Quantum Linear Algebra with Near-Optimal Complexities

Lin Lin

Department of Mathematics, UC Berkeley Lawrence Berkeley National Laboratory

Joint work with Dong An and Yu Tong (Berkeley)

Quantum Seminar, Simons Institute, May 2020

arXiv: 1909.05500; 1910.14596; 2002.12508

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

A ritual

 There is perhaps a widespread belief that a quantum talk should start with a picture of Feynman

Figure: A superposition of Feynmans

Quantum linear algebra

- Solving linear systems, eigenvalue problems, matrix exponentials, least square problems, singular value decompositions etc on a quantum computer.
- Many interesting, exciting progresses in the past few years.
- Reasonable way towards "quantum advantage". "Quantum machine learning".
- Solving linear equations (MATH 54 at Berkeley, first class)

$$Ax = b$$

Quantum linear system problem (QLSP)

$$m{A} \ket{x} = \ket{b}$$

Voila!

Quantum linear system problem (QLSP)

- All vectors must be normalized. $A \in \mathbb{C}^{N \times N}$, $|b\rangle \in \mathbb{C}^{N}$, $N = 2^{n}$. $||b\rangle||_{2}^{2} := \langle b|b\rangle = 1$. WLOG $||A||_{2} = 1$.
- Solution vector

$$\ket{x} \propto A^{-1} \ket{b}$$
 .

- How to put the information in A, |b> into a quantum computer? read-in problem. Oracular assumption.
- Query complexity: the number of oracles used.
 Gate complexity. Rely on implementation of query models.

Quantum speedup for QLSP

- κ: condition number of A. ε: target accuracy. Proper assumptions on A (e.g. d-sparse) so that oracles cost poly(n).
- (Harrow-Hassadim-Lloyd, 2009): $\widetilde{\mathcal{O}}(\kappa^2/\epsilon)$.
- Exponential speedup with respect to *n*? Answer could depend on read-in / read-out models (Tang, 2019)
- (Childs-Kothari-Somma, 2017): Linear combination of unitary (LCU). Õ(κ² poly log(1/ε)))
- (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019): Quantum signal processing (QSP). *O*(κ² log(1/ε)))

Comparison with classical iterative solvers

- Positive definite matrix. Error in A-norm
- Steepest descent: O(Nκ log(1/ε)); Conjugate gradient:
 O(N√κ log(1/ε))
- Quantum algorithms can scale better in N but worse in κ .
- Lower bound: Quantum solver cannot generally achieve $O(\kappa^{1-\delta})$ complexity for any $\delta > 0$ (Harrow-Hassadim-Lloyd, 2009)
- Goal of near-optimal quantum linear solver: $\widetilde{\mathcal{O}}(\kappa \operatorname{poly} \log(1/\epsilon))$ complexity.

LCU for QLSP: Basic idea

- $A \in \mathbb{C}^{N \times N}$, Hermitian. $||A||_2 = 1$. Condition number κ .
- spec(A) $\subset D_{\kappa} = [-1, -\kappa^{-1}] \cup [\kappa^{-1}, 1].$
- A⁻¹ is non-unitary. Matrix function expansion

$$A^{-1} \approx \sum_{k=0}^{M-1} c_k e^{-iAt_k}$$

 Hamiltonian simulation problem. Linear combination of unitaries (LCU). Efficient: *M* terms with log *M* ancilla qubits. (Berry-Childs-Cleve-Kothari-Somma, 2014) (Childs-Kothari-Somma, 2017)

LCU for QLSP: cost

• Cost of $e^{-iAt} \ket{\psi}$ (for longest *t*)

$$\mathcal{O}(t\log(t/\epsilon))\sim \widetilde{\mathcal{O}}(\kappa\operatorname{\mathsf{poly}}\log(1/\epsilon))$$

