,
Simons Institute, May 2020
arXiv: 1909.05500; 1910.14596; 2002.12508

Outline

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Outline

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

A ritual

- There is perhaps a widespread belief that a quantum talk should start with a picture of Feynman

Figure: A superposition of Feynmans

Quantum linear algebra

- Solving linear systems, eigenvalue problems, matrix exponentials, least square problems, singular value decompositions etc on a quantum computer.
- Many interesting, exciting progresses in the past few years.
- Reasonable way towards "quantum advantage". "Quantum machine learning".
- Solving linear equations (MATH 54 at Berkeley, first class)

$$
A x=b
$$

- Quantum linear system problem (QLSP)

$$
A|x\rangle=|b\rangle
$$

Voila!

Quantum linear system problem (QLSP)

- All vectors must be normalized. $A \in \mathbb{C}^{N \times N},|b\rangle \in \mathbb{C}^{N}, N=2^{n}$. $\||b\rangle \|_{2}^{2}:=\langle b \mid b\rangle=1$. WLOG $\|A\|_{2}=1$.
- Solution vector

$$
|x\rangle \propto A^{-1}|b\rangle
$$

- How to put the information in $A,|b\rangle$ into a quantum computer? read-in problem. Oracular assumption.
- Query complexity: the number of oracles used. Gate complexity. Rely on implementation of query models.

Quantum speedup for QLSP

- κ : condition number of A. ϵ : target accuracy. Proper assumptions on A (e.g. d-sparse) so that oracles cost poly (n).
- (Harrow-Hassadim-Lloyd, 2009): $\widetilde{\mathcal{O}}\left(\kappa^{2} / \epsilon\right)$.
- Exponential speedup with respect to n ? Answer could depend on read-in / read-out models (Tang, 2019)
- (Childs-Kothari-Somma, 2017): Linear combination of unitary (LCU). $\widetilde{\mathcal{O}}\left(\kappa^{2}\right.$ poly $\left.\left.\log (1 / \epsilon)\right)\right)$
- (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019): Quantum signal processing (QSP). $\left.\widetilde{\mathcal{O}}\left(\kappa^{2} \log (1 / \epsilon)\right)\right)$

Comparison with classical iterative solvers

- Positive definite matrix. Error in A-norm
- Steepest descent: $\mathcal{O}(N \kappa \log (1 / \epsilon))$; Conjugate gradient: $\mathcal{O}(N \sqrt{\kappa} \log (1 / \epsilon))$
- Quantum algorithms can scale better in N but worse in κ.
- Lower bound: Quantum solver cannot generally achieve $\mathcal{O}\left(\kappa^{1-\delta}\right)$ complexity for any $\delta>0$ (Harrow-Hassadim-Lloyd, 2009)
- Goal of near-optimal quantum linear solver: $\widetilde{\mathcal{O}}(\kappa$ poly $\log (1 / \epsilon))$ complexity.

LCU for QLSP: Basic idea

- $A \in \mathbb{C}^{N \times N}$, Hermitian. $\|A\|_{2}=1$. Condition number κ.
- $\operatorname{spec}(A) \subset D_{\kappa}=\left[-1,-\kappa^{-1}\right] \cup\left[\kappa^{-1}, 1\right]$.
- A^{-1} is non-unitary. Matrix function expansion

$$
A^{-1} \approx \sum_{k=0}^{M-1} c_{k} e^{-\mathrm{i} A t_{k}}
$$

- Hamiltonian simulation problem. Linear combination of unitaries (LCU). Efficient: M terms with $\log M$ ancilla qubits.
(Berry-Childs-Cleve-Kothari-Somma, 2014)
(Childs-Kothari-Somma, 2017)

LCU for QLSP: cost

- Cost of $e^{-\mathrm{i} A t}|\psi\rangle$ (for longest t)

$$
\mathcal{O}(t \log (t / \epsilon)) \sim \widetilde{\mathcal{O}}(\kappa \text { poly } \log (1 / \epsilon))
$$

