Introduction to FHE and the TFHE Scheme

Ilaria Chillotti

KU Leuven & Zama

Lattices: From Theory to Practice

Simons Institute 30 April 2020

Introduction to FHE

2 The TFHE scheme

- Gate bootstrapping
- Vertical packing and LUT evaluation
- TFHE implementation

3 Conclusion

Introduction to FHE

2 The TFHE scheme

- Gate bootstrapping
- Vertical packing and LUT evaluation
- TFHE implementation

Conclusion

Homomorphic Encryption

Allows to perform computations on encrypted messages, without decrypting.

- Possibly any function
- Different message spaces
- Secret and public key solutions

Many applications

- Computations over sensitive data (medical, biological, financial, etc.)
- Outsourced computations
- Electronic voting
- Multiparty Computations
- And more...

Once upon a time...

• 1978 - Rivest, Adleman, Dertouzos: privacy homomorphisms

• • • •

• 2009 - Gentry: first fully homomorphic encryption construction

What happened in the meantime?

Many schemes are homomorphic...

- $\bullet \ \mathrm{RSA}$
- ElGamal

- Paillier
- Goldwasser-Micali

• ...

...but only **partially**.

Some schemes can support both addition and multiplication, but "with limits":

- somewhat: example the scheme by Boneh, Goh and Nissim 2005
- leveled.....

Example: [DGHV10]

Scheme based on the Approximate GCD problem [HG01], proposed by Van Dijk, Gentry, Halevi, Vaikuntanathan in 2010.

c = m + 2r + pq

- $m \in \{0, 1\}$ message
- $p \in \mathbb{Z}$ secret key
- $q \in \mathbb{Z}$ large $(p \ll q)$
- $r \in \mathbb{Z}$ small <u>noise</u> $(r \ll p)$

To decrypt: ciphertext modulo p and then modulo 2.

$$c_1 = m_1 + 2r_1 + pq_1 \qquad c_2 = m_2 + 2r_2 + pq_2$$

Addition (XOR):

$$c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + p(q_1 + q_2)$$

Noise amount : double...

Multiplication (AND):

$$c_1 \cdot c_2 = (m_1 \cdot m_2) + 2(2r_1 \cdot r_2 + \ldots) + p(q_1 \cdot q_2 + \ldots)$$

Noise amount : square...

If noise grows too much, a correct decryption cannot be guaranteed!

Bootstrapping [Gen09]

Bootstrapping is very costly!

"To bootstrap, or not to bootstrap, that is the question" (semi cit.)

Leveled homomorphic

Set the function, there exist parameters to homomorphically evaluate it.

- \checkmark Fast evaluations
- ✗ The depth has to be known in advance

Fully homomorphic

Set the parameters, it is possible to homomorphically evaluate any function.

- X Slow evaluations (Bootstrapping)
- ✓ No depth limitations

Lattice problems

Approximate-GCD [HG01], NTRU [HPS98], (Ring-)LWE [Reg05], [SSTX09], [LPR10]

• In this workshop we will mainly concentrate on (Ring-)LWE-based solutions

Some (Ring-)LWE-based schemes	Some implementations
"BGV-like"	• cuFHE
• B(G)V: [BV11], [BGV12]	• FHEW
• B/FV: [Bra12], [FV12]	• HEAAN
• HEAAN: [CKKS17]	• HElib
"GSW-like"	• Lattigo
• GSW: [GSW13]	• Microsoft SEAL
• FHEW: [DM15]	• NFLlib
• TFHE: [<u>C</u> GGI16-17]	• nuFHE
	• Palisade
In practice, they are less different than	• TFHE
expected: Chimera [BGGJ19]	•

Introduction to FHE

2 The TFHE scheme

- Gate bootstrapping
- Vertical packing and LUT evaluation
- TFHE implementation

3 Conclusion

[DM15]

- GSW-based construction
- They build a FHE brick: a bootstrapped NAND gate
- Slow (but significantly improved): ~ 0.69 seconds per bootstrapped NAND gate
- Large bootstrapping keys: $\sim 1 \text{ GByte}$

[DM15]: L. Ducas, D. Micciancio, FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second, EUROCRYPT 2015

Bootstrapped versions [CGGI16]

- Slow (but significantly improved): $\sim 0.69 \sim 0.05$ seconds per bootstrapped NAND gate
- Slow (but significantly improved) [CGGI17]:
 ∼ 0.69 ~ 0.05 ~ 0.013 seconds per bootstrapped NAND gate
- Large bootstrapping keys: ~ 1 GByte ~ 23.4 MBytes

Leveled versions [CGGI17]

- Fast(er) for small depth circuits
- New techniques to improve leveled evaluations
- New Bootstrapping for larger circuits