Overall cost (suitable implementation of the select oracle)

$$\underbrace{\widetilde{\mathcal{O}}(\kappa \operatorname{poly} \log(1/\epsilon))}_{\operatorname{Cost of each simulation}} \times \underbrace{\widetilde{\mathcal{O}}(\kappa^2 \operatorname{poly} \log(1/\epsilon))}_{\text{# Repetition}} = \widetilde{\mathcal{O}}(\kappa^3 \operatorname{poly} \log(1/\epsilon)))$$

Using amplitude amplification, can be improved to

$$\underbrace{\widetilde{\mathcal{O}}(\kappa \operatorname{poly} \log(1/\epsilon))}_{\operatorname{Cost of each simulation}} \times \underbrace{\widetilde{\mathcal{O}}(\kappa \operatorname{poly} \log(1/\epsilon))}_{\text{(due to success prob.)}} = \widetilde{\mathcal{O}}(\kappa^2 \operatorname{poly} \log(1/\epsilon)))$$

Compare the complexities of QLSP solvers

Algorithm	Query complexity	Remark	
HHL (Harrow et al 2009)	$\widetilde{\mathcal{O}}(\kappa^2/\epsilon)$	w. VTAA, complexity becomes $\widetilde{\mathcal{O}}(\kappa/\epsilon^3)$ (Ambainis 2010)	
Linear combination of uni- taries (LCU) (Childs et al 2017)	$\widetilde{\mathcal{O}}(\kappa^2\operatorname{poly}\log(1/\epsilon))$	w. VTAA, complexity becomes $\widetilde{\mathcal{O}}(\kappa \operatorname{poly}\log(1/\epsilon))$	
Quantum signal processing (QSP) (Gilyén et al 2019)	$\widetilde{\mathcal{O}}(\kappa^2 \log(1/\epsilon))$	Queries the RHS only $\widetilde{\mathcal{O}}(\kappa)$ times	
Randomization method (RM) (Subaşi et al 2019)	$\widetilde{\mathcal{O}}(\kappa/\epsilon)$	Prepares a mixed state; w. repeated phase estimation, complexity becomes $\tilde{O}(\kappa \operatorname{poly} \log(1/\epsilon))$	
Time-optimal adiabatic quan- tum computing (AQC(exp)) (An-Lin, 2019)	$\widetilde{\mathcal{O}}(\kappa \operatorname{poly} \log(1/\epsilon))$	No need for any amplitude amplifi- cation. Use time-dependent Hamil- tonian simulation.	
Eigenstate filtering (Lin-Tong, 2019)	$\widetilde{\mathcal{O}}(\kappa \log(1/\epsilon))$	No need for any amplitude amplifi- cation. Does not rely on any com- plex subroutines.	

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Reformulating QLSP into an eigenvalue problem

• Weave together linear system, eigenvalue problem, differential equation (Subasi-Somma-Orsucci, 2019)

•
$$Q_b = I_N - \ket{b} ra{b}$$
. If $A \ket{x} = \ket{b} \quad \Rightarrow \quad Q_b A \ket{x} = Q_b \ket{b} = 0$

Then

$$H_{1} = \begin{pmatrix} 0 & AQ_{b} \\ Q_{b}A & 0 \end{pmatrix}, \quad |\widetilde{x}\rangle = |0\rangle |x\rangle = \begin{pmatrix} x \\ 0 \end{pmatrix}$$
$$Null(H_{1}) = span\{|\widetilde{x}\rangle, |\overline{b}\rangle\}, \quad |\overline{b}\rangle = |1\rangle |b\rangle = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

• QLSP \Rightarrow Find an eigenvector of H_1 with eigenvalue 0.