- Overall cost (suitable implementation of the select oracle)

$$
\underbrace{\tilde{\mathcal{O}}(\kappa \text { poly } \log (1 / \epsilon))}_{\text {Cost of each simulation }} \times \underbrace{\widetilde{\mathcal{O}}\left(\kappa^{2} \text { poly } \log (1 / \epsilon)\right)}_{\begin{array}{c}
\text { \# Repetition } \\
\text { (due to success prob.) }
\end{array}}=\tilde{\mathcal{O}}\left(\kappa^{3} \operatorname{poly} \log (1 / \epsilon)\right))
$$

- Using amplitude amplification, can be improved to

Compare the complexities of QLSP solvers

Algorithm	Query complexity	Remark
HHL (Harrow et al 2009)	$\widetilde{\mathcal{O}}\left(\kappa^{2} / \epsilon\right)$	w. VTAA, complexity becomes $\widetilde{\mathcal{O}}\left(\kappa / \epsilon^{3}\right)$ (Ambainis 2010)
Linear combination of uni- taries (LCU) (Childs et al 2017)	$\widetilde{\mathcal{O}}\left(\kappa^{2}\right.$ poly $\left.\log (1 / \epsilon)\right)$	w. VTAA, complexity becomes $\widetilde{\mathcal{O}}(\kappa$ poly $\log (1 / \epsilon))$
Quantum signal processing (QSP) (Gilyén et al 2019)	$\widetilde{\mathcal{O}\left(\kappa^{2} \log (1 / \epsilon)\right)}$	Queries the RHS only $\widetilde{\mathcal{O}(\kappa) \text { times }}$
Randomization method (RM) (Subaşi et al 2019)	$\widetilde{\mathcal{O}(\kappa / \epsilon)}$	Prepares a mixed state; w. re- peated phase estimation, complex- ity becomes $\widetilde{\mathcal{O}}(\kappa$ poly log $(1 / \epsilon))$
Time-optimal adiabatic quan- tum computing (AQC(exp)) (An-Lin, 2019)	$\widetilde{\mathcal{O}(\kappa \text { poly } \log (1 / \epsilon))}$	No need for any amplitude amplifi- cation. Use time-dependent Hamil- tonian simulation.
Eigenstate filtering (Lin-Tong, 2019)	$\tilde{\mathcal{O}(\kappa \log (1 / \epsilon))}$	No need for any amplitude amplifi- cation. Does not rely on any com- plex subroutines.

Outline

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Reformulating QLSP into an eigenvalue problem

- Weave together linear system, eigenvalue problem, differential equation (Subasi-Somma-Orsucci, 2019)
- $Q_{b}=I_{N}-|b\rangle\langle b|$. If $A|x\rangle=|b\rangle \quad \Rightarrow \quad Q_{b} A|x\rangle=Q_{b}|b\rangle=0$
- Then

$$
H_{1}=\left(\begin{array}{cc}
0 & A Q_{b} \\
Q_{b} A & 0
\end{array}\right), \quad|\widetilde{x}\rangle=|0\rangle|x\rangle=\binom{x}{0}
$$

$\operatorname{Null}\left(H_{1}\right)=\operatorname{span}\{|\widetilde{x}\rangle,|\bar{b}\rangle\}, \quad|\bar{b}\rangle=|1\rangle|b\rangle=\binom{0}{b}$

- QLSP \Rightarrow Find an eigenvector of H_{1} with eigenvalue 0 .

Adiabatic computation

- Known eigenstate $H_{0}\left|\psi_{0}\right\rangle=\lambda_{0}\left|\psi_{0}\right\rangle$ for some \boldsymbol{H}_{0}.
- Interested in some eigenstate $H_{1}\left|\psi_{1}\right\rangle=\lambda_{1}\left|\psi_{1}\right\rangle$
- $H(s)=(1-s) H_{0}+s H_{1}$,

$$
\frac{1}{T} \mathrm{i} \partial_{s}\left|\psi_{T}(s)\right\rangle=H(s)\left|\psi_{T}(s)\right\rangle, \quad\left|\psi_{T}(0)\right\rangle=\left|\psi_{0}\right\rangle
$$

- $\left|\psi_{T}(1)\right\rangle \approx \psi(1)$ (up to a phase factor), T sufficiently large?
- Gate-based implementation: time-dependent Trotter, for near-optimal complexity (Low-Wiebe, 2019)

Adiabatic computation

- (Born-Fock, 1928)

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.

- Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen, Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...

Adiabatic quantum computation (AQC) for QLSP

- Introduce

$$
\begin{gathered}
H_{0}=\left(\begin{array}{cc}
0 & Q_{b} \\
Q_{b} & 0
\end{array}\right), \quad \operatorname{Null}\left(H_{0}\right)=\operatorname{span}\{|\widetilde{b}\rangle,|\bar{b}\rangle\} \\
|\widetilde{b}\rangle=|0\rangle|b\rangle=\binom{b}{0}, \quad|\bar{b}\rangle=|1\rangle|b\rangle=\binom{0}{b}
\end{gathered}
$$

- Adiabatically connecting $|\widetilde{b}\rangle$ (zero eigenvector of H_{0}) to $|\widetilde{x}\rangle$ (zero eigenvector of H_{1}) (Subasi-Somma-Orsucci, 2019)
- Only one eigenvector in the null space is of interest: transition to $|\bar{b}\rangle$ is prohibited during dynamics

Eigenvalue gap and fidelity

Fidelity:

$$
F(|\varphi\rangle,|\psi\rangle)=|\langle\varphi \mid \psi\rangle|^{2}=\operatorname{Tr}\left[P_{\varphi} P_{\psi}\right] .
$$

Adiabatic quantum computation

Theorem (Jansen-Ruskai-Seiler, 2007)

Hamiltonian $H(s), P(s)$ projector to eigenspace of $H(s)$ separated by a gap $\Delta(s)$ from the rest of the spectrum of $H(s)$

$$
\left.\left|1-\left\langle\psi_{T}(s)\right| P(s)\right| \psi_{T}(s)\right\rangle \mid \leq \eta^{2}(s), \quad 0 \leq s \leq 1
$$

where

$$
\begin{aligned}
\eta(s)=\frac{C}{T}\left\{\frac{\left\|H^{(1)}(0)\right\|_{2}}{\Delta^{2}(0)}+\right. & \frac{\left\|H^{(1)}(s)\right\|_{2}}{\Delta^{2}(s)} \\
& \left.+\int_{0}^{s}\left(\frac{\left\|H^{(2)}\left(s^{\prime}\right)\right\|_{2}}{\Delta^{2}\left(s^{\prime}\right)}+\frac{\left\|H^{(1)}\left(s^{\prime}\right)\right\|_{2}^{2}}{\Delta^{3}\left(s^{\prime}\right)}\right) d s^{\prime}\right\} .
\end{aligned}
$$

T : time complexity; $1 / T$ convergence.
$\Delta(s) \geq \Delta_{*}, T \sim \mathcal{O}\left(\left(\Delta_{*}\right)^{-3} / \epsilon\right)$ (worst case)

Implication in QLSP

- Lower bound of gap (Assume $A \succ 0$ for now, can be relaxed)

$$
\Delta(s) \geq \Delta_{*}(s)=1-s+s / \kappa \geq \kappa^{-1}
$$

- Worst-case time complexity $T \sim \mathcal{O}\left(\kappa^{3} / \epsilon\right)$
- AQC inspired algorithm: randomization method (Subasi-Somma-Orsucci, 2019),

$$
T \sim \mathcal{O}(\kappa \log (\kappa) / \epsilon)
$$

ϵ : 2-norm error of the density matrix.

- Rescheduled dynamics.

