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A ritual

• There is perhaps a widespread belief that a quantum talk should
start with a picture of Feynman

Figure: A superposition of Feynmans
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Quantum linear algebra
• Solving linear systems, eigenvalue problems, matrix

exponentials, least square problems, singular value
decompositions etc on a quantum computer.

• Many interesting, exciting progresses in the past few years.

• Reasonable way towards “quantum advantage”. “Quantum
machine learning”.

• Solving linear equations (MATH 54 at Berkeley, first class)

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 = |b〉

Voila!
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Quantum linear system problem (QLSP)

• All vectors must be normalized. A ∈ CN×N , |b〉 ∈ CN ,N = 2n.
‖|b〉‖22 := 〈b|b〉 = 1. WLOG ‖A‖2 = 1.

• Solution vector
|x〉 ∝ A−1 |b〉 .

• How to put the information in A, |b〉 into a quantum computer?
read-in problem. Oracular assumption.

• Query complexity: the number of oracles used.
Gate complexity. Rely on implementation of query models.
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Quantum speedup for QLSP

• κ: condition number of A. ε: target accuracy. Proper
assumptions on A (e.g. d-sparse) so that oracles cost poly(n).

• (Harrow-Hassadim-Lloyd, 2009): Õ(κ2/ε).

• Exponential speedup with respect to n? Answer could depend
on read-in / read-out models (Tang, 2019)

• (Childs-Kothari-Somma, 2017): Linear combination of unitary
(LCU). Õ(κ2 poly log(1/ε)))

• (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019): Quantum
signal processing (QSP). Õ(κ2 log(1/ε)))
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Comparison with classical iterative solvers

• Positive definite matrix. Error in A-norm

• Steepest descent: O(Nκ log(1/ε)); Conjugate gradient:
O(N

√
κ log(1/ε))

• Quantum algorithms can scale better in N but worse in κ.

• Lower bound: Quantum solver cannot generally achieve O(κ1−δ)
complexity for any δ > 0 (Harrow-Hassadim-Lloyd, 2009)

• Goal of near-optimal quantum linear solver: Õ(κ poly log(1/ε))
complexity.
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LCU for QLSP: Basic idea

• A ∈ CN×N , Hermitian. ‖A‖2 = 1. Condition number κ.

• spec(A) ⊂ Dκ = [−1,−κ−1] ∪ [κ−1,1].

• A−1 is non-unitary. Matrix function expansion

A−1 ≈
M−1∑
k=0

cke−iAtk

• Hamiltonian simulation problem. Linear combination of unitaries
(LCU). Efficient: M terms with log M ancilla qubits.
(Berry-Childs-Cleve-Kothari-Somma, 2014)
(Childs-Kothari-Somma, 2017)
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LCU for QLSP: cost

• Cost of e−iAt |ψ〉 (for longest t)

O(t log(t/ε)) ∼ Õ(κ poly log(1/ε))

• Overall cost (suitable implementation of the select oracle)

Õ(κ poly log(1/ε))︸ ︷︷ ︸
Cost of each simulation

×Õ(κ2 poly log(1/ε))︸ ︷︷ ︸
# Repetition

(due to success prob.)

= Õ(κ3 poly log(1/ε)))

• Using amplitude amplification, can be improved to

Õ(κ poly log(1/ε))︸ ︷︷ ︸
Cost of each simulation

×Õ(κ poly log(1/ε))︸ ︷︷ ︸
# Repetition

(due to success prob.)

= Õ(κ2 poly log(1/ε)))
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Compare the complexities of QLSP solvers

Algorithm Query complexity Remark
HHL (Harrow et al 2009) Õ(κ2/ε) w. VTAA, complexity becomes

Õ(κ/ε3) (Ambainis 2010)
Linear combination of uni-
taries (LCU) (Childs et al
2017)

Õ(κ2 poly log(1/ε)) w. VTAA, complexity becomes
Õ(κ poly log(1/ε))

Quantum signal processing
(QSP) (Gilyén et al 2019)

Õ(κ2 log(1/ε)) Queries the RHS only Õ(κ) times

Randomization method (RM)
(Subaşi et al 2019)

Õ(κ/ε) Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes Õ(κ poly log(1/ε))

Time-optimal adiabatic quan-
tum computing (AQC(exp))
(An-Lin, 2019)

Õ(κ poly log(1/ε)) No need for any amplitude amplifi-
cation. Use time-dependent Hamil-
tonian simulation.