 [CGGI16]: I. Chillotti, N. Gama, M. Georgieva, M. Izabachène, Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds, ASIACRYPT 2016
 [CGGI17]: I. Chillotti, N. Gama, M. Georgieva, M. Izabachène, Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping for TFHE, ASIACRYPT 2017

Torus

 $(\mathbb{T}, +, \cdot)$ is a \mathbb{Z} -module (the external product $\cdot : \mathbb{Z} \times \mathbb{T} \to \mathbb{T}$ is well defined) \checkmark It is an abelian group: $x + y \mod 1, -x \mod 1, ...$ \checkmark It is a \mathbb{Z} -module: $0 \cdot \frac{1}{2} = 0$ is defined!

X It is **not** a Ring: $0 \times \frac{1}{2}$ is **not** defined!

Torus polynomials

 $(\mathbb{T}_N[X], +, \cdot)$ is a \mathfrak{R} -module

- Here, $\mathfrak{R} = \mathbb{Z}[X]/(X^N + 1)$
- And $\mathbb{T}_N[X] = \mathbb{T}[X] \mod (X^N + 1)$

TFHE ciphertexts

LWE

Message $\mu \in \mathbb{T}$, secret key $\mathbf{s} \in \mathbb{B}^n$

$$\mathbf{c} = (\mathbf{a}, b) \in \mathbb{T}^{n+1}$$

• **a** random mask,
$$b = \mathbf{s} \cdot \mathbf{a} + \varphi$$

• $\varphi=e+\mu$, $e\in\mathbb{T}$ Gaussian

 $(\mathbf{a}, \varphi) \qquad (\mathbf{a}, b)$

 $\mathbb{T} = \mathbb{R} \mod 1, \mathbb{B} = \{0, 1\}$

RLWE

Message $\mu \in \mathbb{T}_N[X]$, secret key $s \in \mathbb{B}_N[X]$

$$\mathbf{c} = (a, b) \in \mathbb{T}_N[X]^2$$

• a random mask, $b = s \cdot a + e + \mu$, $e \in \mathbb{T}_N[X]$ Gaussian

 $\mathbb{T}_N[X]=\mathbb{R}[X]/(X^N+1) \bmod 1,$ $\mathbb{B}_N[X]=\mathbb{Z}[X]/(X^N+1)$ with binary coefs

RGSW

Message $m \in \mathbb{Z}_N[X]$, secret key $\mathbf{s} \in \mathbb{B}_N[X]$ as in RLWE

$$C = Z + m \cdot G_2 \in \mathbb{T}_N[X]^{2\ell \times 2}$$

- \bullet with Z is a list of 2ℓ RLWE encryptions of 0
- with G_2 the **gadget** matrix

$$G_2 = \begin{pmatrix} \mathbf{g} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{g} \end{pmatrix}$$
, with $\mathbf{g}^T = (2^{-1}, ..., 2^{-\ell})$

 G_2^{-1} : easy to decompose $\mathbb{T}_N[X]$ elements w.r.t. G_2

 $\mathbb{Z}_N[X] = \mathbb{Z}[X]/(X^N + 1)$

TFHE products

Internal RGSW product

$$C \boxtimes D = G_2^{-1}(D) \cdot C = \begin{bmatrix} G_2^{-1}(\mathbf{d}_1) \cdot C \\ \vdots \\ G_2^{-1}(\mathbf{d}_{2\ell}) \cdot C \end{bmatrix} = \begin{bmatrix} C \boxdot \mathbf{d}_1 \\ \vdots \\ C \boxdot \mathbf{d}_{2\ell} \end{bmatrix}$$

External RGSW – RLWE product [CGGI16],[BP16]

 $C \boxdot \mathbf{d} = G_2^{-1}(\mathbf{d}) \cdot C$

TFHE MUX

 $MUX(C, \mathbf{d_1}, \mathbf{d_0}) = C \boxdot (\mathbf{d_1} - \mathbf{d_0}) + \mathbf{d_0}$

Largely used in TFHE leveled and bootstrapped constructions.

How often shall we bootstrap?