Adiabatic computation

- Known eigenstate $H_0 |\psi_0\rangle = \lambda_0 |\psi_0\rangle$ for some H_0 .
- Interested in some eigenstate $H_1 |\psi_1\rangle = \lambda_1 |\psi_1\rangle$

•
$$H(s) = (1 - s)H_0 + sH_1$$
,

$$\frac{1}{T}\mathrm{i}\partial_{\boldsymbol{s}} \ket{\psi_{T}(\boldsymbol{s})} = \boldsymbol{H}(\boldsymbol{s}) \ket{\psi_{T}(\boldsymbol{s})}, \quad \ket{\psi_{T}(\boldsymbol{0})} = \ket{\psi_{0}}$$

- $|\psi_T(1)\rangle \approx \psi(1)$ (up to a phase factor), *T* sufficiently large?
- Gate-based implementation: time-dependent Trotter, for near-optimal complexity (Low-Wiebe, 2019)

Adiabatic computation

• (Born-Fock, 1928)

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum.

 Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen, Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...

Adiabatic quantum computation (AQC) for QLSP

Introduce

$$egin{aligned} &\mathcal{H}_0=\left(egin{aligned} 0&Q_b\Q_b&0\end{aligned}
ight), & ext{Null}(\mathcal{H}_0)= ext{span}\{\ket{\widetilde{b}},\ket{ar{b}}\}\ &|\widetilde{b}
angle=\ket{0}\ket{b}=\left(egin{aligned} b\Q\\b\end{aligned}
ight), &|ar{b}
angle=\ket{1}\ket{b}=\left(egin{aligned} 0\Q\\b\end{aligned}
ight) \end{aligned}$$

- Adiabatically connecting | b / (zero eigenvector of H₀) to | x / (zero eigenvector of H₁) (Subasi-Somma-Orsucci, 2019)
- Only one eigenvector in the null space is of interest: transition to $|\bar{b}\rangle$ is prohibited during dynamics

Eigenvalue gap and fidelity

Adiabatic quantum computation

Theorem (Jansen-Ruskai-Seiler, 2007) Hamiltonian H(s), P(s) projector to eigenspace of H(s) separated by a gap $\Delta(s)$ from the rest of the spectrum of H(s)

$$|1-\langle \psi_{\mathcal{T}}(oldsymbol{s})| oldsymbol{P}(oldsymbol{s})| \leq \eta^2(oldsymbol{s}), \quad 0\leq oldsymbol{s}\leq T$$

where

$$\begin{split} \eta(\boldsymbol{s}) &= \frac{C}{T} \Big\{ \frac{\|H^{(1)}(0)\|_2}{\Delta^2(0)} + \frac{\|H^{(1)}(\boldsymbol{s})\|_2}{\Delta^2(\boldsymbol{s})} \\ &+ \int_0^{\boldsymbol{s}} \left(\frac{\|H^{(2)}(\boldsymbol{s}')\|_2}{\Delta^2(\boldsymbol{s}')} + \frac{\|H^{(1)}(\boldsymbol{s}')\|_2^2}{\Delta^3(\boldsymbol{s}')} \right) d\boldsymbol{s}' \Big\}. \end{split}$$

T: time complexity; 1/T convergence. $\Delta(s) \ge \Delta_*, T \sim \mathcal{O}((\Delta_*)^{-3}/\epsilon)$ (worst case)

Implication in QLSP

• Lower bound of gap (Assume $A \succ 0$ for now, can be relaxed)

$$\Delta(s) \geq \Delta_*(s) = 1 - s + s/\kappa \geq \kappa^{-1}$$

- Worst-case time complexity $T \sim \mathcal{O}(\kappa^3/\epsilon)$
- AQC inspired algorithm: randomization method (Subasi-Somma-Orsucci, 2019),

$$T \sim \mathcal{O}(\kappa \log(\kappa)/\epsilon)$$

- ϵ : 2-norm error of the density matrix.
- Rescheduled dynamics.