Accelerate AQC for QLSP: Scheduling

- Goal: improve the scaling AQC w.r.t. κ.
- Adiabatic evolution with $H(f(s))=(1-f(s)) H_{0}+f(s) H_{1}$

$$
\frac{1}{T} \mathrm{i} \partial_{s}\left|\psi_{T}(s)\right\rangle=H(f(s))\left|\psi_{T}(s)\right\rangle, \quad\left|\psi_{T}(0)\right\rangle=|\widetilde{b}\rangle
$$

- $f(s)$: scheduling function. $0 \leq f(s) \leq 1, f(0)=0, f(1)=1$.
- allow $H(f(s))$ to slow down when the gap is close to 0 , to cancel with the vanishing gap.
- (Roland-Cerf, 2002) for time-optimal AQC of Grover search.

Choice of scheduling function: AQC(p)

- Schedule (Jansen-Ruskai-Seiler, 2007; Albash-Lidar, 2018)

$$
\dot{f}(s)=c_{p} \Delta_{*}^{p}(f(s)), \quad f(0)=0, \quad 1 \leq p \leq 2
$$

AQC for QLSP

Theorem (An-L., 1909.05500)
$A \succ 0$, condition number κ. For any $1<p<2$, the error of the $A Q C(p)$ scheme is

$$
\| P_{T}(1)-|\widetilde{x}\rangle\langle\widetilde{x}| \|_{2} \leq C_{\kappa} / T .
$$

Therefore in order to prepare an ϵ-approximation of the solution of QLSP it suffices to choose the runtime $T=\mathcal{O}(\kappa / \epsilon)$.
Furthermore, when $p=1,2$, the bound for the runtime becomes $T=\mathcal{O}(\kappa \log (\kappa) / \epsilon)$.

Similar results for Hermitian indefinite and non-Hermitian matrices.

Improve the dependence on ϵ

- AQC(exp): modified schedule (slow at beginning and end)

$$
f(s)=c_{e}^{-1} \int_{0}^{s} \exp \left(-\frac{1}{s^{\prime}\left(1-s^{\prime}\right)}\right) \mathrm{d} s^{\prime}
$$

- Intuition: error bound of (Jansen-Ruskai-Seiler, 2007) and integration by parts (Wiebe-Babcock, 2012)
- Rigorous proof of exponential convergence: follow the idea of (Nenciu, 1993), asymptotic expansion of $P(s)$

Improve the dependence on ϵ

Theorem (An-L., 1909.05500)
$A \succ 0$, condition number κ. Then for large enough $T>0$, the error of the AQC(exp) scheme is

$$
\| P_{T}(1)-|\widetilde{x}\rangle\langle\widetilde{x}| \|_{2} \leq C \log (\kappa) \exp \left(-C\left(\frac{\kappa \log ^{2} \kappa}{T}\right)^{-\frac{1}{4}}\right) .
$$

Therefore the runtime $T=\mathcal{O}\left(\kappa \log ^{2}(\kappa) \log ^{4}\left(\frac{\log \kappa}{\epsilon}\right)\right)$.
Near-optimal complexity (up to poly log factors).
Similar results for Hermitian indefinite and non-Hermitian matrices.

Implications on QAOA

- Quantum approximate op timization algorithm (QAOA) (Farhi-Goldstone-Gutmann, 2014)

$$
\left|\psi_{\theta}\right\rangle:=e^{-i \gamma_{P} H_{1}} e^{-i \beta_{P} H_{0}} \cdots e^{-i \gamma_{1} H_{1}} e^{-i \beta_{1} H_{0}}\left|\psi_{i}\right\rangle
$$

- Trotterize $\mathrm{AQC} \Rightarrow$: one implementation of QAOA
- Hybrid quantum-classical optimization.
- The optimal protocol of QAOA yields near-optimal complexity
- QAOA is expected to follow a non-adiabatic shortcut (Brady et al, 2020)

Numerical results: positive definite matrix

Figure: Top: the runtime to reach desired fidelity (left: 0.99, right: 0.999) as a function of the condition number. Bottom: a log-log plot of the runtime as a function of the accuracy with $\kappa=10$.