Gate bootstrapping: bootstrap after every gate (like [DM15])

Circuit bootstrapping: bootstrap after a larger circuit

Gate bootstrapping

• Input LWE ciphertext

 $\mathbf{c} = (\mathbf{a}, b)$

Depending on

$$\varphi = b - \mathbf{a} \cdot \mathbf{s}$$

we compute an output LWE ciphertext encrypting $v_{\varphi} \in \mathbb{T}$

Gate bootstrapping

Start from (a trivial) RLWE ciphertext of message^a

$$ACC = v_0 + v_1 X + \dots + v_{N-1} X^{N-1}$$

2 Do a blind rotation of ACC by $-\varphi$ positions (i.e. $ACC \cdot X^{-\varphi}$)

3 Extract the constant term of ACC (which encrypts v_{φ})

 ^{a}N coefficients modulo $X^{N}+1$ can be viewed as 2N coefficients modulo $X^{2N}-1$ s.t. $v_{N+i}=-v_{i}$

Look-Up Table evaluation

The RLWE slots can be used in an optimal way

- LWE: messages $m \in \mathbb{T}$
- RLWE: messages $\mathbf{m} \in \mathbb{T}_N[X]$

$$\mathbf{m} = \sum_{i=0}^{N-1} m_i \cdot X^i \qquad \sim \qquad \mathbf{m} = (m_0, m_1, \dots, m_{N-1})$$

m_0 m_1 m_2 \dots m_{N-2}	<i>m</i> _{<i>N</i>-1}	Generally $N = 2^{10}$
-------------------------------------	--------------------------------	---------------------------

LookUp Tables (LUT)

$$f: \mathbb{B}^d \longrightarrow \mathbb{T}^s$$
$$x = (x_0, \dots, x_{d-1}) \longmapsto f(x) = (f_0(x), \dots, f_{s-1}(x))$$

Example with d = 3 and s = 2

x_0	x_1	x_2	f_0	f_1
0	0	0	0.5	0.3
1	0	0	0.25	0.7
0	1	0	0.1	0.61
1	1	0	0.83	0.9
0	0	1	0.23	0.47
1	0	1	0.67	0.42
0	1	1	0.78	0.12
1	1	1	0.35	0.95

LUT largely used in cryptology (ex. evaluation of arbitrary functions, SBoxes, ...)

How to evaluate it?

x_0	 x_{d-1}	f_0		f_{s-1}	$f_j x_0 x_1 \dots x_{d-1}$
0	 0	$\sigma_{0,0}$		$\sigma_{s-1,0}$	$\sigma_{j,0}$ _ 0
1	 0	$\sigma_{0,1}$		$\sigma_{s-1,1}$	$\sigma_{j,1}$ — 1 0
0	 0	$\sigma_{0,2}$		$\sigma_{s-1,2}$	$\sigma_{j,2}$ _0 _1
1	 0	$\sigma_{0,3}$	•••	$\sigma_{s-1,3}$	$\sigma_{j,3}$ — 1
÷	 :	÷	÷	:	$\cdots - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \longrightarrow o_j$
0	 1	$\sigma_{0,2^d-4}$		$\sigma_{s-1,2^{d}-4}$	$\sigma_{j,2^d-4} _ \boxed{0}$
1	 1	$\sigma_{0,2^d-3}$	($\sigma_{s-1,2^d-3}$	$\sigma_{j,2^d-3}$
0	 1	$\sigma_{0,2^d-2}$		$\sigma_{s-1,2^d-2}$	$\sigma_{j,2^d-2} \underbrace{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} } \begin{bmatrix} 1 \end{bmatrix}$
1	 1	$\sigma_{0,2^d-1}$	($\sigma_{s-1,2^d-1}$	$\sigma_{j,2^d-1} - \boxed{1}$
		1			

Batching (Horizontal Packing)

• Pack the outputs in a RLWE ciphertext (green box)

Vertical packing

x_0		x_{d-1}	f_0		f_{s-1}
0	• • •	0	$\sigma_{0,0}$		$\sigma_{s-1,0}$
1	• • •	0	$\sigma_{0,1}$		$\sigma_{s-1,1}$
0		0	$\sigma_{0,2}$		$\sigma_{s-1,2}$
1		0	$\sigma_{0,3}$		$\sigma_{s-1,3}$
:				:	÷
0	• • •	1	$\sigma_{0,2^d-4}$	0	$\sigma_{s-1,2^d-4}$
1		1	$\sigma_{0,2^d-3}$		$\tau_{s-1,2^d-3}$
0		1	$\sigma_{0,2^d-2}$		$\tau_{s-1,2^d-2}$
1		1	$\sigma_{0,2^d-1}$		$\sigma_{s-1,2^d-1}$

Vertical Packing

Mix them all...

- Depending on the use case, choose which type of packing is the best
- You can mix them: they are compatible

x_0		x_{d-1}	$f_0 \cdots f_{s-1}$
0	• • •	0	$\sigma_{0,0}$ $\sigma_{s-1,0}$
1	• • •	0	$\sigma_{0,1}$ $\sigma_{s-1,1}$
0		0	$\sigma_{0,2}$ $\sigma_{s-1,2}$
1		0	$\sigma_{0,3}$ $\sigma_{s-1,3}$
:		:	
0		1	$\sigma_{0,2^d-4} \dots \sigma_{s-1,2^d-4}$
1		1	$\sigma_{0,2^d-3} \dots \sigma_{s-1,2^d-3}$
0		1	$\sigma_{0,2^d-2} \ldots \sigma_{s-1,2^d-2}$
1		1	$\sigma_{0,2^d-1} \dots \sigma_{s-1,2^d-1}$

Seen in this presentation

- Basic construction
- Gate bootstrapping
- Evaluation of LUT (leveled)

More...