Accelerate AQC for QLSP: Scheduling

- Goal: improve the scaling AQC w.r.t. κ .
- Adiabatic evolution with $H(f(s)) = (1 f(s))H_0 + f(s)H_1$

$$rac{1}{T} \mathrm{i} \partial_{m{s}} \ket{\psi_T(m{s})} = H(f(m{s})) \ket{\psi_T(m{s})}, \quad \ket{\psi_T(m{0})} = \ket{\widetilde{m{b}}}$$

- f(s): scheduling function. $0 \le f(s) \le 1, f(0) = 0, f(1) = 1.$
- allow H(f(s)) to slow down when the gap is close to 0, to cancel with the vanishing gap.
- (Roland-Cerf, 2002) for time-optimal AQC of Grover search.

Choice of scheduling function: AQC(p)

Schedule (Jansen-Ruskai-Seiler, 2007; Albash-Lidar, 2018)

$$f(s)=c_{p}\Delta_{*}^{p}(f(s)), \quad f(0)=0, \quad 1\leq p\leq 2.$$

Theorem (An-L., 1909.05500)

 $A \succ 0$, condition number κ . For any 1 , the error of the AQC(p) scheme is

 $\|P_T(1) - |\widetilde{x}\rangle \langle \widetilde{x}\|_2 \leq C\kappa/T.$

Therefore in order to prepare an ϵ -approximation of the solution of QLSP it suffices to choose the runtime $T = O(\kappa/\epsilon)$. Furthermore, when p = 1, 2, the bound for the runtime becomes $T = O(\kappa \log(\kappa)/\epsilon)$.

Similar results for Hermitian indefinite and non-Hermitian matrices.

Improve the dependence on ϵ

• AQC(exp): modified schedule (slow at beginning and end)

$$f(s) = c_e^{-1} \int_0^s \exp\left(-\frac{1}{s'(1-s')}\right) ds' = \int_0^{0.8} \int_{0.2}^{0.8} \int_{0.2}^{0.$$

- Intuition: error bound of (Jansen-Ruskai-Seiler, 2007) and integration by parts (Wiebe-Babcock, 2012)
- Rigorous proof of exponential convergence: follow the idea of (Nenciu, 1993), asymptotic expansion of P(s)

Theorem (An-L., 1909.05500)

 $A \succ 0$, condition number κ . Then for large enough T > 0, the error of the AQC(exp) scheme is

$$\| \boldsymbol{P}_{T}(1) - |\widetilde{\boldsymbol{x}}\rangle \langle \widetilde{\boldsymbol{x}} | \|_{2} \leq \boldsymbol{C} \log(\kappa) \exp\left(-C\left(\frac{\kappa \log^{2} \kappa}{T}\right)^{-\frac{1}{4}}\right)$$

Therefore the runtime $T = \mathcal{O}\left(\kappa \log^2(\kappa) \log^4\left(\frac{\log \kappa}{\epsilon}\right)\right)$.

Near-optimal complexity (up to poly log factors). Similar results for Hermitian indefinite and non-Hermitian matrices.

Implications on QAOA

 Quantum approximate op timization algorithm (QAOA) (Farhi-Goldstone-Gutmann, 2014)

$$|\psi_{ heta}\rangle := e^{-i\gamma_{P}H_{1}}e^{-i\beta_{P}H_{0}}\cdots e^{-i\gamma_{1}H_{1}}e^{-i\beta_{1}H_{0}}|\psi_{i}
angle$$

- Trotterize AQC ⇒: one implementation of QAOA
- Hybrid quantum-classical optimization.
- The optimal protocol of QAOA yields near-optimal complexity
- QAOA is expected to follow a non-adiabatic shortcut (Brady et al, 2020)

Numerical results: positive definite matrix

Figure: Top: the runtime to reach desired fidelity (left: 0.99, right: 0.999) as a function of the condition number. Bottom: a log-log plot of the runtime as a function of the accuracy with $\kappa = 10$.