Numerical results: positive definite matrix

methods	scaling w.r.t. κ	scaling w.r.t. $1 / \epsilon$
vanilla AQC	2.2022	$/$
RM	1.4912	$/$
AQC(1)	1.4619	1.1205
AQC(1.25)	1.3289	1.0530
AQC(1.5)	1.2262	1.0010
AQC(1.75)	1.1197	0.9724
AQC(2)	1.1319	0.9821
AQC(exp)	1.3718	0.5377
AQC(exp)	$/$	$1.7326($ w.r.t. $\log (1 / \epsilon))$
QAOA	1.0635	0.6555
QAOA	$/$	$1.5889(w . r . t . \log (1 / \epsilon))$

Table: Numerical scaling of the runtime as a function of the condition number and the accuracy, respectively, for the Hermitian positive definite example.

Numerical results: non-Hermitian matrix

Figure: Left: the runtime to reach 0.999 fidelity as a function of the condition number. Right: a log-log plot of the runtime as a function of the accuracy with $\kappa=10$.

Numerical results: non-Hermitian matrix

methods	scaling w.r.t. κ	scaling w.r.t. $1 / \epsilon$
vanilla AQC	2.1980	$/$
RM	$/$	$/$
AQC(1)	1.4937	0.9611
AQC(1.25)	1.3485	0.9249
AQC(1.5)	1.2135	0.8971
AQC(1.75)	1.0790	0.8849
AQC(2)	1.0541	0.8966
AQC(exp)	1.3438	0.4415
AQC(exp)		$0.9316($ w.r.t. $\log (1 / \epsilon))$
QAOA	0.8907	0.5626
QAOA	$/$	$0.8843($ w.r.t. $\log (1 / \epsilon))$

Table: Numerical scaling of the runtime as a function of the condition number and the accuracy, respectively, for the non-Hermitian example.

Outline

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Block-encoding

- A "grey box" for the read-in problem.
- Example: $A \in \mathbb{C}^{N \times N}$. Unitary matrix $U \in \mathbb{C}^{2 N \times 2 N}$.

$$
U_{A}=\left(\begin{array}{ll}
A & \cdot \\
\cdot & \cdot
\end{array}\right)
$$

U_{A} block-encodes A, which can be non-unitary.

- Given $A \in \mathbb{C}^{N \times N}$, can we find U_{A} ? Block-encoding problem.
- Clearly not possible if $\|A\|_{2}>1$.

Block-encoding

Definition

Given an n-qubit matrix A, if we can find $\alpha, \epsilon \in \mathbb{R}_{+}$, and an $(m+n)$-qubit matrix U_{A} so that that

$$
\left\|A-\alpha\left(\left\langle 0^{m}\right| \otimes I_{n}\right) U_{A}\left(\left|0^{m}\right\rangle \otimes I_{n}\right)\right\| \leq \epsilon
$$

then U_{A} is called an (α, m, ϵ)-block-encoding of A.

- Example: $m=1$,

$$
U_{A}=\left(\begin{array}{cc}
\tilde{A} & \cdot \\
\cdot & \cdot
\end{array}\right), \quad\|A-\alpha \tilde{A}\| \leq \epsilon
$$

- Many examples of block-encoding: density operators, POVM operators, d-sparse matrices, addition and multiplication of block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)

Quantum signal processing

- A is Hermitian with eigenvalue decomposition $A=V D V^{\dagger}$. Compute matrix function $f(A)=V f(D) V^{\dagger}$.
- Quantum signal processing: powerful, general, low-cost tool for block-encoding $f(A)$, where $f \in \mathbb{C}[x]$ is a polynomial satisfying certain parity constraints. (Low-Yoder-Chuang,2016) (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)
- Generalizable to quantum singular value transformation.

Eigenstate filtering problem

- H is Hermitian. λ is an eigenvalue of H, separated from the rest of the spectrum by a gap Δ.
- P_{λ} : projection operator into the λ-eigenspace of H. How to find a polynomial P to approximate P_{λ} ?
- Requirement: $P(\lambda)=1$ and $\left|P\left(\lambda^{\prime}\right)\right|$ is small for $\lambda^{\prime} \in \sigma(H) \backslash\{\lambda\}$.