Eigenstate filtering (Lin-Tong,
2019)

Õ(κ log(1/ε)) No need for any amplitude amplifi-
cation. Does not rely on any com-
plex subroutines.
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Reformulating QLSP into an eigenvalue problem

• Weave together linear system, eigenvalue problem, differential
equation (Subasi-Somma-Orsucci, 2019)

• Qb = IN − |b〉 〈b|. If A |x〉 = |b〉 ⇒ QbA |x〉 = Qb |b〉 = 0

• Then

H1 =

(
0 AQb

QbA 0

)
, |x̃〉 = |0〉 |x〉 =

(
x
0

)

Null(H1) = span{|x̃〉 , |b̄〉}, |b̄〉 = |1〉 |b〉 =

(
0
b

)
• QLSP ⇒ Find an eigenvector of H1 with eigenvalue 0.
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Adiabatic computation

• Known eigenstate H0 |ψ0〉 = λ0 |ψ0〉 for some H0.

• Interested in some eigenstate H1 |ψ1〉 = λ1 |ψ1〉

• H(s) = (1− s)H0 + sH1,

1
T

i∂s |ψT (s)〉 = H(s) |ψT (s)〉 , |ψT (0)〉 = |ψ0〉

• |ψT (1)〉 ≈ ψ(1) (up to a phase factor), T sufficiently large?

• Gate-based implementation: time-dependent Trotter, for
near-optimal complexity (Low-Wiebe, 2019)
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Adiabatic computation

• (Born-Fock, 1928)
A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.

• Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen,
Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...
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Adiabatic quantum computation (AQC) for QLSP

• Introduce

H0 =

(
0 Qb

Qb 0

)
, Null(H0) = span{|b̃〉 , |b̄〉}

|b̃〉 = |0〉 |b〉 =

(
b
0

)
, |b̄〉 = |1〉 |b〉 =

(
0
b

)
• Adiabatically connecting |b̃〉 (zero eigenvector of H0) to |x̃〉 (zero

eigenvector of H1) (Subasi-Somma-Orsucci, 2019)

• Only one eigenvector in the null space is of interest: transition to
|b̄〉 is prohibited during dynamics
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Eigenvalue gap and fidelity
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Adiabatic quantum computation

Theorem (Jansen-Ruskai-Seiler, 2007)
Hamiltonian H(s), P(s) projector to eigenspace of H(s) separated by
a gap ∆(s) from the rest of the spectrum of H(s)

|1− 〈ψT (s)|P(s)|ψT (s)〉 | ≤ η2(s), 0 ≤ s ≤ 1

where

η(s) =
C
T

{‖H(1)(0)‖2
∆2(0)

+
‖H(1)(s)‖2

∆2(s)

+

∫ s

0

(
‖H(2)(s′)‖2

∆2(s′)
+
‖H(1)(s′)‖22

∆3(s′)

)
ds′
}
.

T : time complexity; 1/T convergence.
∆(s) ≥ ∆∗, T ∼ O((∆∗)

−3/ε) (worst case)
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Implication in QLSP

• Lower bound of gap (Assume A � 0 for now, can be relaxed)

∆(s) ≥ ∆∗(s) = 1− s + s/κ ≥ κ−1

• Worst-case time complexity T ∼ O(κ3/ε)

• AQC inspired algorithm: randomization method
(Subasi-Somma-Orsucci, 2019),

T ∼ O(κ log(κ)/ε)

ε : 2-norm error of the density matrix.

• Rescheduled dynamics.
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Accelerate AQC for QLSP: Scheduling

• Goal: improve the scaling AQC w.r.t. κ.

• Adiabatic evolution with H(f (s)) = (1− f (s))H0 + f (s)H1

1
T

i∂s |ψT (s)〉 = H(f (s)) |ψT (s)〉 , |ψT (0)〉 = |b̃〉

• f (s): scheduling function. 0 ≤ f (s) ≤ 1, f (0) = 0, f (1) = 1.

• allow H(f (s)) to slow down when the gap is close to 0, to cancel
with the vanishing gap.

• (Roland-Cerf, 2002) for time-optimal AQC of Grover search.
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Choice of scheduling function: AQC(p)

• Schedule (Jansen-Ruskai-Seiler, 2007; Albash-Lidar, 2018)

ḟ (s) = cp∆p
∗(f (s)), f (0) = 0, 1 ≤ p ≤ 2.
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AQC for QLSP

Theorem (An-L., 1909.05500)
A � 0, condition number κ. For any 1 < p < 2, the error of the
AQC(p) scheme is

‖PT (1)− |x̃〉 〈x̃ | ‖2 ≤ Cκ/T .

Therefore in order to prepare an ε−approximation of the solution of
QLSP it suffices to choose the runtime T = O(κ/ε).
Furthermore, when p = 1,2, the bound for the runtime becomes
T = O(κ log(κ)/ε).