Numerical results: positive definite matrix

methods	scaling w.r.t. κ	scaling w.r.t. 1/ ϵ
vanilla AQC	2.2022	/
RM	1.4912	/
AQC(1)	1.4619	1.1205
AQC(1.25)	1.3289	1.0530
AQC(1.5)	1.2262	1.0010
AQC(1.75)	1.1197	0.9724
AQC(2)	1.1319	0.9821
AQC(exp)	1.3718	0.5377
AQC(exp)	/	1.7326 (w.r.t. $\log(1/\epsilon)$)
QAOA	1.0635	0.6555
QAOA	/	1.5889 (w.r.t. $\log(1/\epsilon)$)

Table: Numerical scaling of the runtime as a function of the condition number and the accuracy, respectively, for the Hermitian positive definite example.

Numerical results: non-Hermitian matrix

Figure: Left: the runtime to reach 0.999 fidelity as a function of the condition number. Right: a log-log plot of the runtime as a function of the accuracy with $\kappa = 10$.

Numerical results: non-Hermitian matrix

methods	scaling w.r.t. κ	scaling w.r.t. $1/\epsilon$
vanilla AQC	2.1980	/
RM	/	/
AQC(1)	1.4937	0.9611
AQC(1.25)	1.3485	0.9249
AQC(1.5)	1.2135	0.8971
AQC(1.75)	1.0790	0.8849
AQC(2)	1.0541	0.8966
AQC(exp)	1.3438	0.4415
AQC(exp)		0.9316 (w.r.t. $\log(1/\epsilon)$)
QAOA	0.8907	0.5626
QAOA	/	0.8843 (w.r.t. $\log(1/\epsilon)$)

Table: Numerical scaling of the runtime as a function of the condition number and the accuracy, respectively, for the non-Hermitian example.

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Block-encoding

- A "grey box" for the read-in problem.
- Example: $A \in \mathbb{C}^{N \times N}$. Unitary matrix $U \in \mathbb{C}^{2N \times 2N}$.

$$U_A = \left(egin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array}
ight)$$

 U_A block-encodes A, which can be non-unitary.

- Given $A \in \mathbb{C}^{N \times N}$, can we find U_A ? Block-encoding problem.
- Clearly not possible if $||A||_2 > 1$.

Block-encoding

Definition

Given an n-qubit matrix A, if we can find $\alpha, \epsilon \in \mathbb{R}_+$, and an (m + n)-qubit matrix U_A so that that

$$\|\boldsymbol{A} - \alpha\left(\langle \boldsymbol{0}^{\boldsymbol{m}} | \otimes \boldsymbol{I}_{\boldsymbol{n}}\right) \boldsymbol{U}_{\boldsymbol{A}}\left(|\boldsymbol{0}^{\boldsymbol{m}} \rangle \otimes \boldsymbol{I}_{\boldsymbol{n}}\right)\| \leq \epsilon,$$

then U_A is called an (α, m, ϵ) -block-encoding of A.

• Example: *m* = 1,

$$U_{A} = \begin{pmatrix} \widetilde{A} & \cdot \\ \cdot & \cdot \end{pmatrix}, \quad \left\| A - \alpha \widetilde{A} \right\| \leq \epsilon.$$

 Many examples of block-encoding: density operators, POVM operators, *d*-sparse matrices, addition and multiplication of block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)

Quantum signal processing

- A is Hermitian with eigenvalue decomposition A = VDV[†].
 Compute matrix function f(A) = Vf(D)V[†].
- Quantum signal processing: powerful, general, low-cost tool for block-encoding *f*(*A*), where *f* ∈ ℂ[*x*] is a polynomial satisfying certain parity constraints. (Low-Yoder-Chuang,2016) (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)
- Generalizable to quantum singular value transformation.

Eigenstate filtering problem

- *H* is Hermitian. λ is an eigenvalue of *H*, separated from the rest of the spectrum by a gap Δ.
- *P*_λ: projection operator into the λ-eigenspace of *H*. How to find a polynomial *P* to approximate *P*_λ?
- Requirement: $P(\lambda) = 1$ and $|P(\lambda')|$ is small for $\lambda' \in \sigma(H) \setminus \{\lambda\}$.