Eigenstate filtering

Theorem (L.-Tong, 1910.14596)

H is Hermitian, U_{H} is an $(\alpha, m, 0)$-block-encoding of H. λ is an eigenvalue of H separated from the rest of the spectrum by a gap Δ.
Then we can construct a $(1, m+2, \epsilon)$-block-encoding of P_{λ}, by $\mathcal{O}((\alpha / \Delta) \log (1 / \epsilon))$ applications of (controlled-) U_{H} and U_{H}^{\dagger}, and $\mathcal{O}((m \alpha / \Delta) \log (1 / \epsilon))$ other primitive quantum gates.

Best polynomial approximation.

Eigenstate filtering

- Minimax polynomial
- Quantum algorithm based on quantum signal processing (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)

Application of eigenstate filtering: Accelerating AQC(p) for QLSP

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number $\kappa,\|A\|_{2} \leq 1$. The solution $|x\rangle \propto A^{-1}|b\rangle$ can be obtained with fidelity $1-\epsilon$ using 1. $\mathcal{O}\left(d \kappa\left(\frac{\log (d k)}{\log \log (d k)}+\log \left(\frac{1}{\epsilon}\right)\right)\right)$ oracle queries to $A,|b\rangle$,
2. $\mathcal{O}\left(d \kappa\left(n \log \left(\frac{1}{\epsilon}\right)+(n+\log (d \kappa)) \frac{\log (d \kappa)}{\log \log (d \kappa)}\right)\right)$ other primitive gates,
3. $\mathcal{O}(n+\log (d \kappa))$ qubits.

- Complexity of $\operatorname{AQC}(\mathrm{p})$ is $T=\mathcal{O}(\kappa \log (\kappa) / \epsilon)$. Obtain solution $\left|x_{0}\right\rangle$ with $\epsilon \sim \mathcal{O}(1)$ accuracy using time $\mathcal{O}(\kappa \log (\kappa))$.
- Perform eigenstate filtering $|x\rangle \approx P_{\lambda=0}\left(H_{1}\right)\left|x_{0}\right\rangle$.
- Near-optimal complexity!

Numerical results

Figure: Left: fidelity η^{2} converges to 1 exponentially as ℓ in the eigenvalues filtering algorithm increases, for different κ. Right: the smallest ℓ needed to achieve fixed fidelity η^{2} grows linearly with respect to condition number κ. The initial state in eigenstate filtering is prepared by running AQC(p) for $T=0.2 \kappa$, with $p=1.5$, which achieves an initial fidelity of about 0.6.

Application of eigenstate filtering: Quantum Zeno effect for QLSP

- Start with $|\bar{x}(0)\rangle=|0\rangle|b\rangle$ and end
 with $|\bar{x}(1)\rangle=|1\rangle|x\rangle$.
- At each step measure the state $\left|\bar{x}\left(f_{j-1}\right)\right\rangle$ in the eigenbasis of $H\left(f_{j}\right)$.
- Fidelity approaches 1 as step size decreases.
- Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov, Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)

Application of eigenstate filtering: Quantum Zeno effect for QLSP

- Start with $|\bar{x}(0)\rangle=|0\rangle|b\rangle$ and end
 with $|\bar{x}(1)\rangle=|1\rangle|x\rangle$.
- At each step measure the state $\left|\bar{x}\left(f_{j-1}\right)\right\rangle$ in the eigenbasis of $H\left(f_{j}\right)$.
- Fidelity approaches 1 as step size decreases.
- Replace measurement with eigenstate filtering (projection).
- Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov, Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)

Application of eigenstate filtering:

Solving QLSP via quantum Zeno effect (QZE)

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number $\kappa,\|A\|_{2} \leq 1$.
Then $|x\rangle \propto A^{-1}|b\rangle$ can be obtained with fidelity $1-\epsilon$ using

1. $\mathcal{O}\left(d \kappa\left(\log (\kappa) \log \log (\kappa)+\log \left(\frac{1}{\epsilon}\right)\right)\right)$ queries to $A,|b\rangle$,
2. $\mathcal{O}\left(n d \kappa\left(\log (\kappa) \log \log (\kappa)+\log \left(\frac{1}{\epsilon}\right)\right)\right)$ other primitive gates,
3. $\mathcal{O}(n)$ qubits.