Similar results for Hermitian indefinite and non-Hermitian matrices.
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Improve the dependence on ε

• AQC(exp): modified schedule (slow at beginning and end)

f (s) = c−1
e

∫ s

0
exp

(
− 1

s′(1− s′)

)
ds′
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• Intuition: error bound of (Jansen-Ruskai-Seiler, 2007) and
integration by parts (Wiebe-Babcock, 2012)

• Rigorous proof of exponential convergence: follow the idea of
(Nenciu, 1993), asymptotic expansion of P(s)
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Improve the dependence on ε

Theorem (An-L., 1909.05500)
A � 0, condition number κ. Then for large enough T > 0, the error of
the AQC(exp) scheme is

‖PT (1)− |x̃〉 〈x̃ | ‖2 ≤ C log(κ) exp

−C

(
κ log2 κ

T

)− 1
4
 .

Therefore the runtime T = O
(
κ log2(κ) log4

(
log κ
ε

))
.

Near-optimal complexity (up to poly log factors).
Similar results for Hermitian indefinite and non-Hermitian matrices.
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Implications on QAOA

• Quantum approximate op timization algorithm (QAOA)
(Farhi-Goldstone-Gutmann, 2014)

|ψθ〉 := e−iγPH1e−iβPH0 · · · e−iγ1H1e−iβ1H0 |ψi〉

• Trotterize AQC⇒: one implementation of QAOA

• Hybrid quantum-classical optimization.

• The optimal protocol of QAOA yields near-optimal complexity

• QAOA is expected to follow a non-adiabatic shortcut (Brady et al,
2020)
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Numerical results: positive definite matrix
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Figure: Top: the runtime to reach desired fidelity (left: 0.99, right: 0.999) as
a function of the condition number. Bottom: a log-log plot of the runtime as a
function of the accuracy with κ = 10.
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Numerical results: positive definite matrix
methods scaling w.r.t. κ scaling w.r.t. 1/ε

vanilla AQC 2.2022 /
RM 1.4912 /

AQC(1) 1.4619 1.1205
AQC(1.25) 1.3289 1.0530
AQC(1.5) 1.2262 1.0010
AQC(1.75) 1.1197 0.9724

AQC(2) 1.1319 0.9821
AQC(exp) 1.3718 0.5377
AQC(exp) / 1.7326 (w.r.t. log(1/ε))

QAOA 1.0635 0.6555
QAOA / 1.5889 (w.r.t. log(1/ε))

Table: Numerical scaling of the runtime as a function of the condition
number and the accuracy, respectively, for the Hermitian positive definite
example.
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Numerical results: non-Hermitian matrix
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Figure: Left: the runtime to reach 0.999 fidelity as a function of the condition
number. Right: a log-log plot of the runtime as a function of the accuracy
with κ = 10.
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Numerical results: non-Hermitian matrix

methods scaling w.r.t. κ scaling w.r.t. 1/ε
vanilla AQC 2.1980 /

RM / /
AQC(1) 1.4937 0.9611

AQC(1.25) 1.3485 0.9249
AQC(1.5) 1.2135 0.8971
AQC(1.75) 1.0790 0.8849

AQC(2) 1.0541 0.8966
AQC(exp) 1.3438 0.4415
AQC(exp) 0.9316 (w.r.t. log(1/ε))

QAOA 0.8907 0.5626
QAOA / 0.8843 (w.r.t. log(1/ε))

Table: Numerical scaling of the runtime as a function of the condition
number and the accuracy, respectively, for the non-Hermitian example.
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Block-encoding

• A “grey box” for the read-in problem.

• Example: A ∈ CN×N . Unitary matrix U ∈ C2N×2N .

UA =

(
A ·
· ·

)
UA block-encodes A, which can be non-unitary.

• Given A ∈ CN×N , can we find UA? Block-encoding problem.

• Clearly not possible if ‖A‖2 > 1.
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Block-encoding

Definition
Given an n-qubit matrix A, if we can find α, ε ∈ R+, and an
(m + n)-qubit matrix UA so that that

‖A− α (〈0m| ⊗ In) UA (|0m〉 ⊗ In) ‖ ≤ ε,

then UA is called an (α,m, ε)-block-encoding of A.

• Example: m = 1,

UA =

(
Ã ·
· ·

)
,
∥∥∥A− αÃ

∥∥∥ ≤ ε.
• Many examples of block-encoding: density operators, POVM

operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)
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Quantum signal processing

• A is Hermitian with eigenvalue decomposition A = VDV †.
Compute matrix function f (A) = Vf (D)V †.