Theorem (L.-Tong, 1910.14596)

H is Hermitian, U_H is an $(\alpha, m, 0)$ -block-encoding of H. λ is an eigenvalue of H separated from the rest of the spectrum by a gap Δ . Then we can construct a $(1, m + 2, \epsilon)$ -block-encoding of P_{λ} , by $\mathcal{O}((\alpha/\Delta)\log(1/\epsilon))$ applications of (controlled-) U_H and U_H^{\dagger} , and $\mathcal{O}((m\alpha/\Delta)\log(1/\epsilon))$ other primitive quantum gates.

Best polynomial approximation.

Eigenstate filtering

Minimax polynomial

$$R_{\ell}(x;\Delta) = \frac{T_{\ell}\left(-1+2\frac{x^{2}-\Delta^{2}}{1-\Delta^{2}}\right)}{T_{\ell}\left(-1+2\frac{-\Delta^{2}}{1-\Delta^{2}}\right)}, \begin{bmatrix} 10 \\ 0.8 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.0 \end{bmatrix}} \underbrace{\prod_{i=1}^{10} \frac{1}{\ell=30}}_{-1.0i-0.75-0.55-0.25-0.25-0.25-0.25-0.25-0.25}}$$

 Quantum algorithm based on quantum signal processing (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)

Application of eigenstate filtering: Accelerating AQC(p) for QLSP

Theorem (L.-Tong, 1910.14596)

A is a d-sparse Hermitian matrix with condition number κ , $||A||_2 \leq 1$. The solution $|x\rangle \propto A^{-1} |b\rangle$ can be obtained with fidelity $1 - \epsilon$ using 1. $\mathcal{O}\left(d\kappa\left(\frac{\log(d\kappa)}{\log\log(d\kappa)} + \log\left(\frac{1}{\epsilon}\right)\right)\right)$ oracle queries to $A, |b\rangle$, 2. $\mathcal{O}\left(d\kappa\left(n\log\left(\frac{1}{\epsilon}\right) + (n + \log(d\kappa))\frac{\log(d\kappa)}{\log\log(d\kappa)}\right)\right)$ other primitive gates, 3. $\mathcal{O}(n + \log(d\kappa))$ qubits.

- Complexity of AQC(p) is T = O(κ log(κ)/ε). Obtain solution |x₀⟩ with ε ~ O(1) accuracy using time O(κ log(κ)).
- Perform eigenstate filtering $|x\rangle \approx P_{\lambda=0}(H_1) |x_0\rangle$.
- Near-optimal complexity!

Numerical results

Figure: Left: fidelity η^2 converges to 1 exponentially as ℓ in the eigenvalues filtering algorithm increases, for different κ . Right: the smallest ℓ needed to achieve fixed fidelity η^2 grows linearly with respect to condition number κ . The initial state in eigenstate filtering is prepared by running AQC(p) for $T = 0.2\kappa$, with p = 1.5, which achieves an initial fidelity of about 0.6.

Application of eigenstate filtering: Quantum Zeno effect for QLSP

- Start with $|\bar{x}(0)\rangle = |0\rangle |b\rangle$ and end with $|\bar{x}(1)\rangle = |1\rangle |x\rangle$.
- At each step measure the state $|\bar{x}(f_{j-1})\rangle$ in the eigenbasis of $H(f_j)$.
- Fidelity approaches 1 as step size decreases.

• Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov, Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)

Application of eigenstate filtering: Quantum Zeno effect for QLSP

- Start with $|\bar{x}(0)\rangle = |0\rangle |b\rangle$ and end with $|\bar{x}(1)\rangle = |1\rangle |x\rangle$.
- At each step measure the state $|\bar{x}(f_{j-1})\rangle$ in the eigenbasis of $H(f_j)$.
- Fidelity approaches 1 as step size decreases.
- Replace measurement with eigenstate filtering (projection).
- Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov, Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)

Application of eigenstate filtering: Solving QLSP via quantum Zeno effect (QZE)

Theorem (L.-Tong, 1910.14596)

A is a d-sparse Hermitian matrix with condition number κ , $||A||_2 \leq 1$. Then $|x\rangle \propto A^{-1} |b\rangle$ can be obtained with fidelity $1 - \epsilon$ using 1. $\mathcal{O}\left(d\kappa\left(\log(\kappa)\log\log(\kappa) + \log(\frac{1}{\epsilon})\right)\right)$ queries to $A, |b\rangle$, 2. $\mathcal{O}\left(nd\kappa\left(\log(\kappa)\log\log(\kappa) + \log(\frac{1}{\epsilon})\right)\right)$ other primitive gates, 3. $\mathcal{O}(n)$ qubits.

- Fully-gate based implementation (does not rely on adiabatic computing for the initial guess.
- Successive projection along the carefully scheduled adiabatic path.
- Near-optimal complexity!

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Finding ground energy

- Hamiltonian H and its $(\alpha, m, 0)$ -block-encoding U_H .
- Initial state $|\phi_0\rangle$ prepared by unitary U_I .
- Find λ_0 and the corresponding eigenstate $|\psi_0\rangle$.
- Assumptions
 - (P1) Lower bound for the overlap: $|\langle \phi_0 | \psi_0 \rangle| \geq \gamma$,

(P2) Bounds for the ground energy and spectral gap:

$$\lambda_{\mathsf{0}} \leq \mu - \Delta/\mathsf{2} < \mu + \Delta/\mathsf{2} \leq \lambda_{\mathsf{1}}.$$

Binary search for ground energy Polynomial p(x) satisfies $(\deg p(x) = O(\frac{1}{\delta} \log(\frac{1}{\epsilon})))$ $1 - \epsilon \le p(x) \le 1, x \in [\delta, 1],$ $0 \le p(x) \le \epsilon, x \in [-1, -\delta].$

p(x) can be constructed by approximating erf (Low-Chuang, 2017).

- *H* is given in its (α, m, 0)-block-encoding.
- Apply $p(\frac{H-x}{2\alpha})$ to an initial state with large overlap with the ground state.
- Can tell from the amplitude whether
 *E*₀ ≤ *x* − *h* or *E*₀ ≥ *x* + *h* with high
 confidence, provided *E*₀ ∉ (*x* − *h*, *x* + *h*).

Binary search for ground energy

- Solution: apply two shifted polynomials.
- We can now return one of the two (not mutually exclusive) results with high confidence:
 *E*₀ ≥ *x* − *h* or *E*₀ ≤ *x* + *h*.
- Perform binary search for E_0 .

Near-optimal algorithm for finding the ground energy

- Well-known result: phase estimation (Kitaev, 1995)
- Previous best results: (Ge-Tura-Cirac, 2019)
- Our work: (L.-Tong, 2002.12508)

		Preparation	Ground energy	Preparation
		(bound known)		(bound unknown)
Uu	This work	$\mathcal{O}\left(\frac{\alpha}{\gamma\Delta}\log(\frac{1}{\epsilon})\right)$	$\widetilde{\mathcal{O}}\left(rac{lpha}{\gamma h}\log(rac{1}{artheta}) ight)$	$\widetilde{\mathcal{O}}\left(rac{lpha}{\gamma\Delta}\log(rac{1}{artheta\epsilon}) ight)$
	GTC19	$\widetilde{\mathcal{O}}\left(\frac{\alpha}{\gamma\Delta}\right)$	$\widetilde{\mathcal{O}}\left(rac{lpha^{3/2}}{\gamma \hbar^{3/2}} ight)$	$\widetilde{\mathcal{O}}\left(rac{lpha^{3/2}}{\gamma\Delta^{3/2}} ight)$
U,	This work	$\mathcal{O}\left(\frac{1}{\gamma}\right)$	$\widetilde{\mathcal{O}}\left(rac{1}{\gamma}\log(rac{lpha}{h})\log(rac{1}{artheta}) ight)$	$\widetilde{\mathcal{O}}\left(rac{1}{\gamma}\log(rac{lpha}{\Delta})\log(rac{1}{artheta}) ight)$
	GTC19	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma}\right)$	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma}\sqrt{\frac{lpha}{\hbar}}\right)$	$\widetilde{\mathcal{O}}\left(\frac{1}{\gamma}\sqrt{\frac{lpha}{\Delta}}\right)$
Extra	This work	<i>O</i> (1)	$\mathcal{O}(\log(\frac{1}{\gamma}))$	$\mathcal{O}(\log(\frac{1}{\gamma}))$
qubits	GTC19	$\mathcal{O}(\log(\frac{1}{\Delta}\log(\frac{1}{\epsilon})))$	$\mathcal{O}(\log(\frac{1}{h}))$	$\mathcal{O}(\log(\frac{1}{\Delta}\log(\frac{1}{\epsilon})))$