- Fully-gate based implementation (does not rely on adiabatic computing for the initial guess.
- Successive projection along the carefully scheduled adiabatic path.
- Near-optimal complexity!

Outline

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Finding ground energy

- Hamiltonian H and its $(\alpha, m, 0)$-block-encoding U_{H}.
- Initial state $\left|\phi_{0}\right\rangle$ prepared by unitary U_{l}.
- Find λ_{0} and the corresponding eigenstate $\left|\psi_{0}\right\rangle$.
- Assumptions
(P1) Lower bound for the overlap: $\left|\left\langle\phi_{0} \mid \psi_{0}\right\rangle\right| \geq \gamma$,
(P2) Bounds for the ground energy and spectral gap:

$$
\lambda_{0} \leq \mu-\Delta / 2<\mu+\Delta / 2 \leq \lambda_{1} .
$$

Binary search for ground energy

Polynomial $p(x)$ satisfies $\left(\operatorname{deg} p(x)=\mathcal{O}\left(\frac{1}{\delta} \log \left(\frac{1}{\epsilon}\right)\right)\right)$

$$
\begin{aligned}
1-\epsilon & \leq p(x) \leq 1, x \in[\delta, 1], \\
0 & \leq p(x) \leq \epsilon, x \in[-1,-\delta] .
\end{aligned}
$$

$p(x)$ can be constructed by approximating erf (Low-Chuang, 2017).

- H is given in its
($\alpha, m, 0$)-block-encoding.
- Apply $p\left(\frac{H-X}{2 \alpha}\right)$ to an initial state with large overlap with the ground state.
- Can tell from the amplitude whether $E_{0} \leq x-h$ or $E_{0} \geq x+h$ with high confidence, provided $E_{0} \notin(x-h, x+h)$.

Binary search for ground energy

- Solution: apply two shifted polynomials.
- We can now return one of the two (not mutually exclusive) results with high confidence: $E_{0} \geq x-h$ or $E_{0} \leq x+h$.
- Perform binary search for E_{0}.

Near-optimal algorithm for finding the ground energy

- Well-known result: phase estimation (Kitaev, 1995)
- Previous best results: (Ge-Tura-Cirac, 2019)
- Our work: (L.-Tong, 2002.12508)

		Preparation (bound known)	Ground energy	Preparation (bound unknown)
U_{H}	This work	$\mathcal{O}\left(\frac{\alpha}{\gamma \Delta} \log \left(\frac{1}{\epsilon}\right)\right.$)	$\widetilde{\mathcal{O}}\left(\frac{\alpha}{\gamma h} \log \left(\frac{1}{y}\right)\right)$	$\widetilde{\mathcal{O}}\left(\frac{\alpha}{\gamma \Delta} \log \left(\frac{1}{\partial \epsilon}\right)\right)$
	GTC19	$\widetilde{\mathcal{O}}\left(\frac{\alpha}{\gamma \Delta}\right)$	$\widetilde{\mathcal{O}}\left(\frac{\alpha^{3 / 2}}{\gamma^{3 / 2}}\right)$	$\widetilde{\mathcal{O}}\left(\frac{\alpha^{3 / 2}}{\gamma \Delta^{3 / 2}}\right)$
U_{1}	This work	$\mathcal{O}\left(\frac{1}{\gamma}\right)$	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma} \log \left(\frac{\alpha}{h}\right) \log \left(\frac{1}{y}\right)\right)$	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma} \log \left(\frac{\alpha}{\Delta}\right) \log \left(\frac{1}{y}\right)\right)$
	GTC19	$\tilde{\mathcal{O}}\left(\frac{1}{\gamma}\right)$	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma} \sqrt{\frac{\alpha}{h}}\right)$	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma} \sqrt{\frac{\alpha}{L}}\right)$
Extra qubits	This work	$\mathcal{O}(1)$	$\mathcal{O}\left(\log \left(\frac{1}{\gamma}\right)\right)$	$\mathcal{O}\left(\log \left(\frac{1}{\gamma}\right)\right)$
	GTC19	$\mathcal{O}\left(\log \left(\frac{1}{\Delta} \log \left(\frac{1}{\epsilon}\right)\right)\right.$)	$\mathcal{O}\left(\log \left(\frac{1}{h}\right)\right)$	$\mathcal{O}\left(\log \left(\frac{1}{\Delta} \log \left(\frac{1}{\epsilon}\right)\right)\right.$)