• Quantum signal processing: powerful, general, low-cost tool for
block-encoding f (A), where f ∈ C[x ] is a polynomial satisfying
certain parity constraints. (Low-Yoder-Chuang,2016)
(Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)

• Generalizable to quantum singular value transformation.
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Eigenstate filtering problem

• H is Hermitian. λ is an eigenvalue of H, separated from the rest
of the spectrum by a gap ∆.

• Pλ: projection operator into the λ-eigenspace of H. How to find a
polynomial P to approximate Pλ?

• Requirement: P(λ) = 1 and |P(λ′)| is small for λ′ ∈ σ(H)\{λ}.
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Eigenstate filtering

Theorem (L.-Tong, 1910.14596)
H is Hermitian, UH is an (α,m,0)-block-encoding of H. λ is an
eigenvalue of H separated from the rest of the spectrum by a gap ∆.
Then we can construct a (1,m + 2, ε)-block-encoding of Pλ, by
O((α/∆) log(1/ε)) applications of (controlled-) UH and U†H , and
O((mα/∆) log(1/ε)) other primitive quantum gates.

Best polynomial approximation.
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Eigenstate filtering

• Minimax polynomial

R`(x ; ∆) =
T`
(
−1 + 2 x2−∆2

1−∆2

)
T`
(
−1 + 2 −∆2

1−∆2

) .
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• Quantum algorithm based on quantum signal processing
(Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019)
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Application of eigenstate filtering:
Accelerating AQC(p) for QLSP

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number κ, ‖A‖2 ≤ 1.
The solution |x〉 ∝ A−1 |b〉 can be obtained with fidelity 1− ε using
1. O

(
dκ( log(dκ)

log log(dκ) + log(1
ε ))
)

oracle queries to A, |b〉,
2. O

(
dκ
(

n log(1
ε ) + (n + log(dκ)) log(dκ)

log log(dκ)

))
other primitive gates,

3. O(n + log(dκ)) qubits.

• Complexity of AQC(p) is T = O(κ log(κ)/ε). Obtain solution |x0〉
with ε ∼ O(1) accuracy using time O(κ log(κ)).

• Perform eigenstate filtering |x〉 ≈ Pλ=0(H1) |x0〉.

• Near-optimal complexity!
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Numerical results
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Figure: Left: fidelity η2 converges to 1 exponentially as ` in the eigenvalues
filtering algorithm increases, for different κ. Right: the smallest ` needed to
achieve fixed fidelity η2 grows linearly with respect to condition number κ.
The initial state in eigenstate filtering is prepared by running AQC(p) for
T = 0.2κ, with p = 1.5, which achieves an initial fidelity of about 0.6.
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Application of eigenstate filtering:
Quantum Zeno effect for QLSP

• Start with |x̄(0)〉 = |0〉 |b〉 and end
with |x̄(1)〉 = |1〉 |x〉.

• At each step measure the state
|x̄(fj−1)〉 in the eigenbasis of H(fj).

• Fidelity approaches 1 as step size
decreases.

Replace measurement with
eigenstate filtering (projection).

• Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov,
Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)
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Application of eigenstate filtering:
Quantum Zeno effect for QLSP

• Start with |x̄(0)〉 = |0〉 |b〉 and end
with |x̄(1)〉 = |1〉 |x〉.

• At each step measure the state
|x̄(fj−1)〉 in the eigenbasis of H(fj).

• Fidelity approaches 1 as step size
decreases.

• Replace measurement with
eigenstate filtering (projection).

• Quantum Zeno effect (QZE): (Childs et al, 2002) (Aharonov,
Ta-Shma, 2003) (Boixo-Knill-Somma, 2009)
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Application of eigenstate filtering:
Solving QLSP via quantum Zeno effect (QZE)

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number κ, ‖A‖2 ≤ 1.
Then |x〉 ∝ A−1 |b〉 can be obtained with fidelity 1− ε using
1. O

(
dκ
(
log(κ) log log(κ) + log(1

ε )
))

queries to A, |b〉,
2. O

(
ndκ

(
log(κ) log log(κ) + log(1

ε )
))

other primitive gates,
3. O(n) qubits.

• Fully-gate based implementation (does not rely on adiabatic
computing for the initial guess.

• Successive projection along the carefully scheduled adiabatic
path.

• Near-optimal complexity!
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Finding ground energy

• Hamiltonian H and its (α,m,0)-block-encoding UH .

• Initial state |φ0〉 prepared by unitary UI .

• Find λ0 and the corresponding eigenstate |ψ0〉.