h: precision of the ground energy estimate; $1 - \vartheta$: success probability

Optimality of the algorithm (lower bound)

Theorem (L.-Tong, 2002.12508)

Given a generic Hamiltonian H and its $(\alpha, m, 0)$ -block-encoding U_H , and $\alpha = \Theta(1)$. Initial state $|\phi_0\rangle$ is prepared by U_I with known lower bound of the initial overlap γ and the energy gap Δ . Then to prepare the ground state

- 1. When $\Delta = \Omega(1)$, and $\gamma \to 0^+$, the number of queries to U_H is $\Omega(1/\gamma)$,
- 2. When $\gamma = \Omega(1)$, and $\Delta \to 0^+$, the number of queries to U_H is $\Omega(1/\Delta)$,
- 3. When $\Delta = \Omega(1)$, and $\gamma \to 0^+$, the number of queries to U_I cannot be $\mathcal{O}(1/\gamma^{1-\theta})$ while the number of queries to U_H is $\mathcal{O}(\text{poly}(1/\gamma))$ for any $\theta > 0$.

Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works

Challenges

- Large-scale fully error-corrected quantum computer remains at least really, really, really hard in the near future. Think about both near-term and long-term for quantum linear algebra.
- Efficient gate-based implementation of adiabatic quantum computing (AQC).
 - 1. Time-dependent Hamiltonian simulation problem.
 - 2. Commutator-based error bounds (Childs et al, 2019)
- Quantum signal processing: approximation theory in SU(2).
 - 1. How to obtain the phase factors: optimization based approach (Dong-Meng-Whaley-L., 2002.11649)
 - 2. Polynomial approximation with nontrivial constraints.
 - 3. Decay of phase factors and regularity of the function.

Challenges

- Fast-forwarding of certain Hamiltonians, and preconditioning. Simulation in the interaction picture.
- Quantum speedup in terms of solving ODEs / PDEs / open quantum systems.
- Explore the power of the block-encoding model:
 - 1. Block-encoding based Hamiltonian simulation can be much tricker than Trotter based approaches in practice.
 - 2. Connection with supremacy type circuits.
- Beyond the oracular assumption and demonstrate the advantage of QLSP solvers for real applications.
- What is the proper counterpart of dense matrices in the quantum setting? What should be the proper "quantum LINPACK benchmarks" in the post-supremacy era?

References

- L. Lin and Y. Tong, Near-optimal ground state preparation [arXiv:2002.12508]
- Y. Dong, X. Meng, K. B. Whaley, L. Lin, Efficient Phase Factor Evaluation in Quantum Signal Processing [arXiv:2002.11649]
- L. Lin and Y. Tong, Optimal quantum eigenstate filtering with application to solving quantum linear systems [arXiv:1910.14596]
- D. An and L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm [arXiv:1909.05500]

Thank you for your attention!

Lin Lin https://math.berkeley.edu/~linlin/