- Evaluate deterministic (weighted) finite automata
- The homomorphic counter TBSR
- Circuit bootstrapping
- ...

TFHE implementation

TFHE: Fast Fully Homomorphic Encryption over the Torus

- Open source C/C++ library https://tfhe.github.io/tfhe/
- Distributed under Apache 2.0 license

Gate bootstrapping

• All gates implemented in the official release

Circuit bootstrapping and leveled operations

• Implemented in the experimental repository https://github.com/tfhe/experimental-tfhe

TFHE in Gate Bootstrap mode versus Circuit Bootstrap mode

TFHE Gate Bootstrag	pping	TFHE Circuit Bootstrapping	
• Input/Output: LWE	\rightarrow LWE	• Input/Output: LWE \rightarrow RGSW	
• Gate bootstrapping i	n 10-20 ms	• Circuit bootstrapping in 137 ms	
• All binary gates have	the same cost	• After many transitions 34 μs	
Evaluate about 70 bootst	rapped binary	Evaluate a LUT from 16-bit input to 8-bit	
gates per second.		output in 1 second.	
Bit Overhead			
• LWE: 2.46 KB	(encrypts 1 message)		
• RLWE: 8 KB	(encrypts up to 1024 messages)		
• RGSW : 48 KB	(encrypts up to 1024 messages)		

- Implementation tested on (single core) Intel i7 and Intel i9 processor laptops
- Parameters have 128-bits of security according to the LWE estimator

Introduction to FHE

2 The TFHE scheme

- Gate bootstrapping
- Vertical packing and LUT evaluation
- TFHE implementation

3 Conclusion

Conclusion

Some TFHE related works

- GPU implementations: cuFHE, nuFHE
- Neural network applications: [BMMP18], TFHE-Chimera solution at iDASH 2019
- Multi-key: MK-TFHE [CCS19]
- Use in MPC: Onion Ring ORAM [CCR19]

Thank you!

Questions?

Bibliography

[RAD78] R. L. Rivest, L. Adleman, M. L. Dertouzos. On data banks and privacy homomorphisms. Foundations of secure computation 1978.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. STOC 2009.

[RSA78] R. L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 1978.

[EIG85] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transactions on information theory 1985.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. EUROCRYPT 1999.

[GM82] S. Goldwasser, S. Micali. Probabilistic encryption & how to play mental poker keeping secret all partial information. STOC 1982.

[BGN05] D. Boneh, E-J. Goh, K. Nissim. Evaluating 2-dnf formulas on ciphertexts. TCC 2005.

[DGHV10] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan. Fully homomorphic encryption over the integers. EUROCRYPT 2010.

[HG01] N. Howgrave-Graham. Approximate integer common divisors. CaLC 2001.

[HPS98] J. Hoffstein, J. Pipher, J. H. Silverman. NTRU: A ringbased public key cryptosystem. ANTS-III 1998.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005. [SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. ASIACRYPT 2009.

[LPR10] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. EUROCRYPT 2010.

[BV11] Z. Brakerski, V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key dependent messages. CRYPTO 2011.

[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. ITCS 2012.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012.

[FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, Y. Song. Homomorphic encryption for arithmetic of approximate numbers. ASIACRYPT 2017.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. CRYPTO 2013.

[DM15] L. Ducas, D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. EUROCRYPT 2015.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. ASIACRYPT 2016.

[CGGI17] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. ASIACRYPT 2017.

[BGGJ19] C. Boura, N. Gama, M. Georgieva, D. Jetchev. CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption Schemes. NutMic 2019.

[BP16] Z. Brakerski, R. Perlman. Lattice-based fully dynamic multi-key FHE with short ciphertexts. CRYPTO 2016.

[BMMP18] F. Bourse, M. Minelli, M. Minihold, P. Paillier. Fast Homomorphic Evaluation of Deep Discretized Neural Networks. CRYPTO 2018.

[CCS19] H. Chen, I. Chillotti, Y. Song. Multi-Key Homomorphic Encryption from TFHE. ASIACRYPT 2019.

[CCR19] H. Chen, I. Chillotti, L. Ren. Onion Ring ORAM: Efficient Constant Bandwidth Oblivious RAM from (Leveled) TFHE. CCS 2019.