• Assumptions
(P1) Lower bound for the overlap: | 〈φ0|ψ0〉 | ≥ γ,
(P2) Bounds for the ground energy and spectral gap:

λ0 ≤ µ−∆/2 < µ+ ∆/2 ≤ λ1.
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Binary search for ground energy
Polynomial p(x) satisfies (deg p(x) = O( 1

δ log( 1
ε )))

1− ε ≤ p(x) ≤ 1, x ∈ [δ, 1],

0 ≤ p(x) ≤ ε, x ∈ [−1,−δ].

p(x) can be constructed by approximating erf (Low-Chuang, 2017).

• H is given in its
(α,m,0)-block-encoding.

• Apply p(H−x
2α ) to an initial state with

large overlap with the ground state.

• Can tell from the amplitude whether
E0 ≤ x − h or E0 ≥ x + h with high
confidence, provided E0 /∈ (x − h, x + h).
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Binary search for ground energy

  
xx-h x+h Spectrum

• Solution: apply two shifted
polynomials.

• We can now return one of the
two (not mutually exclusive)
results with high confidence:
E0 ≥ x − h or E0 ≤ x + h.

• Perform binary search for E0.
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Near-optimal algorithm for finding the ground energy

• Well-known result: phase estimation (Kitaev, 1995)

• Previous best results: (Ge-Tura-Cirac, 2019)

• Our work: (L.-Tong, 2002.12508)

Preparation
(bound known)

Ground energy Preparation
(bound unknown)

UH
This work O

(
α
γ∆ log(1

ε )
)

Õ
(
α
γh log( 1

ϑ)
)

Õ
(
α
γ∆ log( 1

ϑε)
)

GTC19 Õ
(
α
γ∆

)
Õ
(
α3/2

γh3/2

)
Õ
(
α3/2

γ∆3/2

)
UI

This work O
(

1
γ

)
Õ
(

1
γ log(αh ) log( 1

ϑ)
)
Õ
(

1
γ log( α∆ ) log( 1

ϑ)
)

GTC19 Õ
(

1
γ

)
Õ
(

1
γ

√
α
h

)
Õ
(

1
γ

√
α
∆

)
Extra This work O(1) O(log( 1

γ )) O(log( 1
γ ))

qubits GTC19 O(log( 1
∆ log(1

ε ))) O(log( 1
h )) O(log( 1

∆ log(1
ε )))

h: precision of the ground energy estimate; 1− ϑ: success probability
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Optimality of the algorithm (lower bound)

Theorem (L.-Tong, 2002.12508)
Given a generic Hamiltonian H and its (α,m,0)-block-encoding UH ,
and α = Θ(1). Initial state |φ0〉 is prepared by UI with known lower
bound of the initial overlap γ and the energy gap ∆. Then to prepare
the ground state

1. When ∆ = Ω(1), and γ → 0+, the number of queries to UH is
Ω(1/γ),

2. When γ = Ω(1), and ∆→ 0+, the number of queries to UH is
Ω(1/∆),

3. When ∆ = Ω(1), and γ → 0+, the number of queries to UI
cannot be O(1/γ1−θ) while the number of queries to UH is
O(poly(1/γ)) for any θ > 0.
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Introduction

Near-optimal quantum linear solver: adiabatic quantum computing

Near-optimal quantum linear solver: eigenstate filtering

Near-optimal algorithm for ground energy

Future works
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Challenges

• Large-scale fully error-corrected quantum computer remains at
least really, really, really hard in the near future. Think about both
near-term and long-term for quantum linear algebra.

• Efficient gate-based implementation of adiabatic quantum
computing (AQC).

1. Time-dependent Hamiltonian simulation problem.
2. Commutator-based error bounds (Childs et al, 2019)

• Quantum signal processing: approximation theory in SU(2).
1. How to obtain the phase factors: optimization based approach

(Dong-Meng-Whaley-L., 2002.11649)
2. Polynomial approximation with nontrivial constraints.
3. Decay of phase factors and regularity of the function.
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Challenges
• Fast-forwarding of certain Hamiltonians, and preconditioning.

Simulation in the interaction picture.

• Quantum speedup in terms of solving ODEs / PDEs / open
quantum systems.

• Explore the power of the block-encoding model:
1. Block-encoding based Hamiltonian simulation can be much tricker

than Trotter based approaches in practice.
2. Connection with supremacy type circuits.

• Beyond the oracular assumption and demonstrate the advantage
of QLSP solvers for real applications.

• What is the proper counterpart of dense matrices in the quantum
setting? What should be the proper “quantum LINPACK
benchmarks” in the post-supremacy era?
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