h : precision of the ground energy estimate; $1-\vartheta$: success probability

Optimality of the algorithm (lower bound)

Theorem (L.-Tong, 2002.12508)

Given a generic Hamiltonian H and its ($\alpha, m, 0$)-block-encoding U_{H}, and $\alpha=\Theta(1)$. Initial state $\left|\phi_{0}\right\rangle$ is prepared by U_{1} with known lower bound of the initial overlap γ and the energy gap Δ. Then to prepare the ground state

1. When $\Delta=\Omega(1)$, and $\gamma \rightarrow 0^{+}$, the number of queries to U_{H} is $\Omega(1 / \gamma)$,
2. When $\gamma=\Omega(1)$, and $\Delta \rightarrow 0^{+}$, the number of queries to U_{H} is $\Omega(1 / \Delta)$,
3. When $\Delta=\Omega(1)$, and $\gamma \rightarrow 0^{+}$, the number of queries to U_{l} cannot be $\mathcal{O}\left(1 / \gamma^{1-\theta}\right)$ while the number of queries to U_{H} is $\mathcal{O}(\operatorname{poly}(1 / \gamma))$ for any $\theta>0$.

Outline

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Challenges

- Large-scale fully error-corrected quantum computer remains at least really, really, really hard in the near future. Think about both near-term and long-term for quantum linear algebra.
- Efficient gate-based implementation of adiabatic quantum computing (AQC).

1. Time-dependent Hamiltonian simulation problem.
2. Commutator-based error bounds (Childs et al, 2019)

- Quantum signal processing: approximation theory in $\operatorname{SU(2)\text {.}}$

1. How to obtain the phase factors: optimization based approach (Dong-Meng-Whaley-L., 2002.11649)
2. Polynomial approximation with nontrivial constraints.
3. Decay of phase factors and regularity of the function.

Challenges

- Fast-forwarding of certain Hamiltonians, and preconditioning. Simulation in the interaction picture.
- Quantum speedup in terms of solving ODEs / PDEs / open quantum systems.
- Explore the power of the block-encoding model:

1. Block-encoding based Hamiltonian simulation can be much tricker than Trotter based approaches in practice.
2. Connection with supremacy type circuits.

- Beyond the oracular assumption and demonstrate the advantage of QLSP solvers for real applications.
- What is the proper counterpart of dense matrices in the quantum setting? What should be the proper "quantum LINPACK benchmarks" in the post-supremacy era?

References

- L. Lin and Y. Tong, Near-optimal ground state preparation [arXiv:2002.12508]
- Y. Dong, X. Meng, K. B. Whaley, L. Lin, Efficient Phase Factor Evaluation in Quantum Signal Processing [arXiv:2002.11649]
- L. Lin and Y. Tong, Optimal quantum eigenstate filtering with application to solving quantum linear systems [arXiv:1910.14596]
- D. An and L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm [arXiv:1909.05500]

Acknowledgement

Thank you for your attention!

Lin Lin
https://math.berkeley.edu/~linlin/

